
IBM Systems - iSeries

Programming

Application Programming Interfaces (API) Concepts

Version 5 Release 4

���

IBM Systems - iSeries

Programming

Application Programming Interfaces (API) Concepts

Version 5 Release 4

���

Note

Before using this information and the product it supports, read the information in “Notices,” on

page 577.

Seventh Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of i5/OS (product number 5722-SS1) and to all

subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all

reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Application programming interfaces . . 1

What’s new for V5R4 1

Printable PDFs 1

API concepts 3

About application programming interfaces (APIs) 4

API terminology 5

Generic library names 6

OPM and ILE API verbs and abbreviations . . . 7

Language selection considerations 9

API environments 11

API information format 48

API parameters 54

Include files and the QSYSINC library 62

Internal object types 64

Data types 69

Internal identifiers 69

User spaces and receiver variables 70

Continuation handle 77

List APIs overview 78

Domain concepts 116

Exit programs 117

User index considerations 118

Performance considerations 118

APIs and internal system objects 119

Open list information format 119

Path name format 121

Using APIs 123

Scenario: Original Program Model (OPM) API 123

Scenario: Integrated Language Environment

(ILE) APIs 190

Performing tasks using APIs 242

Examples: APIs 301

Example: Changing an active job 301

Example: Changing a job schedule entry . . . 306

Example: Creating a batch machine 310

Example: Creating and manipulating a user

index 313

Example: Creating your own telephone

directory 317

Examples: Defining queries 320

Example: Deleting old spooled files 343

Example: Diagnostic reporting 358

Example: Generating and sending an alert . . . 365

Example: List directories 366

Example: Listing subdirectories 372

Example: Saving to multiple devices 376

Example: Saving and restoring system-level

environment variables 379

Examples: Scanning string patterns 383

Example: Using COBOL program to call APIs 385

Example: Using the control device (QTACTLDV)

API 388

Examples: Using a data queue 394

Example: Using environment variables 399

Examples: Using ILE Common Execution

Environment data APIs 400

Examples: Using the generic terminal APIs . . 402

Example: Using profile handles 406

Example: Using registration facility APIs . . . 407

Examples: Using semaphores and shared

memory 412

Example: Using SNA/Management services

transport APIs 417

Example: Using source debugger APIs 429

Examples: Using the spawn process and wait

for child process APIs 453

Example: Using the user-defined

communications programs for file transfer . . . 463

Example: Working with stream files 495

Example: Creating a program temporary fix exit

program 498

Example: Using the operational assistant exit

program for operational assistant backup . . . 500

Machine interface programming 501

Machine interface instructions 501

Example: Writing an MI program 502

Compile an MI program 504

Creating an MI version of CLCRTPG 511

Enhanced version of the MICRTPG program 517

Create the MICRTPG2 program 524

Examples: Common MI programming

techniques 529

Program storage 532

Common API programming errors 533

Use the error code parameter 534

Define data structures 536

Examples: Define receiver variables 539

Define list entry format lengths 543

Use null pointers with OPM APIs 547

Define byte alignment 549

Using offsets in a user space 554

Code for new function 562

Code license and disclaimer information 575

Appendix. Notices 577

Programming Interface Information 579

Trademarks 579

Terms and conditions 580

© Copyright IBM Corp. 2006 iii

iv IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Application programming interfaces

This topic provides experienced application programmers with the information needed to develop

system-level and other i5/OS™ applications using the application programming interfaces (APIs).

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

What’s new for V5R4

Find out about major API changes for V5R4.

Updated API programming information

The Application Programming Interfaces (APIs) topic contains information about APIs that can be used

with iSeries™ servers.

This release, the APIs topic has been enhanced to include more API programming concepts information.

In addition, you can use the API finder to find lists of all new APIS and all changed APIs for this release.

How to see what’s new or changed

To help you see where technical changes have been made, this information uses:

v The

image to mark where new or changed information begins.

v The

image to mark where new or changed information ends.

To find other information about what’s new or changed this release, see the Memo to users.

Printable PDFs

Use this to view and print groups of APIs or concepts.

The following links provide the Portable Data Format (PDF) versions of the API concepts information, as

well as the API descriptions grouped by category.

To view or download a PDF, select one of the following links:

 API PDF PDF download size (pages)

API concepts 3,195 KB (570 pages)

Backup and Recovery 2,668 KB (226 pages)

Client Management Support 275 KB (32 pages)

Cluster 2,958 KB (248 pages)

Communications 3,607 KB (322 pages)

Configuration 4,122 KB (272 pages)

Cryptographic Services 1,175 KB (122 pages)

Database and File 9,246 KB (594 pages)

Date and Time 296 KB (46 pages)

Debugger 1,749 KB (160 pages)

Dynamic Screen Manager 3,216 KB (328 pages)

© Copyright IBM Corp. 2006 1

api.pdf

API PDF PDF download size (pages)

Edit Function 168 KB (26 pages)

Hierarchical File System 1,415 KB (138 pages)

High-Level Language 919 KB (80 pages)

ILE CEE 1,215 KB (118 pages)

Journal and Commit 1,811 KB (170 pages)

Machine Interface Instructions 15,754 KB (1,324 pages)

Message Handling 2,406 KB (212 pages)

National Language Support 1,730 KB (162 pages)

Network Management 1,005 KB (102 pages)

Object 2,168 KB (184 pages)

Office 2,605 KB (212 pages)

Operational Assistant 299 KB (36 pages)

i5/OS PASE 1,159 KB (102 pages)

Performance Management 1,428 KB (134 pages)

Print 5,860 KB (424 pages)

Problem Management 1,358 KB (110 pages)

Program and CL Command 2,630 KB (228 pages)

Process Open List 253 KB (32 pages)

Pthread 2,219 KB (312 pages)

Registration Facility 484 KB (52 pages)

Remote Procedure Call 1,317 KB (148 pages)

Security

 Security-related 2,517 KB (222 pages)

 Digital Certificate Management 962 KB (100 pages)

 Enterprise Identity Mapping (EIM) 1,760 KB (252 pages)

 Generic Security Service 792 KB (94 pages)

 Network Authentication Service 2,076 KB (226 pages)

 Network Security 595 KB (58 pages)

 User Function Registration 510 KB (52 pages)

 Validation List 671 KB (72 pages)

Server Support 1,294 KB (116 pages)

SM1 136 KB (24 pages)

Software Product 2,613 KB (230 pages)

UNIX®-Type

 Environment Variable 459 KB (48 pages)

 Generic Security Service 792 KB (94 pages)

 Generic Terminal 275 KB (36 pages)

 Integrated File System 5,943 KB (716 pages)

 Interprocess Communication 1,744 KB (174 pages)

 Lightweight Directory Access Protocol 3,527 KB (330 pages)

 Network Authentication Service 2,076 KB (226 pages)

2 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

API PDF PDF download size (pages)

 Problem Determination 380 KB (40 pages)

 Pthread 2,219 KB (312 pages)

 Process-Related 735 KB (90 pages)

 Remote Procedure Call 1,317 KB (148 pages)

 Resource Reservation Setup Protocol 654 KB (68 pages)

 Signal 870 KB (96 pages)

 Simple Network Management Protocol 765 KB (66 pages)

 Sockets 3,321 KB (384 pages)

 Secure Sockets 1,090 KB (130 pages)

 Time 395 KB (40 pages)

 XA 479 KB (60 pages)

User Interface 1,039 KB (118 pages)

Virtual Terminal 373 KB (42 pages)

Work Management 5,354 KB (384 pages)

Work Station Support 198 KB (26 pages)

Miscellaneous 523 KB (56 pages)

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.

4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free

copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html)

.

API concepts

Describes the underlying concepts that you need to understand to work effectively with APIs. Among the

concepts covered are basic concepts, programming considerations, and terminology.

An application programming interface (API) is defined as a functional interface supplied by the operating

system or a separately orderable licensed program that allows an application program written in a

high-level language to use specific data or functions of the operating system or the licensed program.

Some APIs provide the same functions as control language (CL) commands and output file support.

Some APIs provide functions that CL commands do not. Most APIs work more quickly and use less

system overhead than the CL commands.

APIs allow you to:

v Provide better performance when getting system information or when using system functions provided

by control language (CL) commands or file support.

v Use system information and functions that are not available through CL commands.

APIs 3

|

|

|

http://www.adobe.com/products/acrobat/readstep.html

v Use calls from high-level languages to these interfaces.

v Access to system functions at a lower level than what was initially provided on the system.

Finally, data is often easier to work with when returned to you by an API.

For information about using APIs, see the following:

About application programming interfaces (APIs)

Describes most of the iSeries application programming interfaces (APIs), as well as some APIs for related

products that can be used on iSeries servers.

Before using APIs, you should be familiar with the API concepts discussed in this topic. On occasion, you

may need to refer to other IBM® books or topics for more specific information about a particular topic.

Information for specific APIs or categories of APIs often provide links to additional information that may

be useful to you.

Who should use APIs

The APIs are intended for experienced application programmers who are developing system-level and

other i5/OS applications. This topic provides reference information only; it is neither an introduction to

the i5/OS licensed program nor a guide to writing i5/OS applications.

How this information is organized

In the API finder, you can search for APIs by category, by API name, by descriptive name, or by part of

the name. You also can search for new APIs, changed APIs, and exit programs.

The API categories are major functional categories, such as backup and recovery, objects, and work

management. Within the individual categories, the APIs are organized in alphabetical order as follows:

v By the spelled-out name for the original program model (OPM), the Integrated Language

Environment® (ILE), and the ILE CEE APIs.

v By the function name for the UNIX-type APIs.

Compatibility with future releases

In future releases, IBM intends that one of the following will be true:

v If additional input or output parameters are provided for any of the APIs, the new parameters will be

placed after the current parameters and will be optional parameters. The existing APIs will continue to

work without any changes.

v If an additional data structure is provided, a new format (layout of that data structure) will be created.

v New information may be added to the end of an existing format.

It is IBM’s intention that the APIs will continue to work as they originally worked and any existing

applications that use the APIs will continue to work without changes. Significant architectural changes,

however, may necessitate incompatible changes. Additionally, some API definitions, for example the

UNIX type of API definitions, are established by industry standards organizations where the degree of

compatibility is determined by the organizations.

To ensure better compatibility with future releases, you should retrieve and use all of the following when

you work with user spaces generated by list APIs:

v Offset values to the list data section

v Size of the list data section

v Number of list entries

4 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

v Size of each entry

System APIs or CL commands--when to use each

Before system APIs were offered on the system, you had to either code separate CL programs to perform

the needed functions using the appropriate CL commands or code a call to the Execute Command

(QCMDEXC) API in your program. Both methods made coding an application on the system more

cumbersome (less straightforward and not as fast as possible).

CL commands will always be needed; they are ideal for the interactive user and for CL applications that

are performing basic tasks. They provide a complete set of functions on the system.

APIs are not provided as a replacement for CL commands, although in many cases there may be both an

API and a CL command that perform the same function. If a CL command and an API provide the same

function, at times the API provides more flexibility and information. The CL command is intended to be

entered either interactively or in a CL program, and the API is designed as a programming interface.

Some APIs have no equivalent CL command. These APIs have been provided in areas where customers

and business partners have indicated that they need high-level language (HLL) access.

Actions and system functions of APIs

An API can be categorized by the type of action it performs and by the system function that it relates to.

Following are some of the types of APIs that perform actions; several examples of these APIs are

discussed in more detail in later chapters of this book.

v List APIs, which return lists of information about something on the system.

v Retrieve APIs, which return information to the application program.

v Create, change, and delete APIs, which work with objects of a specified type on the system.

v Other APIs, which perform a variety of actions on the system.

While many APIs are used alone, some can be used together to perform a task or function. The following

is a list of a few functions:

v Defining, creating, distributing, and maintaining your own software products.

v Controlling systems and networks, which can include configuration, spooled files, network

management, problem management, and so forth.

v Handling objects, which includes creating, changing, copying, deleting, moving, and renaming objects

on the system.
 Related reference

 “Determining whether to use data queues or user queues” on page 286

If user queues and data queues supply the same function, which one should you choose for your

implementation? The following is a comparison of the two and an insight into when you should use

one queue rather than the other.

 “Examples: Using data queues or user queues” on page 286

Data queues and user queues both provide a means for one or more processes to communicate

asynchronously. The queues can be processed FIFO (first-in first-out), LIFO (last-in first-out), or by

key.

API terminology

Before using the iSeries APIs, you should be familiar with several terms. These terms refer to i5/OS

objects.

APIs 5

The system-recognized identifiers are shown in parentheses. Note that each term does not apply to every

API.

binding directory (*BNDDIR).

An object that contains a list of names of modules and service programs.

data queue (*DTAQ).

An object that is used to communicate and store data used by several programs in a job or

between jobs.

module (*MODULE).

An object that is made up of the output of the compiler.

program (*PGM).

A sequence of instructions that a computer can interpret and run. A program can contain one or

more modules.

service program (*SRVPGM).

An object that packages externally supported callable routines into a separate object.

user index (*USRIDX).

An object that provides a specific order for byte data according to the value of the data.

user queue (*USRQ).

An object consisting of a list of messages that communicate information to other application

programs. Only programming languages that can use machine interface (MI) instructions can

access *USRQ objects.

user space (*USRSPC).

An object consisting of a collection of bytes used for storing any user-defined information.

Generic library names

These special values refer to i5/OS libraries, and you can often use them in API calls in place of specific

library names.

*ALL. All libraries, including the QSYS library.

*ALLUSR.

All user-defined libraries with names that do not begin with the letter Q. Although the following

libraries with names that begin with the letter Q are provided by IBM, they typically contain user

data that changes frequently. Therefore, these libraries are also considered user libraries:

 QDSNX

QGPL

QGPL38

QMGTC

QMGTC2

QMPGDATA

QMQMDATA

QMQMPROC

QPFRDATA

QRCL

QRCLxxxxx

 QSRVAGT

QSYS2

QSYS2xxxxx

QS36F

QUSER38

QUSRADSM

QUSRBRM

QUSRDIRCL

QUSRDIRDB

QUSRIJS

QUSRINFSKR

QUSRNOTES

QUSROND

QUSRPOSGS

QUSRPOSSA

QUSRPYMSVR

QUSRRDARS

QUSRSYS

QUSRVI

QUSRVxRxMx

*ALLUSR excludes System/36™ libraries that have names starting with the symbol # and that do

not contain user data. Those libraries are:

6 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

#CGULIB

#COBLIB

#DFULIB

#DSULIB

#RPGLIB

#SDALIB

#SEULIB

’xxxxx’ is the number of a primary auxiliary storage pool (ASP).

 A different library name, in the format QUSRVxRxMx, can be created by the user for each

previous release supported by IBM to contain any user commands to be compiled in a CL

program for the previous release. For the QUSRVxRxMx user library, VxRxMx is the version,

release, and modification level of a previous release that IBM continues to support.

 For more information about QUSRVxRxMx libraries or the *ALLUSR special value, see Special

values for the SAVLIB command in the Information Center.

*CURLIB.

The job’s current library. If no current library is specified for the job, the QGPL library is used.

*LIBL. The user and system portions of the job’s library list.

*USRLIBL.

The user portion of the job’s library list.
 Related reference

 Special values for the SAVLIB command

OPM and ILE API verbs and abbreviations

The two to three letters following the APIs make up an internal component identifier. The last part of the

API name identifies the action or function of the API. The information after the component ID is an

abbreviation of the verb that describes the function of the API.

Except for APIs that are defined by formal standards organizations (for example, UNIX type or Systems

Application Architecture® (SAA®)), APIs start with the letter Q and are followed by two to three letters

that make up an internal component identifier. The following table contains all of the verbs that are either

part of an API name or are implied verbs associated with an API name.

 Verb Abbreviation

access access

Add ADD, Add

Change C, CHG, Chg, ch

Check C, CHK, CHECK

Clear CLR, Clr

Close CLO, close

Complete Cmp

Control CTL

Convert CVT, CVRT, Convert

Copy CPY, Cpy

Create CRT, Crt, create

Customize CST

Delete DLT, Dlt

Deregister DRG, Deregister

Disable D

Display DSP, Dsp

APIs 7

Verb Abbreviation

Dump DMP, Dump

duplicate dup

Edit EDT

Enable E

End END, End

Execute (run) EXC, EXEC

Filter FTR

Force FRC

Generate GEN

Get (fetch) G, GET, Get, get

Initialize Inz

Insert Ins

link link

List L, LST, List

Lock/unlock LUL

make mk

Map Map

Maximize Mxz

Move MOV, Mov

Open OPN, open

Pad Pad

Print PRT, Prt

Put PUT, Put

PutGet PutGet

Query Q, QRY, Qry

Read RD, Read, read

Receive R, RCV, RECV

Register RG, REG, R, Register

Release RLS

Remove RMV, Rmv, Remove, rm

Rename RNM, rename

Report Report

Resend RSN

Reserve Reserve

Restore RST, Rst, Restore

reset rewind

Resize Rsz

Retrieve R, RTV, Rtv, Retrieve

Roll Roll

Save SAV, Sav, Save

Scan for SCAN

8 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Verb Abbreviation

Send S, SND, SEND, Send

Set SET, Set

Shift Shf

Start Start, STR, Str

Submit Submit

Switch Set

Test T

Toggle Tgl

Transform T

Translate TR, TRN, XLATE

truncate truncate

Unregister U

Update UPD

Validate V

Work with WK, WRK, Wrk

Write WRT, Wrt, write, W

 Related concepts

 “APIs for the ILE Common Execution Environment” on page 12
The ILE APIs with names beginning with CEE are based on the SAA language environment

specifications. These APIs are intended to be consistent across the IBM systems. CEE APIs with names

beginning with CEE4 or CEES4 are specific to business computing systems.

 “API information format” on page 48
API names contain verbs that are similar to the i5/OS licensed program: change, create, remove, and

retrieve.

 “Scenario: Original Program Model (OPM) API” on page 123

This scenario demonstrates the use of an original program model (OPM) API in several different

programs.

Language selection considerations

You can use APIs with all the languages available on iSeries business computing systems, except for the

ILE APIs.

ILE APIs that are implemented as service programs (*SRVPGM) can be accessed only by ILE languages.

In some cases, a program (*PGM) interface is provided so that non-ILE languages can access the function.

Some APIs also require that particular data types and particular parameter passing conventions be used.

The following table shows the languages available on the iSeries system and the data types that they

provide.

Language selection considerations -- data types

Language

1 Pointers Binary 2 Binary 4 Character

Zoned

Decimal

Packed

Decimal

Floating

Point Structures

Single

Array

Exception

Handling

BASIC

(PRPQ

5799-FPK)

X X X X

2 X

2 X X X

ILE C X X X X X

8 X X X X

APIs 9

Language

1 Pointers Binary 2 Binary 4 Character

Zoned

Decimal

Packed

Decimal

Floating

Point Structures

Single

Array

Exception

Handling

VisualAge®

C++ for

i5/OS

X X X X X

9 X X X X

CL X X X X X

3 X

3 X

ILE CL X

4 X X X X X

3 X

3 X

COBOL X X X X X X X X X

5

ILE

COBOL

X X X X X X X X X X

5

MI X X X X X X X X X X

Pascal

(PRPQ

5799-FRJ)

X X X X X

6 X

6 X X X X

PL/I

(PRPQ

5799-FPJ)

X X X X X X X X X X

REXX X X

3 X

3 X

RPG X X X X X X X X

7

ILE RPG X X X X X X X X X X

7

Notes:

1. You cannot develop Cross System Product (CSP) programs on an iSeries system. You can, however, develop CSP programs on a System/370™

system and run them on your iSeries.

2. Refer to the CNVRT$ intrinsic function.

3. There is no direct support, but you can use the substring capability to simulate structures and arrays.

4. There is no direct support, but pointers passed to a CL program are preserved.

5. COBOL and ILE COBOL programs cannot monitor for specific messages, but these programs can define an error handler to run when a program

ends because of an error.

6. There is no direct support, but you can use extended program model (EPM) conversion routines to convert to and from zoned and packed

decimal.

7. RPG programs cannot monitor for specific messages, but these programs turn on an error indicator when a called program ends with an error.

These programs can define an error handler to run when a program ends because of an error.

8. Packed decimal is implemented in ILE C with the decimal() data type.

9. Packed decimal is implemented in VisualAge C++ for i5/OS with the Binary Coded Decimal (BCD) class. The BCD class is the C++

implementation of the C-language’s decimal(). The BCD object can be used in API calls because it is binary compatible with the decimal() data

type.

The following table shows the languages available on the iSeries system and the parameter support that

they provide. For more information, see the reference information for the specific programming language

that you plan to use.

Language selection considerations -- call conventions

 Language

1 Function Return Values

2 Pass by Reference Pass by Value

BASIC X

ILE C X X X

VisualAge C++ for i5/OS X X X

CL X

ILE CL X3 X X3

COBOL X

4

ILE COBOL X X X

MI X X

Pascal X

PL/I X

10 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Language

1 Function Return Values

2 Pass by Reference Pass by Value

REXX X

RPG X

ILE RPG X X X

Notes:

1. You cannot develop Cross System Product (CSP) programs on an iSeries system. You can, however, develop CSP

programs on a System/370 and run them on your iSeries.

2. Return values are used by the UNIX-type APIs and the Dynamic Screen Manager (DSM) APIs.

3. This support is available only when using the CALLPRC (Call Bound Procedure) command.

4. COBOL provides a by-content phrase, but it does not have the same semantics as ILE C pass-by-value.

 Related concepts

 “User spaces for list APIs” on page 81

The list APIs require a user space for returning information.

API environments

This topic introduces the operating environments that i5/OS APIs exist on a system.

i5/OS APIs exist in several operating environments on a system.

APIs for the Original Program Model environment

This topic describes the naming conventions of Original Program Model (OPM) APIs, the initial APIs on

the system.

v Names of OPM APIs start with the letter Q.

v Names of OPM APIs are followed by a 2- or 3-letter internal component identifier.

v Names of OPM APIs are limited to 8 characters.

v Names of OPM APIs must be uppercase.

 Related concepts

 “API information format” on page 48
API names contain verbs that are similar to the i5/OS licensed program: change, create, remove, and

retrieve.

 “Scenario: Original Program Model (OPM) API” on page 123

This scenario demonstrates the use of an original program model (OPM) API in several different

programs.

APIs for the Integrated Language Environment

The Integrated Language Environment (ILE) model is a set of tools and associated system support

designed to enhance program development on a system.

Bindable ILE APIs are independent from the high-level languages. This can be useful when mixed

languages are involved.

The ILE APIs provide functions such as:

v Dynamic screen management (DSM)

v National language support

v Mail server framework

v Problem management

v Programming and control language (CL)

v Registration facility

v Source debugger

APIs 11

ILE APIs use the following naming conventions:

v Start with the letter Q.

v Are followed by a 2- or 3-character internal component identifier.

v Can be up to 30 characters.

v Are case sensitive.

ILE service programs (*SRVPGM) use the following naming conventions:

v Start with the letter Q.

v Are followed by a 2- or 3-character internal component identifier.

v Are limited to 8 characters.

v Are uppercase.

Integrated Language Environment (ILE) APIs are contained within service programs that the calling

program binds to. In addition, some ILE APIs provide a program interface for the original program

model (OPM) languages. You can usually distinguish between the *SRVPGM interface and the *PGM

interface by the name of the API. For example, the registration facility APIs provide both a program and

a service program entry point (procedure) interface. For the Register Exit Point API, the service program

entry point interface is named QusRegisterExitPoint and the program interface is named QUSRGPT. A

bindable procedure name can be up to 30 characters and mixed uppercase and lowercase. A program

interface name can be up to 8 characters and is all uppercase.

A binding directory is used for ILE APIs that are contained in service programs. A binding directory is a

list of names of modules and service programs that provides a reference by name and type. Service

programs that contain ILE APIs are in the QUSAPIBD binding directory. This binding directory is

implicitly used by ILE compilers to resolve the ILE API references; therefore, it is not necessary to

explicitly name the service program or the API binding directory when creating programs that use ILE

APIs. If you provide your own APIs with the same name, make sure that you also provide your own

binding directory or service program.

Most APIs (ILE and non-ILE) have a header file supplied by i5/OS. These header files reside in the

optionally installable library QSYSINC. The header files provide the prototypes for the API as well as

define any structures that are used by the API. The QSYSINC library is used by the ILE C compiler to

search for header files; therefore, it is not necessary to specify a library qualifier for any header files that

reside in the QSYSINC library. When coding in ILE C, remember to enclose the header file name in

less-than (<) and greater-than (>) symbols because this affects how the library list is processed in locating

the header file.

It is typical for an API that is not retrieving information not to return any output to the caller other than

the error code parameter. If an error did not occur when using APIs, the requested function completed

successfully.

The presentation of the ILE APIs is similar to that of the OPM APIs.

 Related concepts

 “API information format” on page 48
API names contain verbs that are similar to the i5/OS licensed program: change, create, remove, and

retrieve.

 “Scenario: Integrated Language Environment (ILE) APIs” on page 190

The example APIs in this section represent two general functions of APIs--change and retrieve.

APIs for the ILE Common Execution Environment

The ILE APIs with names beginning with CEE are based on the SAA language environment

specifications. These APIs are intended to be consistent across the IBM systems. CEE APIs with names

beginning with CEE4 or CEES4 are specific to business computing systems.

12 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

The ILE CEE APIs provide functions such as:

v Activation group and control flow management

v Condition management

v Date and time manipulation

v Math functions

v Message services

v Program or procedure call management and operational descriptor access

v Storage management

 Related reference

 “OPM and ILE API verbs and abbreviations” on page 7

The two to three letters following the APIs make up an internal component identifier. The last part of

the API name identifies the action or function of the API. The information after the component ID is

an abbreviation of the verb that describes the function of the API.

 ILE CEE APIs

OPM and ILE API differences

This topic gives an overview of how Original Program Model (OPM) APIs and Integrated Language

Environment (ILE) APIs differ from each other. The ILE APIs include the UNIX-type APIs and the ILE

CEE APIs, among others.

You must have the ILE language compiler on your system to develop applications that use any ILE APIs.

Comparison of OPM and ILE APIs

 OPM APIs ILE APIs

API Name Maximum number of characters: 8

Not case-sensitive

Maximum number of characters: 30

Case-sensitive

Required Parameters

1 Displayed in parameter box Displayed in parameter box

Optional Parameters Can include optional parameters. The

optional parameters form a group,

and you must either include or

exclude the entire group.

No optional parameters

Omitted Parameters No omitted parameters Can include omitted parameters.

When these parameters are omitted,

you must pass a null pointer.

Error Conditions

2 The error code parameter is common

to most of the OPM APIs, and it is

used to return error codes and

exception data to the application. The

errors that are returned for a given

API are in the form of an error

message and include the 7-character

message identifier.

The ILE CEE APIs use feedback

codes and conditions

Pointers Can be used, but are used less

frequently than the ILE APIs.

Due to the greater availability of

pointer support in ILE languages,

there is a much greater use of

pointers in ILE APIs. The use of

pointers can provide a performance

advantage.

Notes:

1. UNIX-type APIs include parameters in a Syntax box.

APIs 13

2. Error conditions

v The UNIX-type APIs use errnos and return values.

v The national language data conversion APIs use errnos and return values.

v The Dynamic Screen Manager (DSM) supports returned values in addition to the error code

parameter.

The errnos are provided as include files in the QSYSINC library.

Following are examples of an OPM API and an ILE API that do similar functions (log or report software

errors). The ILE API example makes use of pointers, whereas the OPM API does not. Both programs log

software errors by using first-failure data capture (FFDC).

 Related concepts

 “API parameters” on page 54

After you have found the API that you want to use, you need to code a call to an API and pass to the

API the required set of parameters appropriate for that API.

Example in ILE C: Logging software error (OPM API without pointers):

This program illustrates how to use APIs to log software errors using FFDC.

 This program calls the Log Software Error (QPDLOGER) API to perform FFDC without the use of

pointers. The OPM program physically moves the data that is pointed to, as shown at (1), which slows

down performance.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
/***/

/* */

/*Program Name: FFDCPGM1 */

/* */

/*Program Language: ILE C */

/* */

/*Description: This program illustrates how to use APIs to log */

/* software errors using FFDC. */

/* */

/* */

/*Header Files Included: except */

/* stdio */

/* string */

/* qmhchgem */

/* qpdloger */

/* qusec */

/* */

/*APIs Used: QPDLOGER */

/* */

/***/

/***/

/***/

/* System Includes */

/***/

#include <except.h> /* from QSYSINC/H */

#include <stdio.h> /* from QSYSINC/H */

#include <string.h> /* from QSYSINC/H */

/***/

/* Miscellaneous Includes */

/***/

#include <qmhchgem.h>

#include <qpdloger.h>

#include <qusec.h>

/***/

14 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* Structures */

/***/

typedef struct {

 void *parm1;

 void *parm2;

 char *pgm_name;

 int pgm_name_size;

} ffdc_info_t;

/***/

/* Prototypes */

/***/

void UNEXPECTED_HDLR(_INTRPT_Hndlr_Parms_T *);

/***/

/* FUNCTION NAME: main */

/* */

/* FUNCTION: Generates exception and then passes control */

/* to exception handler. */

/* */

/* INPUT: Two character strings. */

/* */

/* OUTPUT: NONE */

/* */

/* EXCEPTIONS: CPFxxxx - All unexpected CPF exceptions */

/* MCHxxxx - All unexpected MCH exceptions */

/* */

/***/

void main(int argc, char *argv[])

{

 /***/

 /* NOTE: argv will contain the parameters passed in to this */

 /* function. In this case, two parameters are passed */

 /* in. */

 /***/

 /***/

 /* The argv parameter contains the parameters that were passed as */

 /* character arrays. argv[0] contains the program name, and the */

 /* parameter(s) starts with argv[1]. */

 /***/

 char *nulptr; /* Pointer used to generate error */

 char pgm_name[30]; /* Program name */

 volatile ffdc_info_t ffdc_info; /* FFDC info for unexpected error */

 /***/

 /* Set up FFDC information for unexpected error. */

 /***/

 ffdc_info.parm1 = argv[1];

 ffdc_info.parm2 = argv[2];

 ffdc_info.pgm_name = pgm_name;

 memcpy(pgm_name, argv[0], strlen(argv[0]));

 ffdc_info.pgm_name_size = strlen(argv[0]);

 /***/

 /* Enable the exception handler, and pass ffdc_info into the */

 /* exception handler via the communications area so that data */

 /* can be used for FFDC. */

 /***/

#pragma exception_handler (UNEXPECTED_HDLR, ffdc_info, 0, _C2_MH_ESCAPE)

 /***/

 /* Set the pointer to null, then try to increment. This will */

 /* generate an MCH3601 error that will be trapped by the */

APIs 15

/* unexpected handler. */

 /***/

 nulptr = NULL;

 nulptr++;

#pragma disable_handler

} /* main */

/***/

/* FUNCTION NAME: UNEXPECTED_HDLR */

/* */

/* FUNCTION: Handle unexpected exception. This exception */

/* handler is used to log the software error via */

/* FFDC. */

/* */

/* INPUT: Interrupt handler information */

/* */

/* OUTPUT: NONE */

/* */

/* EXCEPTIONS: CPFxxxx - All unexpected CPF exceptions */

/* MCHxxxx - All unexpected MCH exceptions */

/* */

/***/

void UNEXPECTED_HDLR(_INTRPT_Hndlr_Parms_T *errmsg)

{

 typedef struct {

 char obj_name[30];

 char obj_lib[30];

 char obj_type[10];

 } obj_info_t;

 typedef struct {

 int data_offset;

 int data_length;

 } data_info_t;

 char pgm_suspected[10],

 msg_id[12],

 msg_key[4],

 print_job_log,

 data[2*(sizeof(char *))],

 *data_item,

 ile_mod_name[11];

 int point_of_failure,

 num_items,

 num_objs;

 data_info_t data_info[2];

 obj_info_t obj_info[1];

 ffdc_info_t *ffdc_info;

 Qus_EC_t ErrorCode;

 ErrorCode.Bytes_Provided = 0;

 /***/

 /* Getting pointer in local storage to the Communications Area. */

 /***/

 ffdc_info = (ffdc_info_t *)(errmsg->Com_Area);

 /***/

 /* Need to notify message handler that we will handle the error. */

 /* Leave the message in the job log, just mark it handled. */

 /***/

 QMHCHGEM(&(errmsg->Target), /* Invocation pointer */

 0, /* Call stack counter */

 (char *)&errmsg->Msg_Ref_Key,/* Message key */

16 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

"*HANDLE ", /* Modification option */

 "", /* Reply text */

 0, /* Reply text length */

 &ErrorCode); /* Error code */

 /***/

 /* Set up the suspected program. */

 /***/

 memcpy(pgm_suspected, "*PRV ", 10);

 /***/

 /* Set up the detection identifier. */

 /***/

 memset(msg_id, ’ ’, 12);

 memcpy(msg_id, errmsg->Msg_Id, 7);

 /***/

 /* Set up the message key. */

 /***/

 memcpy(msg_key, (char *)&errmsg->Msg_Ref_Key, 4);

 /***/

 /* Set up point of failure. Since this example program is small */

 /* and we know where the error occurred, we will just put a dummy */

 /* value in. However, this can be very useful information in */

 /* larger programs. */

 /***/

 point_of_failure = 100;

 /***/

 /* Set up to print the job log. */

 /***/

 print_job_log = ’Y’;

 /***/

 /* Set up data items. */

 /***/

 data_item = data;

 /***/

 /* Put in first parameter. */

 /***/

 memcpy(data_item, (char *)ffdc_info->parm1, sizeof(char *)); (1)

 /***/

 /* Add in the second parameter. */

 /***/

 data_item += sizeof(char *);

 memcpy(data_item, (char *)ffdc_info->parm2, sizeof(char *));

 /***/

 /* Reset the data item pointer. */

 /***/

 data_item -= sizeof(char *);

 /***/

 /* Set up data item offset/length information. */

 /***/

 data_info[0].data_offset = 0;

 data_info[0].data_length = sizeof(char *);

 data_info[1].data_offset = sizeof(char *);

 data_info[1].data_length = sizeof(char *);

 /***/

 /* Set up the number of data items. In this case we only have one.*/

 /***/

 num_items = 2;

APIs 17

/***/

 /* Set up the object name array. In this case, we have no objects */

 /* to dump, but we will put dummy values in to illustrate. */

 /***/

 memcpy(obj_info[0].obj_name, "OBJUSRSPC ", 30);

 memcpy(obj_info[0].obj_lib, "QTEMP ", 30);

 memcpy(obj_info[0].obj_type, "*USRSPC ", 10);

 /***/

 /* Set the number of objects in name array. */

 /***/

 num_objs = 0;

 /***/

 /* Set up the ILE module name. */

 /***/

 memcpy(ile_mod_name, ffdc_info->pgm_name, ffdc_info->pgm_name_size);

 /***/

 /* Call QPDLOGER to perform FFDC. */

 /***/

 ErrorCode.Bytes_Provided = sizeof(ErrorCode);

 QPDLOGER(pgm_suspected,

 msg_id,

 msg_key,

 point_of_failure,

 &print_job_log,

 data_item,

 data_info,

 num_items,

 obj_info,

 num_objs,

 &ErrorCode,

 ile_mod_name);

} /* UNEXPECTED_HDLR */

 Related reference

 “Example in OPM COBOL: Logging software error (OPM API without pointers)”

This program registers an OPM COBOL Error Handler. After the successful completion of the

registration of the error handler, this , program creates a data decimal error. This exception causes the

error handler to be called which then logs the software error.

 “Example in OPM RPG: Logging software error (OPM API without pointers)” on page 22

This program performs a divide-by-0 operation to cause an exception. This exception is caught using

RPG *PSSR support, and the exception is then logged as a software error.

 “Example in ILE RPG: Logging software error (OPM API without pointers)” on page 25

This program performs a divide by 0 operation to cause an exception. This exception is caught using

RPG’s *PSSR support, and the exception is then logged as a software error.

Example in OPM COBOL: Logging software error (OPM API without pointers):

This program registers an OPM COBOL Error Handler. After the successful completion of the registration

of the error handler, this , program creates a data decimal error. This exception causes the error handler

to be called which then logs the software error.

 This example uses two programs: CBLERR1 causes the error, and ERRHDL1 shows how to log the

software error using the QPDLOGER API. Refer to Example in ILE C: Logging software error (OPM API

without pointers) for the original example.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

18 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

CBLERR1 program

 IDENTIFICATION DIVISION.

 *

 * Program: Register an OPM COBOL Error Handler

 * Cause a data decimal exception to demonstrate

 * logging of software errors

 *

 * Language: COBOL

 *

 * Description: This program registers an OPM COBOL Error

 * Handler. After the successful completion of

 * the registration of the error handler, this ,

 * program creates a data decimal error. This

 * exception causes the error handler to be

 * called which then logs the software error.

 *

 * APIs Used: QLRSETCE - Set COBOL Error Handler

 *

 *

 PROGRAM-ID. CBLERR1.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 INPUT-OUTPUT SECTION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 *

 * Error Code parameter include. As this sample program

 * uses COPY to include the error code structure, only the first

 * 16 bytes of the error code structure are available. If the

 * application program needs to access the variable length

 * exception data for the error, the developer should physically

 * copy the QSYSINC include and modify the copied include to

 * define additional storage for the exception data.

 *

 COPY QUSEC OF QSYSINC-QLBLSRC.

 *

 * Miscellaneous elements

 *

 01 MISC.

 05 Y PIC S9(09) VALUE 0.

 05 ERROR-HANDLER PIC X(20) VALUE "ERRHDL1 *LIBL ".

 05 SCOPE PIC X(01) VALUE "C".

 05 ERROR-HANDLER-LIBRARY PIC X(10).

 05 PRIOR-ERROR-HANDLER PIC X(20).

 01 NUMERIC-GROUP.

 05 X PIC 9(03).

 *

 * Beginning of mainline

 *

 PROCEDURE DIVISION.

 MAIN-LINE.

 *

 * Register the COBOL Error Handler.

 *

 * Initialize the error code parameter. To signal exceptions to

 * this program by the API, you need to set the bytes provided

 * field of the error code to zero. Because this program has

 * exceptions sent back through the error code parameter, it sets

 * the bytes provided field to the number of bytes it gives the

 * API for the parameter.

 *

APIs 19

MOVE 16 TO BYTES-PROVIDED.

 *

 *

 * Call the API to register the exit point.

 *

 CALL "QLRSETCE" USING ERROR-HANDLER OF MISC,

 SCOPE OF MISC,

 ERROR-HANDLER-LIBRARY OF MISC,

 PRIOR-ERROR-HANDLER OF MISC,

 QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 DISPLAY "Error setting handler",

 STOP RUN.

 *

 * If the call to register an error handler is successful, then

 * cause a the data decimal error (X is initialized to blanks).

 *

 ADD X TO Y.

 *

 * Should not get here due to data decimal error

 *

 STOP RUN.

 *

 * End of MAINLINE

 *

ERRHDL1 program

 IDENTIFICATION DIVISION.

 *

 * Program: Log a software error

 *

 * Language: COBOL

 *

 * Description: This program receives control for exceptions

 * within a COBOL run unit. This program is used

 * in conjunction with CBLERR1. ,

 * Any exception causes this error handler to be

 * called which then logs the software error.

 *

 * APIs Used: QPDLOGER - Log Software Error

 *

 *

 PROGRAM-ID. ERRHDL1.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 INPUT-OUTPUT SECTION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 *

 * Error Code parameter include. As this sample program

 * uses COPY to include the error code structure, only the first

 * 16 bytes of the error code structure are available. If the

 * application program needs to access the variable length

 * exception data for the error, the developer should physically

20 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

* copy the QSYSINC include and modify the copied include to

 * define additional storage for the exception data.

 *

 COPY QUSEC OF QSYSINC-QLBLSRC.

 *

 * Miscellaneous elements

 *

 01 MISC.

 05 LOG-EXCEPTION-ID PIC X(12).

 05 MESSAGE-KEY PIC X(04).

 05 POINT-OF-FAILURE PIC S9(09) BINARY VALUE 1.

 05 PRINT-JOBLOG PIC X(01) VALUE "Y".

 05 NBR-OF-ENTRIES PIC S9(09) BINARY.

 05 NBR-OF-OBJECTS PIC S9(09) BINARY VALUE 1.

 01 MESSAGE-INFO.

 05 MSG-OFFSET PIC S9(09) BINARY.

 05 MSG-LENGTH PIC S9(09) BINARY.

 01 OBJECT-LIST.

 05 OBJECT-NAME PIC X(30).

 05 LIBRARY-NAME PIC X(30).

 05 OBJECT-TYPE PIC X(10) VALUE "*PGM ".

 LINKAGE SECTION.

 01 CBL-EXCEPTION-ID PIC X(07).

 01 VALID-RESPONSES PIC X(06).

 01 PGM-IN-ERROR.

 05 PGM-NAME PIC X(10).

 05 LIB-NAME PIC X(10).

 01 SYS-EXCEPTION-ID PIC X(07).

 01 MESSAGE-TEXT PIC X(01).

 01 MESSAGE-LENGTH PIC S9(09) BINARY.

 01 SYS-OPTION PIC X(01).

 *

 * Beginning of mainline

 *

 PROCEDURE DIVISION USING CBL-EXCEPTION-ID,

 VALID-RESPONSES,

 PGM-IN-ERROR,

 SYS-EXCEPTION-ID,

 MESSAGE-TEXT,

 MESSAGE-LENGTH,

 SYS-OPTION.

 MAIN-LINE.

 *

 * Initialize the error code parameter. To signal exceptions to

 * this program by the API, you need to set the bytes provided

 * field of the error code to zero. Because this program has

 * exceptions sent back through the error code parameter, it sets

 * the bytes provided field to the number of bytes it gives the

 * API for the parameter.

 *

 MOVE 16 TO BYTES-PROVIDED.

 *

 * Record the COBOL Exception id

 *

 MOVE SYS-EXCEPTION-ID TO LOG-EXCEPTION-ID.

 *

 * Record the length of the message replacement data (if any)

 *

 IF MESSAGE-LENGTH > 0

 MOVE 1 TO MSG-OFFSET,

 MOVE MESSAGE-LENGTH TO MSG-LENGTH,

 MOVE 1 TO NBR-OF-ENTRIES,

 ELSE

 MOVE 0 TO MSG-OFFSET,

 MOVE 0 TO MSG-LENGTH,

 MOVE 0 TO NBR-OF-ENTRIES.

 *

APIs 21

* For illustration purposes, dump the program object

 *

 MOVE PGM-NAME TO OBJECT-NAME. (1)

 MOVE LIB-NAME TO LIBRARY-NAME.

 *

 * Call the API to log the software error.

 *

 CALL "QPDLOGER" USING PGM-NAME,

 LOG-EXCEPTION-ID,

 MESSAGE-KEY,

 POINT-OF-FAILURE,

 PRINT-JOBLOG,

 MESSAGE-TEXT,

 MESSAGE-INFO,

 NBR-OF-ENTRIES,

 OBJECT-LIST,

 NBR-OF-OBJECTS,

 QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 DISPLAY "Cannot log erro".

 *

 * End the current run unit

 *

 MOVE "C" TO SYS-OPTION.

 STOP RUN.

 *

 * End of MAINLINE

 *

 Related reference

 “Example in ILE C: Logging software error (OPM API without pointers)” on page 14

This program illustrates how to use APIs to log software errors using FFDC.

Example in OPM RPG: Logging software error (OPM API without pointers):

This program performs a divide-by-0 operation to cause an exception. This exception is caught using

RPG *PSSR support, and the exception is then logged as a software error.

 Refer to Example in ILE C: Logging software error (OPM API without pointers) for the original example.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 F**

 F*

 F* Program: Demonstrate use of OPM-based Log Software Error

 F*

 F* Language: OPM RPG

 F*

 F* Description: This program performs a divide-by-0 operation

 F* to cause an exception. This exception is

 F* caught using RPG *PSSR support,

 F* and the exception is then logged as a

 F* software error.

 F*

 F* APIs used: QPDLOGER

 F*

 F**

 E*

 E* Arrays used to extract source line number where error happened

 E*

22 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

E SRC 8 1

 E TGT 8 1

 I*

 I* Error Code parameter include. As this sample program uses

 I* /COPY to include the error code structure, only the first

 I* 16 bytes of the error code structure are available. If the

 I* application program needs to access the variable length

 I* exception data for the error, the developer should physically

 I* copy the QSYSINC include and modify the copied include to

 I* define additional storage for the exception data.

 I*

 I/COPY QSYSINC/QRPGSRC,QUSEC

 I*

 I* Define Program Status Data Structure

 I*

 IPSDS SDS

 I 1 10 PGMNAM

 I 11 150STATUS

 I 21 28 SRC

 I 40 46 EXCPID

 I 81 90 LIBNAM

 I*

 I* Some miscellaneous fields

 I*

 IMISC DS

 I B 1 40FAILPT

 I B 5 80DATA#

 I B 9 120OBJS#

 I 13 20 TGT

 I 13 200LIN#C

 I*

 I* DATA represents the data items to report as part of problem

 I*

 IDATA DS 4096

 I*

 I* DATAPT defines (via offset and length values) how to read DATA

 I*

 IDATAPT DS 256

 I B 1 40DTAOFF

 I B 5 80DTALEN

 I*

 I* OBJS represents the list of objects to spool as part of problem

 I*

 IOBJS DS 2590

 I 1 30 OBJ1N

 I 31 60 OBJ1L

 I 61 70 OBJ1T

 C*

 C* Prepare for divide-by-zero situation

 C*

 C Z-ADD10 FACT1 50

 C Z-ADD0 FACT2 50

 C*

 C* and divide by 0

 C*

 C FACT1 DIV FACT2 RESULT 50

 C*

 C* should not get here due to divide-by-0 exception

 C*

 C MOVE ’1’ *INLR

 C RETRN

 C*

 C* Program exception subroutine:

 C*

 C *PSSR BEGSR

 C*

 C* Make sure we are not catching an exception due to the *PSSR

APIs 23

C* subroutine itself

 C*

 C SWITCH IFEQ ’ ’

 C MOVE ’1’ SWITCH 1

 C*

 C* Set API error code to work in nonexception mode

 C*

 C Z-ADD16 QUSBNB

 C*

 C* Record the source listing line number that caused the failure

 C*

 C* First, extract the numeric portion of the PSDS line number

 C*

 C Z-ADD8 X 10

 C Z-ADD8 Y 10

 C Z-ADD0 LIN#C

 C SRC,X DOWEQ’ ’

 C SUB 1 X

 C END

 C X DOWGT0

 C MOVE SRC,X TGT,Y

 C SUB 1 X

 C SUB 1 Y

 C END

 C*

 C* Then record it:

 C*

 C Z-ADDLIN#C FAILPT

 C*

 C* Record the status code for the failure

 C*

 C MOVELSTATUS DATA

 C*

 C* Record where to find the status data within DATA

 C*

 C Z-ADD0 DTAOFF

 C Z-ADD5 DTALEN

 C Z-ADD1 DATA#

 C*

 C* For illustration purposes also dump the program object as

 C* part of logging the software error

 C*

 C MOVELPGMNAM OBJ1N (1)

 C MOVELLIBNAM OBJ1L

 C MOVEL’*PGM’ OBJ1T

 C Z-ADD1 OBJS#

 C*

 C* Call the Log Software Error API

 C*

 C CALL ’QPDLOGER’

 C PARM PGMNAM

 C PARM EXCPID MSGID 12

 C PARM MSGKEY 4

 C PARM FAILPT

 C PARM ’Y’ JOBLOG 1

 C PARM DATA

 C PARM DATAPT

 C PARM DATA#

 C PARM OBJS

 C PARM OBJS#

 C PARM QUSBN

 C*

 C* If an error on the API call, then indicate a terminal error

 C*

 C QUSBNC IFGT 0

 C ’TERM ERR’DSPLY

 C END

24 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C ELSE

 C*

 C* If error within *PSSR, then indicate *PSSR error

 C*

 C ’*PSSR ’DSPLY

 C END

 C*

 C* No matter how the program got to the *PPSR, end the program

 C*

 C MOVE ’1’ *INLR

 C RETRN

 C ENDSR

 Related reference

 “Example in ILE C: Logging software error (OPM API without pointers)” on page 14

This program illustrates how to use APIs to log software errors using FFDC.

Example in ILE RPG: Logging software error (OPM API without pointers):

This program performs a divide by 0 operation to cause an exception. This exception is caught using

RPG’s *PSSR support, and the exception is then logged as a software error.

 Refer to Example in ILE C: Logging software error (OPM API without pointers) for the original example.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 F**

 F*

 F* Program: Demonstrate use of OPM based Log Software Error

 F*

 F* Language: ILE RPG

 F*

 F* Description: This program performs a divide by 0 operation to

 F* cause an exception. This exception is caught using

 F* RPG’s *PSSR support, and the exception is then

 F* logged as a software error.

 F*

 F* APIs used: QPDLOGER

 F*

 F**

 D*

 D* Include Error Code Parameter

 D*

 D/COPY QSYSINC/QRPGLESRC,QUSEC

 D*

 D* Misc. data elements

 D*

 Dfactor1 S 5B 0 INZ(10)

 Dfactor2 S 5B 0 INZ(0)

 Dresult S 5B 0

 Dline_nbr S 9B 0

 Ddata DS 4096

 Ddatapt DS

 D data_off 9B 0

 D data_len 9B 0

 Ddata# S 9B 0

 Dobjl DS 2590

 Dobjl# S 9B 0

 D*

 D* Program status data structure

 D*

 DPSDS SDS

 D pgm_name 1 10

 D status 11 15 0

 D src_line 21 28

 D exception 40 46

APIs 25

D lib_name 81 90

 C*

 C* Attempt to divide by 0

 C*

 C factor1 div factor2 result

 C*

 C* Should not get here due to divide by 0 exception

 C*

 C move ’1’ *INLR

 C return

 C*

 C* Program exception subroutine:

 C*

 C *PSSR BEGSR

 C*

 C* Make sure we are not catching an exception due to the *PSSR

 C* subroutine itself

 C*

 C switch ifeq ’ ’

 C move ’1’ switch 1

 C*

 C* Set API error code to work in non-exception mode

 C*

 C eval qusbprv = %size(qusec)

 C*

 C* Record line number where error happened

 C*

 C move src_line line_nbr

 C*

 C* Record the status code as data

 C*

 C movel status data

 C*

 C* Record where status located in data

 C*

 C eval data_off = 1

 C eval data_len = 5

 C eval data# = 1

 C*

 C* For illustration purposes, dump the program object

 C*

 C eval %SUBST(objl:1:30) = pgm_name (1)

 C eval %SUBST(objl:31:30) = lib_name

 C eval %SUBST(objl:61:10) = ’*PGM’

 C eval objl# = 1

 C*

 C* Call the Report Software Error API

 C*

 C call ’QPDLOGER’

 C parm pgm_name

 C parm exception msgid 12

 C parm msgkey 4

 C parm line_nbr

 C parm ’Y’ joblog 1

 C parm data

 C parm datapt

 C parm data#

 C parm objl

 C parm objl#

 C parm qusec

 C*

 C* If an error on the API call, then indicate a terminal error

 C*

 C qusbavl ifgt 0

 C ’Terminal err’dsply

 C end

 C else

26 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C*

 C* If error within *PSSR, then indicate *PSSR error

 C*

 C ’*PSSR error’ dsply

 C end

 C*

 C* No matter how the program got to the *PSSR, end the program

 C*

 C move ’1’ *inlr

 C return

 C endsr

 Related reference

 “Example in ILE C: Logging software error (OPM API without pointers)” on page 14

This program illustrates how to use APIs to log software errors using FFDC.

Example in ILE C: Report software error (ILE API with pointers):

This program illustrates how to use APIs to log software errors using FFDC.

 This program calls the Report Software Error (QpdReportSoftwareError) API to perform FFDC, and uses

pointers. This ILE program sets a pointer, as shown at (2), to point to the same location as in the OPM

program at (1).

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
/***/

/* */

/*Program Name: FFDCPGM2 */

/* */

/*Program Language: ILE C */

/* */

/*Description: This program illustrates how to use APIs to log */

/* software errors using FFDC. */

/* */

/* */

/*Header Files Included: except */

/* stdio */

/* string */

/* qmhchgem */

/* qpdsrvpg */

/* qusec */

/* */

/*APIs Used: QpdReportSoftwareError */

/* */

/***/

/***/

/***/

/* System Includes */

/***/

#include <except.h> /* from QSYSINC/H */

#include <stdio.h> /* from QSYSINC/H */

#include <string.h> /* from QSYSINC/H */

/***/

/* Miscellaneous Includes */

/***/

#include <qmhchgem.h>

#include <qpdsrvpg.h>

#include <qusec.h>

/***/

/* Definitions used for developing key information for FFDC. */

/***/

#define CHARACTER ’C’

#define MAX_KEYS 3

APIs 27

#define MESSAGE "MSG"

#define MESSAGE_LEN 7

#define MSG_SYMPTOM_LEN 3

/***/

/* Structures */

/***/

typedef struct {

 void *parm1;

 void *parm2;

 char *pgm_name;

 int pgm_name_size;

} ffdc_info_t;

/***/

/* Prototypes */

/***/

void UNEXPECTED_HDLR(_INTRPT_Hndlr_Parms_T *);

/***/

/* FUNCTION NAME: main */

/* */

/* FUNCTION: Generates exception and then passes control */

/* to exception handler. */

/* */

/* INPUT: Two character strings. */

/* */

/* OUTPUT: NONE */

/* */

/* EXCEPTIONS: CPFxxxx - All unexpected CPF exceptions */

/* MCHxxxx - All unexpected MCH exceptions */

/* */

/***/

void main(int argc, char *argv[])

{

 /***/

 /* NOTE: argv will contain the parameters passed in to this */

 /* function. In this case, two parameters are passed */

 /* in. */

 /***/

 /***/

 /* The argv parameter contains the parameters that were passed as */

 /* character arrays. argv[0] contains the program name, and the */

 /* parameter(s) starts with argv[1]. */

 /***/

 char *nulptr; /* Pointer used to generate error */

 char pgm_name[30]; /* Program name */

 volatile ffdc_info_t ffdc_info; /* FFDC info for unexpected error */

 /***/

 /* Set up FFDC information for unexpected error. */

 /***/

 ffdc_info.parm1 = argv[1];

 ffdc_info.parm2 = argv[2];

 ffdc_info.pgm_name = pgm_name;

 memcpy(pgm_name, argv[0], strlen(argv[0]));

 ffdc_info.pgm_name_size = strlen(argv[0]);

 /***/

 /* Enable the exception handler, and pass ffdc_info into the */

 /* exception handler via the communications area so that data */

 /* can be used for FFDC. */

 /***/

#pragma exception_handler (UNEXPECTED_HDLR, ffdc_info, 0, _C2_MH_ESCAPE)

28 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/***/

 /* Set the pointer to null, then try to increment. This will */

 /* generate an MCH3601 error that will be trapped by the */

 /* unexpected handler. */

 /***/

 nulptr = NULL;

 nulptr++;

#pragma disable_handler

} /* main */

/***/

/* FUNCTION NAME: UNEXPECTED_HDLR */

/* */

/* FUNCTION: Handle unexpected exception. This exception */

/* handler is used to log the software error via */

/* FFDC. */

/* */

/* INPUT: Interrupt handler information */

/* */

/* OUTPUT: NONE */

/* */

/* EXCEPTIONS: CPFxxxx - All unexpected CPF exceptions */

/* MCHxxxx - All unexpected MCH exceptions */

/* */

/***/

void UNEXPECTED_HDLR(_INTRPT_Hndlr_Parms_T *errmsg)

{

 int i = 0,

 MsgLen = 0,

 number_of_keys = 0;

 char pgm_name[30],

 context_name[30],

 lib_name[5],

 symptom_msg_data[MESSAGE_LEN],

 symptom_msg_keyword[MSG_SYMPTOM_LEN];

 ffdc_info_t *ffdc_info;

 Qpd_Data_t data_key,

 data_key2;

 Qpd_Key_Pointer_t ffdc_keys[MAX_KEYS];

 Qpd_Suspected_Module_t module_key;

 Qpd_Symptom_t symptom_msg_key;

 Qus_EC_t ErrorCode;

 ErrorCode.Bytes_Provided = 0;

 /***/

 /* Getting pointer in local storage to the Communications Area. */

 /***/

 ffdc_info = (ffdc_info_t *)(errmsg->Com_Area);

 /***/

 /* Need to notify message handler that we will handle the error. */

 /* Leave the message in the job log, just mark it handled. */

 /***/

 QMHCHGEM(&(errmsg->Target), /* Invocation pointer */

 0, /* Call stack counter */

 (char *)&errmsg->Msg_Ref_Key,/* Message key */

 "*HANDLE ", /* Modification option */

 "", /* Reply text */

 0, /* Reply text length */

 &ErrorCode); /* Error code */

 /***/

 /* Initialize module suspected key for FFDC. */

APIs 29

/***/

 ffdc_keys[number_of_keys++].Suspected_Module = &module_key;

 module_key.Key = Qpd_Suspected_Module;

 module_key.Module_Name_Length = ffdc_info->pgm_name_size;

 module_key.Library_Name_Length = 7;

 module_key.Module_Name = pgm_name;

 memcpy(pgm_name, ffdc_info->pgm_name, ffdc_info->pgm_name_size);

 module_key.Library_Name = lib_name;

 memcpy(lib_name, "TESTLIB", 7);

 /***/

 /* Initialize symptom keys for FFDC. */

 /***/

 ffdc_keys[number_of_keys++].Symptom = &symptom_msg_key;

 symptom_msg_key.Key = Qpd_Symptom;

 symptom_msg_key.Keyword_Length = MSG_SYMPTOM_LEN;

 symptom_msg_key.Data_Length = MESSAGE_LEN;

 symptom_msg_key.Data_Type = CHARACTER;

 memcpy(symptom_msg_keyword, MESSAGE, MSG_SYMPTOM_LEN);

 symptom_msg_key.Keyword = symptom_msg_keyword;

 memcpy(symptom_msg_data, errmsg->Msg_Id, MESSAGE_LEN);

 symptom_msg_key.Data = symptom_msg_data;

 /***/

 /* Parameter 1 information */

 /***/

 ffdc_keys[number_of_keys++].Data = &data_key;

 data_key.Key = Qpd_Data;

 data_key.Data_Length = sizeof(char *);

 data_key.Data_Id = 1;

 data_key.Data = ffdc_info->parm1; (2)

 /***/

 /* Parameter 2 information */

 /***/

 ffdc_keys[number_of_keys++].Data = &data_key2;

 data_key2.Key = Qpd_Data;

 data_key2.Data_Length = sizeof(char *);

 data_key2.Data_Id = 1;

 data_key2.Data = ffdc_info->parm2;

 /***/

 /* Call QpdReportSoftwareError to perform FFDC. */

 /***/

 ErrorCode.Bytes_Provided = sizeof(ErrorCode);

 QpdReportSoftwareError(ffdc_keys,

 &number_of_keys,

 &ErrorCode);

} /* UNEXPECTED_HDLR */

Example in ILE COBOL: Reporting software error (ILE API with pointers):

This program registers an ILE COBOL Error Handler. After the successful completion of the registration

of the error handler, this, program creates a decimal data error. This exception causes the error handler to

be called which then logs the software error.

 This program calls the Report Software Error (QpdReportSoftwareError) API to perform FFDC, and uses

pointers. The ILE program sets a pointer, as shown at (2) to point to the same location as in the OPM

program at (1).

This example uses two programs: “CBLERR2 program” on page 31 causes the error, and “ERRHDL2

program” on page 32 shows how to report the software error using the QPDLOGER API.

30 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

CBLERR2 program

 PROCESS NOMONOPRC.

 IDENTIFICATION DIVISION.

 *

 * Program: Register an ILE COBOL Error Handler

 * Cause a decimal data exception to demonstrate

 * logging of software errors

 *

 * Language: ILE COBOL

 *

 * Description: This program registers an ILE COBOL Error

 * Handler. After the successful completion of

 * the registration of the error handler, this ,

 * program creates a decimal data error. This

 * exception causes the error handler to be

 * called which then logs the software error.

 *

 * APIs Used: QlnSetCobolErrorHandler

 *

 *

 *

 PROGRAM-ID. CBLERR2.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 SPECIAL-NAMES.

 LINKAGE TYPE PROCEDURE FOR "QlnSetCobolErrorHandler".

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 *

 * Error Code parameter include. As this sample program

 * uses COPY to include the error code structure, only the first

 * 16 bytes of the error code structure are available. If the

 * application program needs to access the variable length

 * exception data for the error, the developer should physically

 * copy the QSYSINC include and modify the copied include to

 * define additional storage for the exception data.

 *

 COPY QUSEC OF QSYSINC-QCBLLESRC.

 *

 * Miscellaneous elements

 *

 01 MISC.

 05 Y PIC S9(09) VALUE 0.

 01 ERROR-HANDLER PROCEDURE-POINTER.

 01 OLD-ERROR-HANDLER PROCEDURE-POINTER.

 01 NUMERIC-GROUP.

 05 X PIC 9(03).

 *

 * Beginning of mainline

 *

 PROCEDURE DIVISION.

 MAIN-LINE.

 *

 * Register the COBOL Error Handler.

 *

 * Initialize the error code parameter. To signal exceptions to

APIs 31

* this program by the API, you need to set the bytes provided

 * field of the error code to zero. Because this program has

 * exceptions sent back through the error code parameter, it sets

 * the bytes provided field to the number of bytes it gives the

 * API for the parameter.

 *

 MOVE 16 TO BYTES-PROVIDED.

 *

 * Set ERROR-HANDLER procedure pointer to entry point of

 * ERRHDL1 *PGM

 *

 SET ERROR-HANDLER TO ENTRY LINKAGE PROGRAM "ERRHDL2".

 *

 *

 * Call the API to register the exit point.

 *

 CALL "QlnSetCobolErrorHandler" USING ERROR-HANDLER,

 OLD-ERROR-HANDLER,

 QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE > 0

 DISPLAY "Error setting handler",

 STOP RUN.

 *

 * If the call to register an error handler is successful, then

 * cause a the data decimal error (X is initialized to blanks).

 *

 ADD X TO Y.

 *

 * Should not get here due to data decimal error

 *

 STOP RUN.

 *

 * End of MAINLINE

 *

ERRHDL2 program

 PROCESS NOMONOPRC.

 IDENTIFICATION DIVISION.

 *

 * Program: Log a software error

 *

 * Language: ILE COBOL

 *

 * Description: This program receives control for exceptions

 * within a COBOL run unit. This program is used

 * in conjunction with CBLERR2. ,

 * Any exception causes this error handler to be

 * called which then logs the software error.

 *

 * APIs Used: QpdReportSoftwareError

 *

 *

 PROGRAM-ID. ERRHDL2.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

32 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

OBJECT-COMPUTER. IBM-AS400.

 SPECIAL-NAMES.

 LINKAGE TYPE PROCEDURE FOR "QpdReportSoftwareError".

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 *

 * Error Code parameter include. As this sample program

 * uses COPY to include the error code structure, only the first

 * 16 bytes of the error code structure are available. If the

 * application program needs to access the variable length

 * exception data for the error, the developer should physically

 * copy the QSYSINC include and modify the copied include to

 * define additional storage for the exception data.

 *

 COPY QUSEC OF QSYSINC-QCBLLESRC.

 *

 * QpdReportSoftwareError include

 *

 COPY QPDSRVPG OF QSYSINC-QCBLLESRC.

 *

 * Miscellaneous elements

 *

 01 MISC.

 05 NBR-OF-RECORDS PIC S9(09) BINARY VALUE 0.

 05 MSG-KEYWORD PIC X(03) VALUE "MSG".

 01 PROBLEM-RECORDS.

 05 PROBLEM-POINTER POINTER OCCURS 100 TIMES.

 LINKAGE SECTION.

 01 CBL-EXCEPTION-ID PIC X(07).

 01 VALID-RESPONSES PIC X(06).

 01 PGM-IN-ERROR.

 05 PGM-NAME PIC X(10).

 05 LIB-NAME PIC X(10).

 01 SYS-EXCEPTION-ID PIC X(07).

 01 MESSAGE-TEXT PIC X(01).

 01 MESSAGE-LENGTH PIC S9(09) BINARY.

 01 SYS-OPTION PIC X(01).

 01 ERR-MODULE-NAME PIC X(10).

 01 CBL-PGM-NAME PIC X(256).

 *

 * Beginning of mainline

 *

 PROCEDURE DIVISION USING CBL-EXCEPTION-ID,

 VALID-RESPONSES,

 PGM-IN-ERROR,

 SYS-EXCEPTION-ID,

 MESSAGE-LENGTH,

 SYS-OPTION,

 MESSAGE-TEXT,

 ERR-MODULE-NAME,

 CBL-PGM-NAME.

 MAIN-LINE.

 *

 * Initialize the error code parameter. To signal exceptions to

 * this program by the API, you need to set the bytes provided

 * field of the error code to zero. Because this program has

 * exceptions sent back through the error code parameter, it sets

 * the bytes provided field to the number of bytes it gives the

 * API for the parameter.

 *

 MOVE 16 TO BYTES-PROVIDED.

 *

 * Record the COBOL Program and Library names

 *

 MOVE 101 TO KEY-FIELD OF QPD-SUSPECTED-PROGRAM.

APIs 33

MOVE 10 TO PROGRAM-NAME-LENGTH OF QPD-SUSPECTED-PROGRAM.

 MOVE 10 TO LIBRARY-NAME-LENGTH OF QPD-SUSPECTED-PROGRAM.

 SET PROGRAM-NAME OF QPD-SUSPECTED-PROGRAM (2)

 TO ADDRESS OF PGM-NAME OF PGM-IN-ERROR.

 SET LIBRARY-NAME OF QPD-SUSPECTED-PROGRAM

 TO ADDRESS OF LIB-NAME OF PGM-IN-ERROR.

 ADD 1 TO NBR-OF-RECORDS.

 SET PROBLEM-POINTER (NBR-OF-RECORDS) TO

 ADDRESS OF QPD-SUSPECTED-PROGRAM.

 *

 * Record the message id

 *

 MOVE 200 TO KEY-FIELD OF QPD-SYMPTOM.

 MOVE 3 TO KEYWORD-LENGTH OF QPD-SYMPTOM.

 MOVE 7 TO DATA-LENGTH OF QPD-SYMPTOM.

 MOVE "C" TO DATA-TYPE OF QPD-SYMPTOM.

 SET KEYWORD OF QPD-SYMPTOM TO ADDRESS OF MSG-KEYWORD.

 SET DATA-FIELD OF QPD-SYMPTOM TO ADDRESS OF SYS-EXCEPTION-ID.

 ADD 1 TO NBR-OF-RECORDS.

 SET PROBLEM-POINTER (NBR-OF-RECORDS) TO

 ADDRESS OF QPD-SYMPTOM.

 *

 * For illustration purposes, dump the program object

 *

 MOVE 302 TO KEY-FIELD OF QPD-NAMED-SYSTEM-OBJECT.

 MOVE PGM-NAME OF PGM-IN-ERROR

 TO OBJECT-NAME OF QPD-NAMED-SYSTEM-OBJECT.

 MOVE LIB-NAME OF PGM-IN-ERROR

 TO OBJECT-LIBRARY OF QPD-NAMED-SYSTEM-OBJECT.

 MOVE "*PGM" TO OBJECT-TYPE OF QPD-NAMED-SYSTEM-OBJECT.

 ADD 1 TO NBR-OF-RECORDS.

 SET PROBLEM-POINTER (NBR-OF-RECORDS) TO

 ADDRESS OF QPD-NAMED-SYSTEM-OBJECT.

 *

 * Call the API to log the software error.

 *

 CALL "QpdReportSoftwareError" USING PROBLEM-RECORDS,

 NBR-OF-RECORDS,

 QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE > 0 DISPLAY "Cannot log error".

 *

 * End the current run unit

 *

 MOVE "C" TO SYS-OPTION.

 STOP RUN.

 *

 * End of MAINLINE

 *

Example in ILE RPG: Reporting software error (ILE API with pointers):

This program performs a divide-by-0 operation to cause an exception. This exception is caught using

RPGs *PSSR support, and the exception is then logged as a software error.

 This program calls the Report Software Error (QpdReportSoftwareError) API to perform FFDC, and uses

pointers. The ILE program sets a pointer, as shown at (2) to point to the same location as in the OPM

program at (1).

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

34 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

F**

 F*

 F* Program: Demonstrate use of ILE-based Report Software Error

 F*

 F* Language: ILE RPG

 F*

 F* Description: This program performs a divide-by-0 operation to

 F* cause an exception. This exception is caught using

 F* RPGs *PSSR support, and the exception is then logged

 F* as a software error.

 F*

 F* APIs used: QpdReportSoftwareError

 F*

 F**

 D*

 D* Include Error Code Parameter

 D*

 D/COPY QSYSINC/QRPGLESRC,QUSEC

 D*

 D* Include API structures and constants

 D*

 D/COPY QSYSINC/QRPGLESRC,QPDSRVPG

 D*

 D* Array of problem record description pointers and index to array

 D*

 Dpdr S * dim(20)

 Dx S 5B 0 INZ(1)

 D*

 D* Misc. data elements

 D*

 Dfactor1 S 5B 0 INZ(10)

 Dfactor2 S 5B 0 INZ(0)

 Dresult S 5B 0

 Drc S 2 INZ(’RC’)

 D*

 D* Program status data structure

 D*

 DPSDS SDS

 D pgm_name 1 10

 D status 11 15 0

 D src_line 21 28

 D exception 40 46

 D lib_name 81 90

 C*

 C* Attempt to divide by 0

 C*

 C factor1 div factor2 result

 C*

 C* Should not get here due to divide-by-0 exception

 C*

 C move ’1’ *INLR

 C return

 C*

 C* Program exception subroutine:

 C*

 C *PSSR BEGSR

 C*

 C* Make sure we are not catching an exception due to the *PSSR

 C* subroutine itself

 C*

 C switch ifeq ’ ’

 C move ’1’ switch 1

 C*

 C* Set API error code to work in nonexception mode

 C*

 C eval qusbprv = %size(qusec)

 C*

APIs 35

C* Record the suspected program and library name

 C*

 C eval qpdk01 = 101

 C eval qpdpgmnl = %SIZE(pgm_name)

 C eval qpdlibnl = %SIZE(lib_name)

 C eval qpdpgmn = %ADDR(pgm_name) (2)

 C eval qpdlibn = %ADDR(lib_name)

 C*

 C* and record the key:

 C*

 C eval pdr(x) = %addr(qpdspgm)

 C eval x = x + 1

 C*

 C* Record the failing source statement number

 C*

 C eval qpdk07 = 200

 C eval qpdkl = %SIZE(rc)

 C eval qpddl = %SIZE(src_line)

 C eval qpddt = ’C’

 C eval qpdk08 = %ADDR(rc)

 C eval qpdd = %ADDR(src_line)

 C*

 C* and record the key:

 C*

 C eval pdr(x) = %addr(qpds)

 C eval x = x + 1

 C*

 C* Record the status code as data

 C*

 C eval qpdk11 = 301

 C eval qpddl00 = %SIZE(status)

 C eval qpddi = 1

 C eval qpdd00 = %ADDR(status)

 C*

 C* and record the key:

 C*

 C eval pdr(x) = %addr(qpds)

 C eval x = x + 1

 C*

 C* For illustration purposes, dump the program object

 C*

 C eval qpdk12 = 302

 C eval qpdobjn = pgm_name

 C eval qpdobjlib = lib_name

 C eval qpdobjt = ’*PGM’

 C*

 C* and record the key:

 C*

 C eval pdr(x) = %addr(qpdnsot)

 C eval x = x + 1

 C*

 C* Call the Report Software Error API

 C*

 C callb qpdrse

 C parm pdr

 C parm x

 C parm qusec

 C*

 C* If an error on the API call, then indicate a terminal error

 C*

 C qusbavl ifgt 0

 C ’Terminal err’dsply

 C end

 C else

 C*

 C* If error within *PSSR, then indicate *PSSR error

 C*

36 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C ’*PSSR error’ dsply

 C end

 C*

 C* No matter how the program got to the *PSSR, end the program

 C*

 C move ’1’ *inlr

 C return

 C endsr

APIs for the UNIX-type environment

The interfaces provided by sockets, the integrated file system, and other categories are part of a

continuing emphasis on supporting an open environment on the system.

The socket functions and integrated file system should ease the amount of effort required to move UNIX

applications to the system.

The integrated file system is a function of i5/OS that supports stream input/output and storage

management similar to personal computer and UNIX operating systems. It also provides an integrating

structure over all information stored on the system.

The naming conventions for the UNIX-type APIs are determined by industry standards organizations.

 Related reference

 Unix-type APIs

Examples: UNIX-type APIs:

This simple example program illustrates the use of several integrated file system functions.

 Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

The program performs the following operations:

(1) Uses the getuid() function to determine the real user ID (uid).

(2) Uses the getcwd() function to determine the current directory.

(3) Uses the open() function to create a file. The owner (the person who created the file) is given

read, write, and execute authority to the file.

(4) Uses the write() function to write a byte string to the file. The file is identified by the file

descriptor that was provided in the open operation ((3)).

(5) Uses the close() function to close the file.

(6) Uses the open() function to open the file for read only.

(7) Uses the read() function to read a byte string from the file. The file is identified by the file

descriptor that was provided in the open operation ((6)).

(8) Uses the close() function to close the file.

(9) Uses the unlink() function to remove the link to the file.

Example in ILE C: Using the Integrated File System

This example program uses the integrated file system from ILE C.

/**/

/* */

/* Language: ILE C */

/* */

/* Description: Demonstrate use of integrated file system */

/* from ILE C */

APIs 37

/* */

/**/

#include <stdlib.h>

#include <stdio.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/types.h>

#define BUFFER_SIZE 2048

#define TEST_FILE "test.file"

#define TEST_DATA "Hello World!"

#define USER_ID "user_id_"

char InitialFile[BUFFER_SIZE];

char InitialDirectory[BUFFER_SIZE] = ".";

char Buffer[32];

int FilDes = -1;

int BytesRead;

int BytesWritten;

uid_t UserID;

void CleanUpOnError(int level)

{

 printf("Error encountered, cleaning up.\n");

 switch (level)

 {

 case 1:

 printf("Could not get current working directory.\n");

 break;

 case 2:

 printf("Could not create file %s.\n",TEST_FILE);

 break;

 case 3:

 printf("Could not write to file %s.\n",TEST_FILE);

 close(FilDes);

 unlink(TEST_FILE);

 break;

 case 4:

 printf("Could not close file %s.\n",TEST_FILE);

 close(FilDes);

 unlink(TEST_FILE);

 break;

 case 5:

 printf("Could not open file %s.\n",TEST_FILE);

 unlink(TEST_FILE);

 break;

 case 6:

 printf("Could not read file %s.\n",TEST_FILE);

 close(FilDes);

 unlink(TEST_FILE);

 break;

 case 7:

 printf("Could not close file %s.\n",TEST_FILE);

 close(FilDes);

 unlink(TEST_FILE);

 break;

 case 8:

 printf("Could not unlink file %s.\n",TEST_FILE);

 unlink(TEST_FILE);

 break;

 default:

 break;

 }

38 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

printf("Program ended with Error.\n"\

 "All test files and directories may not have been removed.\n");

}

int main ()

{

(1)

/* Get and print the real user id with the getuid() function. */

 UserID = getuid();

 printf("The real user id is %u. \n",UserID);

(2)

/* Get the current working directory and store it in InitialDirectory. */

 if (NULL == getcwd(InitialDirectory,BUFFER_SIZE))

 {

 perror("getcwd Error");

 CleanUpOnError(1);

 return 0;

 }

 printf("The current working directory is %s. \n",InitialDirectory);

(3)

/* Create the file TEST_FILE for writing, if it does not exist.

 Give the owner authority to read, write, and execute. */

 FilDes = open(TEST_FILE, O_WRONLY | O_CREAT | O_EXCL, S_IRWXU);

 if (-1 == FilDes)

 {

 perror("open Error");

 CleanUpOnError(2);

 return 0;

 }

 printf("Created %s in directory %s.\n",TEST_FILE,InitialDirectory);

(4)

/* Write TEST_DATA to TEST_FILE via FilDes */

 BytesWritten = write(FilDes,TEST_DATA,strlen(TEST_DATA));

 if (-1 == BytesWritten)

 {

 perror("write Error");

 CleanUpOnError(3);

 return 0;

 }

 printf("Wrote %s to file %s.\n",TEST_DATA,TEST_FILE);

(5)

/* Close TEST_FILE via FilDes */

 if (-1 == close(FilDes))

 {

 perror("close Error");

 CleanUpOnError(4);

 return 0;

 }

 FilDes = -1;

 printf("File %s closed.\n",TEST_FILE);

(6)

/* Open the TEST_FILE file for reading only. */

 if (-1 == (FilDes = open(TEST_FILE,O_RDONLY)))

 {

 perror("open Error");

 CleanUpOnError(5);

 return 0;

 }

 printf("Opened %s for reading.\n",TEST_FILE);

APIs 39

(7)

/* Read from the TEST_FILE file, via FilDes, into Buffer. */

 BytesRead = read(FilDes,Buffer,sizeof(Buffer));

 if (-1 == BytesRead)

 {

 perror("read Error");

 CleanUpOnError(6);

 return 0;

 }

 printf("Read %s from %s.\n",Buffer,TEST_FILE);

 if (BytesRead != BytesWritten)

 {

 printf("WARNING: the number of bytes read is "\

 "not equal to the number of bytes written.\n");

 }

(8)

/* Close the TEST_FILE file via FilDes. */

 if (-1 == close(FilDes))

 {

 perror("close Error");

 CleanUpOnError(7);

 return 0;

 }

 FilDes = -1;

 printf("Closed %s.\n",TEST_FILE);

(9)

/* Unlink the file TEST_FILE */

 if (-1 == unlink(TEST_FILE))

 {

 perror("unlink Error");

 CleanUpOnError(8);

 return 0;

 }

 printf("Unlinking file %s.\n",TEST_FILE);

 printf("Program completed successfully.\n");

 return 0;

}

Example in ILE COBOL: Using the Integrated File System

This example program uses the integrated file system from ILE COBOL.

 PROCESS NOMONOPRC.

 IDENTIFICATION DIVISION.

 *

 * Language: COBOL

 *

 * Description: Demonstrate use of integrated file system

 * from ILE COBOL

 *

 *

 PROGRAM-ID. IFS.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 SPECIAL-NAMES.

 * LINKAGE TYPE PROCEDURE FOR "geterrno",

40 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

LINKAGE TYPE PROCEDURE FOR "getuid",

 LINKAGE TYPE PROCEDURE FOR "getcwd",

 LINKAGE TYPE PROCEDURE FOR "open",

 LINKAGE TYPE PROCEDURE FOR "write",

 LINKAGE TYPE PROCEDURE FOR "close",

 LINKAGE TYPE PROCEDURE FOR "read",

 LINKAGE TYPE PROCEDURE FOR "unlink".

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT LISTING ASSIGN TO PRINTER-QPRINT

 ORGANIZATION IS SEQUENTIAL.

 DATA DIVISION.

 *

 FILE SECTION.

 FD LISTING RECORD CONTAINS 132 CHARACTERS

 LABEL RECORDS ARE STANDARD

 DATA RECORD IS LIST-LINE.

 01 LIST-LINE PIC X(132).

 *

 WORKING-STORAGE SECTION.

 *

 * Report lines

 *

 01 REALID.

 05 PRT-TEXT PIC X(20) VALUE "The real user id is ".

 05 USER PIC X(12).

 01 CURDIR.

 05 PRT-TEXT PIC X(21) VALUE "Current directory is ".

 05 INITIALDIR PIC X(100).

 01 NEWFIL.

 05 PRT-TEXT PIC X(20) VALUE "Created file: ".

 05 FILENAME PIC X(100).

 01 DATAIN.

 05 PRT-TEXT PIC X(20) VALUE "Successfully read: ".

 05 DATA-READ PIC X(100).

 01 ERRLIN.

 05 PRT-TEXT PIC X(20) VALUE "The errno value is: ".

 05 ERRVAL PIC X(12).

 *

 * Miscellaneous elements

 *

 01 BUFFER PIC X(32767).

 01 LENGTH-OF-BUFFER PIC S9(09) BINARY VALUE 32767.

 01 TESTFILE.

 05 TEST-FILE PIC X(09) VALUE "test.file".

 05 NULL-TERMINATE PIC X(01) VALUE LOW-VALUE.

 01 OFLAG PIC X(04) VALUE X"0000001A".

 01 OFLAG-READ PIC X(04) VALUE X"00000001".

 01 OMODE PIC X(04) VALUE X"000001C0".

 01 TEST-DATA PIC X(12) VALUE "Hello World!".

 01 SIZE-TEST-DATA PIC S9(09) BINARY VALUE 12.

 01 FILE-DESCRIPTOR PIC S9(09) BINARY.

 01 BYTES-READ PIC S9(09) BINARY.

 01 BYTES-WRITTEN PIC S9(09) BINARY.

 01 RETURN-INT PIC S9(09) BINARY.

 01 RETURN-PTR POINTER.

 *

 * Beginning of mainline

 *

 PROCEDURE DIVISION.

 MAIN-LINE.

 OPEN OUTPUT LISTING.

 *

 * Get and print the real user id with the getuid function.

 *

 CALL "getuid" GIVING RETURN-INT.

 *

APIs 41

* Check for error and report status.

 *

 IF RETURN-INT = -1 MOVE "Error getting real user id"

 TO LIST-LINE,

 PERFORM ERROR-FOUND,

 ELSE MOVE RETURN-INT TO USER,

 WRITE LIST-LINE FROM REALID.

 *

 * Get the current working directory and store it in BUFFER

 *

 CALL "getcwd" USING BY VALUE ADDRESS OF BUFFER,

 BY VALUE LENGTH-OF-BUFFER,

 GIVING RETURN-PTR.

 *

 * Check for error and report status.

 *

 IF RETURN-PTR = NULL MOVE "Error getting real current dir"

 TO LIST-LINE,

 PERFORM ERROR-FOUND,

 ELSE MOVE BUFFER TO INITIALDIR,

 WRITE LIST-LINE FROM CURDIR.

 *

 * Create the file test.file for writing. If it does not exist,

 * give the owner authority to read, write, and execute.

 *

 CALL "open" USING BY VALUE ADDRESS OF TESTFILE,

 BY VALUE OFLAG,

 BY VALUE OMODE,

 GIVING FILE-DESCRIPTOR.

 *

 * Check for error and report status.

 *

 IF FILE-DESCRIPTOR = -1 MOVE "Could not create file"

 TO LIST-LINE,

 PERFORM ERROR-FOUND,

 ELSE MOVE TEST-FILE TO FILENAME,

 WRITE LIST-LINE FROM NEWFIL.

 *

 * Write TEST-DATA to test.file via file descriptor from open

 *

 CALL "write" USING BY VALUE FILE-DESCRIPTOR,

 BY VALUE ADDRESS OF TEST-DATA,

 BY VALUE SIZE-TEST-DATA,

 GIVING BYTES-WRITTEN.

 *

 * Check for error and report status.

 *

 IF BYTES-WRITTEN = -1 MOVE "Could not write to file"

 TO LIST-LINE,

 PERFORM ERROR-FOUND,

 ELSE MOVE "Wrote to file successfully"

 TO LIST-LINE,

 WRITE LIST-LINE.

 *

 * Close test.file via file descriptor

 *

 CALL "close" USING BY VALUE FILE-DESCRIPTOR,

 GIVING RETURN-INT.

 *

 * Check for error and report status.

 *

 IF RETURN-INT = -1 MOVE "Could not close file"

 TO LIST-LINE,

 PERFORM ERROR-FOUND,

 ELSE MOVE "Successfully closed file"

 TO LIST-LINE,

 WRITE LIST-LINE.

42 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

*

 * Open the file test.file for reading.

 *

 CALL "open" USING BY VALUE ADDRESS OF TESTFILE,

 BY VALUE OFLAG-READ,

 GIVING FILE-DESCRIPTOR.

 *

 * Check for error and report status.

 *

 IF FILE-DESCRIPTOR = -1 MOVE "Could not open file"

 TO LIST-LINE,

 PERFORM ERROR-FOUND,

 ELSE MOVE "File open successful"

 TO LIST-LINE,

 WRITE LIST-LINE.

 *

 * Read from test.file via file descriptor from open

 *

 CALL "read" USING BY VALUE FILE-DESCRIPTOR,

 BY VALUE ADDRESS OF BUFFER,

 BY VALUE LENGTH-OF-BUFFER,

 GIVING BYTES-READ.

 *

 * Check for error and report status.

 *

 IF BYTES-READ = -1 MOVE "Read failed"

 TO LIST-LINE,

 PERFORM ERROR-FOUND,

 ELSE IF BYTES-READ = BYTES-WRITTEN

 MOVE BUFFER TO DATA-READ,

 WRITE LIST-LINE FROM DATAIN,

 ELSE MOVE "Data Truncation on Read"

 TO LIST-LINE,

 PERFORM ERROR-FOUND.

 *

 * Close test.file via file descriptor

 *

 CALL "close" USING BY VALUE FILE-DESCRIPTOR,

 GIVING RETURN-INT.

 *

 * Check for error and report status.

 *

 IF RETURN-INT = -1 MOVE "Could not close file"

 TO LIST-LINE,

 PERFORM ERROR-FOUND,

 ELSE MOVE "Successfully closed file"

 TO LIST-LINE,

 WRITE LIST-LINE.

 *

 * Unlink test.file

 *

 CALL "unlink" USING BY VALUE ADDRESS OF TESTFILE,

 GIVING RETURN-INT.

 *

 * Check for error and report status.

 *

 IF RETURN-INT = -1 MOVE "Unlink of file failed"

 TO LIST-LINE,

 PERFORM ERROR-FOUND,

 ELSE MOVE "Unlink of file successful"

 TO LIST-LINE,

 WRITE LIST-LINE.

 *

 MOVE "Program run is successful" TO LIST-LINE.

 WRITE LIST-LINE.

 STOP RUN.

 *

APIs 43

* End of MAINLINE

 *

 *

 * Common error reporting subroutine

 *

 * If errors occur, the Integrated File System exports the

 * variable ’errno’ to assist in determining the problem. As

 * ’errno’ is lowercase, ILE COBOL cannot directly import this

 * variable and must use a C module to access it. If the

 * developer has ILE C available, the following sample C code

 * will import ’errno’ and make it available to the COBOL

 * application

 *

 * #include <errno.h>

 * int geterrno()

 * {

 * return errno;

 * }

 *

 * To activate this C module remove the comment identifiers

 * following the WRITE statement and remove the comment

 * identifier from the geterrno declaration in the Configuration

 * Section. Definitions for the returned errno are found in

 * file QSYSINC/SYS member ERRNO.

 *

 ERROR-FOUND.

 WRITE LIST-LINE.

 * CALL "geterrno" GIVING RETURN-INT.

 * MOVE RETURN-INT TO ERRVAL.

 * WRITE LIST-LINE FROM ERRLIN.

 STOP RUN.

Example in ILE RPG: Using the Integrated File System

This example program uses the integrated file system from ILE RPG.

 F**

 F*

 F* Language: ILE RPG

 F*

 F* Description: Demonstrate use of integrated file system

 F* from ILE RPG

 F*

 F**

 FQSYSPRT O F 132 PRINTER

 D*

 D* Prototype the Integrated File System APIs

 D*

 Dgetuid PR 9B 0 EXTPROC(’getuid’)

 Dgetcwd PR * EXTPROC(’getcwd’)

 D * VALUE

 D 9B 0 VALUE

 Dopen PR 9B 0 EXTPROC(’open’)

 D * VALUE

 D 4A VALUE

 D 4A VALUE

 Dwrite PR 9B 0 EXTPROC(’write’)

 D 9B 0 VALUE

 D * VALUE

 D 9B 0 VALUE

 Dclose PR 9B 0 EXTPROC(’close’)

 D 9B 0 VALUE

 Dopen2 PR 9B 0 EXTPROC(’open’)

 D * VALUE

 D 4A VALUE

 Dread PR 9B 0 EXTPROC(’read’)

 D 9B 0 VALUE

44 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

D * VALUE

 D 9B 0 VALUE

 Dunlink PR 9B 0 EXTPROC(’unlink’)

 D * VALUE

 D*

 D* errno prototype; see error subroutine for further information

 D*

 D*errno PR 9B 0 EXTPROC(’geterrno’)

 DUser S 12A

 DBuffer S 32767A

 DReturnPtr S *

 DReturnInt S 9B 0

 DFileDesc S 9B 0

 Dtest_file S 2048A INZ(’test.file’)

 DInitialDir S 2048A

 Dtest_data S 12A INZ(’Hello World!’)

 DBytesWrt S 9B 0

 DBytesRead S 9B 0

 DFileName S 2049A

 DPrintLine S 100A

 DNull C CONST(X’00’)

 C*

 C* Get and print the real user id with the getuid function.

 C*

 C eval ReturnInt = getuid

 C*

 C* Check for error and report status.

 C*

 C if ReturnInt = -1

 C eval PrintLine = ’Error getting real user id’

 C exsr error

 C eval *INLR = ’1’

 C return

 C else

 C move ReturnInt User

 C eval PrintLine = ’The real user id is ’

 C + %TRIML(User)

 C except

 C endif

 C*

 C* Get the current working directory and store it in Buffer.

 C*

 C eval ReturnPtr=getcwd(%ADDR(Buffer)

 C : %SIZE(Buffer))

 C*

 C* Check for error and report status.

 C*

 C if ReturnPtr = *NULL

 C eval PrintLine = ’Error getting current directory’

 C exsr error

 C eval *INLR = ’1’

 C return

 C else

 C*

 C* Print current directory name remembering to scan for null terminator.

 C*

 C Null scan Buffer NullFound 5 0

 C eval InitialDir = %SUBST(Buffer:1:NullFound)

 C eval PrintLine = ’Current Directory is ’

 C + InitialDir

 C except

 C endif

 C*

 C* Create the file TEST_FILE for writing. If it does not exist,

 C* give the owner authority to read, write, and execute.

 C*

 C eval FileName = %TRIMR(test_file) + Null

APIs 45

C eval FileDesc = open(%ADDR(FileName)

 C : x’0000001A’ : x’000001C0’)

 C*

 C* Check for error and report status.

 C*

 C if FileDesc = -1

 C eval PrintLine = ’Could not create file’

 C exsr error

 C eval *INLR = ’1’

 C return

 C else

 C eval PrintLine = ’File ’

 C + %TRIMR(test_file)

 C + ’ created successfully’

 C except

 C end

 C*

 C* Write test_data to test_file via FileDesc returned by open

 C*

 C eval BytesWrt = write(FileDesc

 C : %ADDR(Test_Data)

 C : %SIZE(Test_Data))

 C*

 C* Check for error and report status. If an error occurs,

 C* attempt cleanup.

 C*

 C if BytesWrt = -1

 C eval PrintLine = ’Could not write to file’

 C exsr error

 C eval ReturnInt = close(FileDesc)

 C eval ReturnInt = unlink(%ADDR(FileName))

 C eval *INLR = ’1’

 C return

 C else

 C eval PrintLine = ’Wrote to ’

 C + %TRIMR(test_file)

 C + ’ successfully’

 C except

 C endif

 C*

 C* Close test_file via FileDesc

 C*

 C eval ReturnInt = close(FileDesc)

 C*

 C* Check for error and report status. If an error occurs,

 C* attempt cleanup.

 C*

 C if ReturnInt = -1

 C eval PrintLine = ’Could not close file’

 C exsr error

 C eval ReturnInt = close(FileDesc)

 C eval ReturnInt = unlink(%ADDR(FileName))

 C eval *INLR = ’1’

 C return

 C else

 C eval PrintLine = ’File ’

 C + %TRIMR(test_file)

 C + ’ closed successfully’

 C except

 C endif

 C*

 C* Open the file for read only

 C*

 C eval FileDesc = open2(%ADDR(FileName)

 C : x’00000001’)

 C*

 C* Check for error and report status. If an error occurs,

46 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C* attempt cleanup.

 C*

 C if FileDesc = -1

 C eval PrintLine = ’Open of file failed’

 C exsr error

 C eval ReturnInt = unlink(%ADDR(FileName))

 C eval *INLR = ’1’

 C return

 C else

 C eval PrintLine = ’Open of file successful’

 C except

 C endif

 C*

 C* Read from file

 C*

 C eval BytesRead = read(FileDesc

 C : %ADDR(Buffer) : %SIZE(Buffer))

 C*

 C* Check for error and report status. If an error occurs,

 C* attempt cleanup.

 C*

 C if BytesRead = -1

 C eval PrintLine = ’Read failed’

 C exsr error

 C eval ReturnInt = close(FileDesc)

 C eval ReturnInt = unlink(%ADDR(FileName))

 C eval *INLR = ’1’

 C return

 C else

 C if BytesRead = BytesWrt

 C eval PrintLine = ’Data successfully read: ’

 C + %TRIMR(Buffer)

 C else

 C eval PrintLine = ’Data truncation on read’

 C endif

 C except

 C endif

 C*

 C* Close the LinkName file

 C*

 C eval ReturnInt = close(FileDesc)

 C*

 C* Check for error and report status. If an error occurs,

 C* attempt cleanup.

 C*

 C if ReturnInt = -1

 C eval PrintLine = ’Close of link failed’

 C exsr error

 C eval ReturnInt = close(FileDesc)

 C eval ReturnInt = unlink(%ADDR(FileName))

 C eval *INLR = ’1’

 C return

 C else

 C eval PrintLine = ’Close of link successful’

 C except

 C endif

 C*

 C* Unlink test_file

 C*

 C eval ReturnInt = unlink(%ADDR(FileName))

 C*

 C* Check for error and report status. If an error occurs,

 C* attempt cleanup.

 C*

 C if ReturnInt = -1

 C eval PrintLine = ’Unlink of file failed’

 C exsr error

APIs 47

C eval ReturnInt = unlink(%ADDR(FileName))

 C eval *INLR = ’1’

 C return

 C else

 C eval PrintLine = ’Unlink of file successful’

 C except

 C endif

 C*

 C* End of main program

 C*

 C eval PrintLine = ’Program run is successful’

 C except

 C eval *INLR = ’1’

 C return

 C*

 C* Common error reporting subroutine

 C*

 C* If errors occur, the integrated file system exports the variable

 C* ’errno’ to assist in determining the problem. As ’errno’ is

 C* lowercase, ILE RPG cannot directly import this variable and must

 C* use a C module to access it. If the developer has ILE C

 C* available, the following sample C code will import ’errno’ and

 C* make it available to the RPG application.

 C*

 C* #include <errno.h>

 C* int geterrno()

 C* {

 C* return errno;

 C* }

 C*

 C* To activate this C module, remove the four comment identifiers

 C* following the ’except’ statement and remove the comment identifier

 C* from the errno prototype. Definitions for the returned errno

 C* are found in the file QSYSINC/SYS member ERRNO.

 C*

 C error begsr

 C except

 C* eval ReturnInt = errno

 C* move ReturnInt Errnoval 9

 C* eval PrintLine = ’Errno is ’ + Errnoval

 C* except

 C eval PrintLine = ’Program ended in error’

 C except

 C endsr

 OQSYSPRT E 1

 O PrintLine 100

API information format

API names contain verbs that are similar to the i5/OS licensed program: change, create, remove, and

retrieve.

 Related concepts

 “APIs for the Original Program Model environment” on page 11

This topic describes the naming conventions of Original Program Model (OPM) APIs, the initial APIs

on the system.

 “APIs for the Integrated Language Environment” on page 11
The Integrated Language Environment (ILE) model is a set of tools and associated system support

designed to enhance program development on a system.

 “Receiver variables” on page 75

A receiver variable is a program variable that is used as an output field to contain information that is

returned from an API.

48 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

“Scenario: Original Program Model (OPM) API” on page 123

This scenario demonstrates the use of an original program model (OPM) API in several different

programs.

 “Scenario: Integrated Language Environment (ILE) APIs” on page 190

The example APIs in this section represent two general functions of APIs--change and retrieve.
 Related reference

 “OPM and ILE API verbs and abbreviations” on page 7

The two to three letters following the APIs make up an internal component identifier. The last part of

the API name identifies the action or function of the API. The information after the component ID is

an abbreviation of the verb that describes the function of the API.

API description

For most APIs, the API description information has similar section headings.

The following lists the API description section headings, each with an overview and details on how to

use the information.

For more information, see the following:

v “Parameters”

v “Authorities and locks” on page 50

v “Required parameter group” on page 50

v “Optional parameter group” on page 52

Parameters

The Parameters box describes how to call the API. The first column in the Parameters box lists the

required order of the parameters. The second column lists each parameter used on the call.

The third column lists whether the parameter is defined for input, output, or input and output. Input

parameters and fields are not changed by the API. They have the same value on the return from the API

call as they do before the API call. In contrast, output parameters are changed. Any information that an

API caller places in an output parameter or output field before the call to the API could be lost on the

return from the call to the API.

In the fourth column of the Parameters box is the type of data defined for the parameter. CHAR(*)

represents a data type that is not known, such as character, binary, and so on, or a length that is not

known. Binary(x) represents x bytes of a binary value. CHAR(x) represents x bytes of character data.

When calling the QWDRJOBD API, for example, there is an 8-byte character format name, a 4-byte binary

value named length of receiver variable, and a variable-length receiver variable. The receiver variable is a

structure made up of several character and binary fields. For more information on format names, see

Format name.

Example: RPG call statement parameters

In this example program, you must pass 5 parameters to use the API. For example, your RPG CALL

statement might look like the following:

 C CALL ’QWDRJOBD’

 C PARM QWDBH Receiver Var.

 C PARM RCVLEN Length QWDBH

 C PARM FORMAT Format Name

 C PARM LFNAM Qual. Job Desc

 C PARM QUSBN Error Code

Note: There is no parameter for the HOLD information. The first parameter, receiver variable (QWDBH),

is where the information is passed back from the job description API. You will receive a data

APIs 49

structure that contains information, and you will need to find the specific location within the data

structure for where the HOLD information is stored.

Authorities and locks

The Authorities and Locks topic lists all the authorities that you need to use the API. This topic also lists

the locks that the API uses. To use an API, you must have the correct authority to the following:

v The API itself

v All the objects that the API uses

v Any locks that the API places on any objects

Locks are based on the objects that the API uses. The type of locking that occurs, such as whether the

object can be used by more than one user at the same time, is based on what actions the API performs on

the object.

For the QWDRJOBD API, you must have *USE authority to both the job description object and the library

to access the object. This is the same type of authority that is required for most situations where you

want to display or retrieve information in an object. For example, it is the same authority that you would

need to use the Display Job Description (DSPJOBD) command. Because no specific information is

described for locks, you can assume that nothing unusual is required.

To see the authorities in Retrieve Job Description Information (QWDRJOBD) API, see the link to

Authorities and locks in the Related reference section.

Required parameter group

The Required parameter group topic of an API lists all the parameters required for that API. You must

use all of the parameters in the order that they are listed. None of the parameters may be left out.

The details of each parameter that must be used on the call to the QWDRJOBD API are described in

Required parameter group.

Receiver variable

A receiver variable is the name of the variable (QWDBH in the example RPG program in “Parameters”

on page 49) where the information will be placed. You need to declare the length of the receiver variable

based on what you want from the format. The include file QWDRJOBD contains the definition for the

receiver variable structure depending on the value used for the format name. For more information on

the format, see the table in JOBD0100 Format.

You can see from the Dec (decimal offset) column of the JOBD0100 format table that at least 390 bytes

plus additional bytes (of unknown length) for the initial library list and the request data are returned.

Example in OPM RPG: Accessing a field value (initial library list) describes how to determine the lengths

of these fields. For now, you should focus on the fixed portion (390 bytes) of the format.

You have a choice of receiving the maximum or enough bytes to contain the information in which you

are interested. Because the value of the hold on job queue field starts at decimal 76, you could specify

that the receiver variable is 100 bytes (or any number greater than or equal to 86 bytes). It is not

necessary to be precise when you specify the length of the receiver variable. Whatever you specify is the

amount of data that is returned. You can truncate a value in the middle of a field in the format, specify

more length than the format has, and so on.

For example, assume that you decided to receive the fixed information, a length of 390, shown at (1) in

Example in OPM RPG: Retrieving the HOLD parameter (exception message). If you are going to call the

API once, no measurable performance gain occurs if you specify anything less than the maximum. When

50 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

defining the length of your receiver variable, you would usually use the length of the information that

you want to receive. The length of receiver variable parameter must be set to a value equal to or less

than the length that you defined the receiver variable parameter to be.

Length of receiver variable

You normally enter the length that you have specified for the receiver variable. Remember that in this

example, you decided to declare the receiver variable to be 390 bytes in length. The length of receiver

variable parameter will have a value of 390 assigned to it, shown at (2) in Example in OPM RPG:

Retrieving the HOLD parameter (exception message). You could have specified a different value, but the

value must be the same or less than the size of the variable in your program. In the example program in

Example: RPG call statement parameters, RCVLEN is the length of receiver variable parameter.

The length field, according to the required parameter group, must be described as BINARY(4). This

means that a field of 4 bytes is passed where the value is specified in binary. You need to know how

your high-level language allows you to define a 4-byte field and place a binary value in it. The API does

not care if the field is declared as a binary type. For example, some languages, like control language (CL),

do not have a binary type. What is important is that the field is 4 bytes in length and that it contains the

receiver length in binary.

If you write programs in CL, you need the %BIN function to convert a decimal value or variable to a

character field that is declared as 4 bytes. If you write programs in RPG, you can declare a data structure

that contains a 4-byte field of zero decimals and is defined as B for binary, shown at (2) in Example in

OPM RPG: Retrieving the HOLD parameter (exception message). Because the field is a binary type, RPG

would make a binary value.

Format name

A format name is a name that identifies what type of information you want returned in the receiver

variable. Because this API has a single format name, JOBD0100, you would use the format name given in

the Retrieve Job Description Information API, shown at (3) in Example in OPM RPG: Retrieving the

HOLD parameter (exception message). The format name variable in the example program is called

FORMAT. You can place the format name in a variable or pass it as a literal.

Qualified job description name

This name must be passed as a 20-character name with the job description name in the first 10 characters

and the library qualifier beginning in the 11th character. If you want JOBD1 in LIBX, you would specify:

 1 11 20

 . . .

 . . .

 JOBD1 LIBX

The special values of *CURLIB or *LIBL can be used as the library qualifier.

Note: APIs generally do not convert parameter values to uppercase. When using object names (like job

description and library), you must provide the name in uppercase.

Error code

This parameter allows you to select how errors are to be handled.

The include file QUSEC contains the definition for the error code structure that is used for the error code

parameter.

APIs 51

You can choose to receive exceptions (escape messages) or to receive an error-code data structure that

allows you to determine if an exception occurred. Depending on your high-level language, you may not

have a choice for which method you use. You may have to use the error-code data structure because

some languages do not provide for escape messages.

In Example in OPM RPG: Retrieving the HOLD parameter (exception message) the RPG program

requests that exceptions be sent if any errors occur. To provide for this type of exception handling, a

4-byte binary field with a value of zero must be passed, as shown at (4). This indicates to the API that

you want exception messages sent.

Optional parameter group

Some of the APIs have optional parameters; the optional parameters form a group. You must either

include or exclude the entire group. You cannot use one of these parameters by itself. You must include

all preceding parameters.

The API can be called two ways: either with the optional parameters or without the optional parameters.

The Retrieve Job Description Information API has no optional parameter groups. The List Job (QUSLJOB)

API is an example of an API with an optional parameter group.

 Related reference

 “Example in OPM RPG: Accessing a field value (initial library list)” on page 157

This sample program shows the correct way of using the offset in a user space in RPG.

 “Example in OPM RPG: Retrieving the HOLD parameter (exception message)” on page 124

This example expects errors to be sent as escape messages.

 Authorities and locks

 List Job (QUSLJOB) API

API format

The format section in API information describes a format name.

For example, for the Retrieve Job Description (QWDRJOBD) API, the format described is JOBD0100

Format. Listed within the format are the individual fields that contain the attributes of the job

description. The offset in the Dec (decimal offset) column for the hold on job queue field (hold parameter

on the Retrieve Job Description command) begins at decimal offset 76.

The fields in the format do not occur in any particular sequence. You have to scan the format to

determine what you want.

The Retrieve Job Description (QWDRJOBD) API has only a single format; other APIs may have multiple

formats where each format has different levels of information. With multiple formats, a format name

parameter allows you to specify which format you want to retrieve.

 Related reference

 Retrieve Job Description (QWDRJOBD) API

 “List Object API general data structure” on page 79

Describes some of the more important fields that comprise the general data structure.

API field descriptions

The field descriptions section describes the fields found in the format section.

The contents of the format are presented in alphabetical sequence and not in the sequence of the fields

defined in the format. In the Retrieve Job Description (QWDRJOBD) API, you can find the description of

the hold on job queue field. The field does not use the parameter name found on the Create Job

Description (CRTJOBD) command.

52 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

For detailed descriptions of the fields in Retrieve Job Description Information (QWDRJOBD) API, see

Field Descriptions.

 Related reference

 Retrieve Job Description (QWDRJOBD) API

API error messages

The error messages section lists error messages that can occur when you use the API.

These are message IDs that normally exist in the QCPFMSG file. You may want to program for these

messages regardless of the high-level language that you are using. If you need more detail about the

messages, use the Display Message Description (DSPMSGD) command.

For a listing of the error messages in Retrieve Job Description Information (QWDRJOBD) API, see Error

messages.

 Related reference

 Display Message Description (DSPMSGD)

 Error messages

Extracting a field from the format

The format section describes where the field that you want is located within the receiver variable.

An offset is shown in both decimal and hexadecimal. Depending on which language you use, either

offset may be helpful. For CL and RPG, you would normally use the decimal offset. With any offset, it is

important to remember whether your language works with an offset from a base of 0 or a base of 1. The

format tables in the APIs are prepared for languages that work from a base of 0, but not all languages

can use this base. CL and RPG, for example, work from a base of 1, so you need to add 1 to the decimal

value of each offset. The hold on job queue field begins at decimal offset 76, for example. To access the

information in CL or RPG, you need to address byte 77 within the receiver variable.

Using the format, you can tell that the field after the hold on job queue field, output queue name, begins

in offset 86. This means that the hold on job queue information is in the following location from a CL or

RPG perspective:

 77 86

 . .

 . .

 XXXXXXXXXX

The only possible values for the hold on job queue field are *YES and *NO. They are left-justified in the

field and the remaining positions are blank.

Most of the formats provide additional bytes for each field to allow for expansion, such as a new value

for the hold on job queue field that would be more than 4 bytes.

Many of the needed structures are provided by the system-include library, QSYSINC. However, any fields

of a structure that are variable in length are not defined by QSYSINC. These variable-length fields must

be defined by the user, as shown by (3) in Example in OPM RPG: Accessing a field value (initial library

list).

 Related concepts

 “Include files and the QSYSINC library” on page 62
The QSYSINC (system include) library provides all source includes for APIs shipped with i5/OS.

 Related reference

 “Example in OPM RPG: Accessing a field value (initial library list)” on page 157

This sample program shows the correct way of using the offset in a user space in RPG.

APIs 53

“List Object API general data structure” on page 79

Describes some of the more important fields that comprise the general data structure.

Processing lists that contain data structures

Some API information contains a list where each entry in the list is itself a data structure.

A good example is the Retrieve System Status (QWCRSSTS) API. It supports multiple formats for

different types of information. The SSTS0300 format contains a list where each entry in the list has the

information about a particular storage pool. In addition to the two critical fields (the offset to where the

list begins field and the number of entries in the list field), the format also supports a field that describes

the length of each entry. In the initial library list, each entry was 11-bytes long. But in a storage pool, a

field (length of pool information entry) describes the length and should be used instead of a fixed-length

increment. This allows for growth, such as more information being available in another release for each

list entry.

For example, if another field is added to describe some additional information about a storage pool, it is

probably added after the paging option field. The length of pool information entry allows your code to

be upwardly compatible while it retains the locations (relative to the start of a list entry) of the current

fields.

 Related reference

 Retrieve System Status (QWCRSSTS) API

API parameters

After you have found the API that you want to use, you need to code a call to an API and pass to the

API the required set of parameters appropriate for that API.

Parameters can be:

v Required: All of the parameters in the specified order

v Optional: All or none of the parameters within the optional group. You must either include or exclude

the entire group; you cannot use just one of these parameters by itself. In addition, you must include

all preceding parameters.

v Omissible: The parameters can be omitted. When these parameters are omitted, you must pass a null

pointer.

For OPM and ILE APIs, the values for all parameters that identify objects on the system must be in

*NAME (basic name) format, left-justified, uppercase, and with valid special characters. (The *NAME

format is a character string that must begin with an alphabetic character (A through Z, $, #, or @)

followed by up to 9 characters (A through Z, 0 through 9, $, #, @,), or _). The system uses an object

name as is, and it does not change or check the object name before locating the object. This improves the

performance of the API. An incorrect name usually results in an Object not found error.

 Related reference

 “OPM and ILE API differences” on page 13
This topic gives an overview of how Original Program Model (OPM) APIs and Integrated Language

Environment (ILE) APIs differ from each other. The ILE APIs include the UNIX-type APIs and the ILE

CEE APIs, among others.

Passing parameters

In an OPM or ILE call, a parameter is an expression that represents a value that the calling application

passes to the API specified in the call.

HLL languages use the following methods for passing parameters:

By value, directly

 The value of the data object is placed directly into the parameter list.

54 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

By value, indirectly

 The value of the data object is copied to a temporary location. The address of the copy (a pointer)

is placed into the parameter list. By value, indirectly is not done explicitly by the application

programmer. It is done by the operating system at run time.

By reference

 A pointer to the data object is placed into the parameter list. Changes made by the called API to

the parameter are reflected in the calling application.

 When you call an API, the protocol for passing parameters is to typically pass a space pointer that points

to the information being passed. (This is also referred to as pass-by-reference.) This is the convention

used by the control language (CL), RPG, and COBOL compilers. Care must be used in those languages

that support pass-by-value (such as ILE C) to ensure that these conventions are followed. Refer to the

appropriate language documentation for instructions. The parameter passing convention of

pass-by-reference can be used in all programming languages. Some of the UNIX-type APIs require

pass-by-value parameter passing. VisualAge C++ for i5/OS also supports pass-by-value parameter

passing.

HLL semantics usually determine when data is passed by value and when it is passed by reference. For

example, ILE C passes and accepts parameters by value, directly, while for OPM and ILE COBOL and

OPM and ILE RPG parameters are usually passed by reference. You must ensure that the calling program

or procedure passes parameters in the manner expected by the called API. The OPM or ILE HLL

programmer’s guides contain more information on passing parameters to different languages.

The ILE languages support the following parameter-passing styles:

v ILE C passes and accepts parameters by value (directly and indirectly) and by reference.

v ILE COBOL supports the passing of parameters by value (indirectly) and by reference.

v ILE RPG supports the passing of parameters by value (directly and indirectly) and by reference.

v ILE CL supports the passing of parameters by reference.

Input and output parameters

API parameters can be used for input or output. Some parameters contain both input and output fields;

these are identified as input/output (I/O) parameters in the API parameter tables.

Input parameters and fields are not changed by the API. They have the same value on the return from

the API call as they do before the API call. In contrast, output parameters and fields are changed. Any

information that an API caller (either an application program or an interactive entry on the display)

places in an output parameter or output field before the call will be lost on the return from the call.

Parameters can be classified into the following general categories:

v Input parameters: These parameters must be set to a value before calling the API because they pass

needed information to the API to enable it to perform its function. For example, if the API is to

perform a function on an object, one of the parameters would be the name and library of that object.

Input parameters are not changed by the API.

v Output parameters: These parameters do not need to be set before calling the API because the API

returns information to the application in these parameters. When a return to the application is

successful and no errors have occurred, the application then accesses the information returned in

output parameters.

v Input/Output parameters: These are parameters that are identified as structures that contain fields. The

fields within the structure can be either input, output, or both. For example, the bytes provided field in

the error code parameter is an input field. The rest of the fields that make up this parameter are output

fields. The rules for input parameters and output parameters apply to the individual fields in the

structure.

APIs 55

Offset values and lengths

You can make use of the offset values and lengths returned by the API to step through the list when

using an API.

When you are using an API that generates a list into a user space, you should use the offset values and

lengths returned by the API in the generic user space header to step through the list instead of specifying

what the current version of the API returns. This is because:

v The offset values to the different sections of the user space may change in future releases.

v The length of the entries in the list data section of the user space may change in future releases.

As long as your HLL application program uses the offset values and lengths returned in the generic

header of the user space, your program will run in future releases of the i5/OS licensed program.

Note: While your application program should use the length returned in the generic header to address

subsequent list entries, your application program should only retrieve as many bytes as the

application program has allocated storage for.

Offset versus displacement considerations for structures

You will find the terms offset and or displacement in some of the APIs. For example, the Retrieve Data

Queue Message (QMHRDQM) API uses offset; the List Objects (QUSLOBJ) API uses displacement.

An offset is the distance from the beginning of an object (user spaces and receiver variables) to the

beginning of a particular field. However, a displacement is the distance from the beginning of a specific

record, block, or structure to the beginning of a particular field.

Error code parameter

An API error code parameter is a variable-length structure that is common to all of the system APIs.

The error code parameter controls how errors are returned to the application. The parameter must be

initialized before the program calls the API. Depending on how the error code structure is set, this

parameter either returns information associated with an error condition or causes errors to be returned as

exception messages.

For some APIs, the error code parameter is optional. If you do not code the optional error code

parameter, the API returns diagnostic and escape messages. If you code the optional error code

parameter, the API can either signal exceptions or return the exception information in the error code

parameter.

Notes:

1. The ILE CEE APIs use feedback codes and conditions.

2. The UNIX-type APIs and the National Language Data Conversion APIs use errno to report

error conditions.

The error code structure is provided in the QSYSINC library and is called QUSEC.

 Related concepts

 “Include files and the QSYSINC library” on page 62
The QSYSINC (system include) library provides all source includes for APIs shipped with i5/OS.

 Related reference

 i5/OS Messages and the ILE CEE API Feedback Code

Error code parameter format:

56 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Most iSeries APIs include an error code parameter to return error codes and exception data to the

application. The error code parameter can be one of two variable-length structures, format ERRC0100 or

format ERRC0200.

 In format ERRC0100, one field in that structure is an INPUT field; it controls whether an exception is

returned to the application or the error code structure is filled in with the exception information. When

the bytes provided field is greater than or equal to 8, the rest of the error code structure is filled in with

the OUTPUT exception information associated with the error. When the bytes provided INPUT field is

zero, all other fields are ignored and an exception is returned.

Format ERRC0200 must be used if the API caller wants convertible character (CCHAR) support. Format

ERRC0200 contains two INPUT fields. The first field, called the key field, must contain a -1 to use

CCHAR support. When the bytes provided field is greater than or equal to 12, the rest of the error code

structure is filled in with the OUTPUT exception information associated with the error. When the bytes

provided INPUT field is zero, all other fields are ignored and an exception is returned.

For some APIs, the error code parameter is optional. If you do not code the optional error code

parameter, the API returns diagnostic and escape messages. If you do code the optional error code

parameter, the API returns only escape messages or error codes; it never returns diagnostic messages.

The structure of the error code parameter is as follows. The fields are described in detail after the tables.

Note: The error code structures for both formats are provided in the QUSEC include file in the QSYSINC

library. Includes exist in the following source physical files: QRPGSRC, QRPGLESRC, QLBLSRC,

QCBLLESRC, and H.

Format ERRC0100

 Offset

Use Type Field Dec Hex

0 0 INPUT BINARY(4) Bytes provided

4 4 OUTPUT BINARY(4) Bytes available

8 8 OUTPUT CHAR(7) Exception ID

15 F OUTPUT CHAR(1) Reserved

16 10 OUTPUT CHAR(*) Exception data

Format ERRC0200

 Offset

Use Type Field Dec Hex

0 0 INPUT BINARY(4) Key

4 4 INPUT BINARY(4) Bytes provided

8 8 OUTPUT BINARY(4) Bytes available

12 C OUTPUT CHAR(7) Exception ID

19 13 OUTPUT CHAR(1) Reserved

20 14 OUTPUT BINARY(4) CCSID of the CCHAR

data

24 18 OUTPUT BINARY(4) Offset to the

exception data

APIs 57

Offset

Use Type Field Dec Hex

28 1C OUTPUT BINARY(4) Length of the

exception data

OUTPUT CHAR(*) Exception data

Field descriptions

This topic describes the fields returned in further detail. Field descriptions are in alphabetical order.

Bytes available. The length of the error information available to the API to return, in bytes. If this is 0, no

error was detected and none of the fields that follow this field in the structure are changed.

Bytes provided. The number of bytes that the calling application provides for the error code. If the API

caller is using format ERRC0100, the bytes provided must be 0, 8, or more than 8. If more than 32 783

bytes (32KB for exception data plus 16 bytes for other fields) are specified, it is not an error, but only 32

767 bytes (32KB) can be returned in the exception data.

If the API caller is using format ERRC0200, the bytes provided must be 0, 12, or more than 12. If more

than 32 799 bytes (32KB for exception data plus 32 bytes for other fields) are specified, it is not an error,

but only 32 767 bytes (32KB) can be returned in the exception data.

 Bytes Description

0 If an error occurs, an exception is returned to the

application to indicate that the requested function failed.

>=8 If an error occurs, the space is filled in with the

exception information. No exception is returned. This

only occurs if format ERRC0100 is used.

>=12 If an error occurs, the space is filled in with the

exception information. No exception is returned. This

only occurs if format ERRC0200 is used.

CCSID of the CCHAR data. The coded character set identifier (CCSID) of the convertible character

(CCHAR) portion of the exception data. The default is 0.

 CCSID Description

0 The default job CCSID.

CCSID A valid CCSID number. The valid CCSID range is 1

through 65535, but not 65534.

Exception data. A variable-length character field that contains the insert data associated with the

exception ID.

Exception ID. The identifier for the message for the error condition.

Key. The key value that enables the message handler error function if CCHAR support is used. This

value should be -1 if CCHAR support is expected.

Length of the exception data. The length, in bytes, of the exception data returned in the error code.

58 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Offset to the exception data. The offset from the beginning of the error code structure to the exception

data in the error code structure.

Reserved. A 1-byte reserved field.

Examples: Receiving error conditions:

These examples illustrate receiving error conditions

 Example: Receiving error conditions as exceptions

This example shows an application that receives error conditions as exceptions. It allocates an error code

parameter that is a minimum of 4 bytes long to hold the bytes provided field. The only field used is the

bytes-provided INPUT field, which the application sets to zero to request exceptions. The error code

parameter contains the following:

 Field INPUT OUTPUT

Bytes provided 0 0

Example: Receiving the error code without the exception data

This application example attempts to create an alert for message ID USR1234 in message file USRMSG in

library QGPL. It receives the error condition in the error code parameter but does not receive any

exception data. To do this, it allocates an error code parameter that is a minimum of 16 bytes long--for

the bytes provided, bytes available, exception ID, and reserved fields. It sets the bytes-provided field of

the error code parameter to 16.

When the application calls the Generate Alert (QALGENA) API, the alert table USRMSG is not found,

and QALGENA returns exception CPF7B03. The error code parameter contains the data shown in the

following table. In this example, 16 bytes are provided for data, but 36 are available. Twenty more bytes

of data could be returned if the bytes-provided field were set to reflect a larger error code parameter.

 Field INPUT OUTPUT

Bytes provided 16 16

Bytes available Ignored 36

Exception ID Ignored CPF7B03

Reserved Ignored 0

Example: Receiving the error code with the exception data

This application example attempts to create an alert for message ID USR1234 in message file USRMSG in

library QGPL. It receives the error condition in the error code parameter and receives exception data as

well. To do this, it allocates an error code parameter that is 116 bytes long--16 bytes for the bytes

provided, bytes available, exception ID, and reserved fields, and 100 bytes for the exception data for the

exception. (In some cases, the exception data might be a variable-length directory or file name, so this

might not be large enough to hold all of the data; whatever fits is returned in the error code parameter.)

Finally, it sets the bytes-provided field to 116.

When the application calls the Generate Alert (QALGENA) API, the alert table USRMSG is not found,

and QALGENA returns exception CPF7B03. The error code parameter contains the following:

 Field INPUT OUTPUT

Bytes provided 116 116

APIs 59

Field INPUT OUTPUT

Bytes available Ignored 36

Exception ID Ignored CPF7B03

Reserved Ignored 0

Exception data Ignored USRMSG QGPL

Using the job log to diagnose API errors:

Sometimes an API may issue one or more messages that state that the API failed, and the messages may

direct you to see the previously listed messages in the job log. If your application program needs to

determine the cause of the error message, you can use the Receive Message (RCVMSG) command or the

Receive Message APIs to receive the messages that explain the reason for the error.

 In some cases, you can write an application program to use the diagnostic message to identify and

correct the parameter values that caused the error.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Example: Receiving error messages from the job log

To receive error messages from the job log using a CL program, specify the following:

/* */

/***/

/* */

/* PROGRAM: CLRCVMSG */

/* */

/* LANGUAGE: CL */

/* */

/* DESCRIPTION: THIS PROGRAM DEMONSTRATES HOW TO RECEIVE */

/* DIAGNOSTIC MESSAGES FROM THE JOB LOG */

/* */

/* APIs USED: QUSCRTUS */

/* */

/***/

/* */

CLRCVMSG: PGM

 DCL VAR(&MSGDATA) TYPE(*CHAR) LEN(80)

 DCL VAR(&MSGID) TYPE(*CHAR) LEN(7)

 DCL VAR(&MSGLEN) TYPE(*DEC) LEN(5 0)

 MONMSG MSGID(CPF3C01) EXEC(GOTO CMDLBL(GETDIAGS))

 CALL PGM(QUSCRTUS) PARM(’!BADNAME !BADLIB ’ +

 ’!BADEXATTR’ -1 ’@’ ’*BADAUTH ’ ’Text +

 Description’)

 /* IF WE MAKE IT HERE, THE SPACE WAS CREATED OK */

 GOTO CMDLBL(ALLDONE)

 /* IF THIS PART OF THE PROGRAM RECEIVES CONTROL, A CPF3C01 */

 /* WAS RECEIVED INDICATING THAT THE SPACE WAS NOT CREATED. */

 /* THERE WILL BE ONE OR MORE DIAGNOSTICS THAT WE WILL RECEIVE */

 /* TO DETERMINE WHAT WENT WRONG. FOR THIS EXAMPLE WE WILL */

 /* JUST USE SNDPGMMSG TO SEND THE ID’S OF THE MESSAGES */

 /* RECEIVED. */

 GETDIAGS: RCVMSG PGMQ(*SAME) MSGQ(*PGMQ) MSGTYPE(*DIAG) +

 WAIT(3) RMV(*NO) MSGDTA(&MSGDATA) +

60 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

MSGDTALEN(&MSGLEN) MSGID(&MSGID)

 IF COND(&MSGID = ’ ’) THEN(GOTO +

 CMDLBL(ALLDONE))

 ELSE CMD(DO)

 SNDPGMMSG MSG(&MSGID)

 GOTO CMDLBL(GETDIAGS)

 ENDDO

 ALLDONE: ENDPGM

As an alternative to using the job log, the following RPG program uses the error code structure to receive

error messages:

 H**

 H* *

 H* MODULE: ERRCODE *

 H* *

 H* LANGUAGE: RPG *

 H* *

 H* FUNCTION: THIS APPLICATION DEMONSTRATES THE USE OF THE *

 H* ERROR CODE PARAMETER. *

 H* *

 H* APIs USED: QHFRTVAT, QHFCRTDR *

 H* *

 H**

 H**

 H* *

 H* THIS PROGRAM DOES SOME SIMPLE VERIFICATION ON AN HFS *

 H* DIRECTORY. THE QHFRTVAT API IS USED TO VERIFY THEEXISTENCE *

 H* OF THE SPECIFIED DIRECTORY. IF THE DIRECTORY DOES NOT EXIST,*

 H* AN ATTEMPT IS MADE TO CREATE THE DIRECTORY. *

 H* *

 H* THERE ARE THREE PARAMETERS TO THIS PROGRAM *

 H* *

 H* 1 INPUT PATHNM - NAME OF DIRECTORY *

 H* 2 INPUT PATHLN - LENGTH OF PATHNM PARAMETER *

 H* 3 OUTPUT SUCCES - INDICATES SUCCESS OR FAILURE *

 H* ’0’ SUCCESS *

 H* ’1’ FAILURE *

 H**

 ISUCCES DS

 I B 1 40RETCOD

 IPLENG DS

 I B 1 40PATHLN

 IBINS DS

 I B 1 40RETDTA

 I B 5 80ATTRLN

 IERROR DS

 I B 1 40BYTPRV

 I B 5 80BYTAVA

 I 9 15 ERRID

 I 16 16 ERR###

 I 17 272 INSDTA

 C *ENTRY PLIST

 C PARM PATHNM 80

 C PARM PLENG

 C PARM SUCCES

 C*

 C* INITIALIZE BYTES PROVIDED AND THE ATTRIBUTE LENGTH VARIABLE

 C*

 C Z-ADD272 BYTPRV

 C Z-ADD0 ATTRLN

 C*

 C* RETRIEVE DIRECTORY ENTRY ATTRIBUTES

 C*

 C CALL ’QHFRTVAT’

 C PARM PATHNM

 C PARM PATHLN

APIs 61

C PARM ATTR 1

 C PARM ATTRLN

 C PARM ATTR

 C PARM ATTRLN

 C PARM RETDTA

 C PARM ERROR

 C*

 C* CHECK FOR DIRECTORY NOT FOUND OR FILE NOT FOUND ERRORS.

 C* IF WE RECEIVE ONE OF THESE THIS IS THE INDICATION THAT

 C* WE CAN TRY TO CREATE THE DIRECTORY.

 C*

 C BYTAVA IFEQ *ZERO

 C Z-ADD0 RETCOD

 C ELSE

 C ’CPF1F02’ IFEQ ERRID

 C ’CPF1F22’ OREQ ERRID

 C**

 C* THERE IS NO NEED TO REINITIALIZE THE ERROR CODE PARAMETER.

 C* ONLY BYTES PROVIDED IS INPUT TO THE API; IT WILL RESET THE

 C* ERROR CODE PARAMETER FOR US. AFTER THE CALL TO QHFCRTDR,

 C* BYTES AVAILABLE WILL EITHER BE 0 IF SUCCESSFUL OR NONZERO

 C* IF THE CREATE FAILS. WE DO NOT HAVE TO WORRY ABOUT THE

 C* PREVIOUS ERROR CODE BEING left IN THE ERROR CODE PARAMETER.

 C**

 C CALL ’QHFCRTDR’

 C PARM PATHNM

 C PARM 20 PATHLN

 C PARM ATTR 1

 C PARM 0 ATTRLN

 C PARM ERROR

 C BYTAVA IFEQ *ZERO

 C Z-ADD0 RETCOD

 C ELSE

 C Z-ADD1 RETCOD

 C END

 C*

 C ELSE

 C Z-ADD1 RETCOD

 C END

 C END

 C*

 C* PROGRAM END

 C*

 C SETON LR

Include files and the QSYSINC library

The QSYSINC (system include) library provides all source includes for APIs shipped with i5/OS.

This optionally installed library is fully supported, which means you can write APARs if you find errors

in the includes.

You can install this library by using the GO LICPGM functions of i5/OS. Select the Install Licensed

Programs option on the Work with Licensed Programs display and the i5/OS System Openness Includes

option on the Install Licensed Programs display.

The terms include file and header file are interchangeable and pertain to the contents of the QSYSINC

library. These files are intended to be compatible with future releases.

The naming conventions for the includes are the same as either the OPM API or the ILE service program

name. If both exist, the include has both names.

62 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Include files shipped with the QSYSINC library

The following table lists the include files that are shipped with the QSYSINC library:

Operating Environment Language File Name

Member Name (Header

File)

OPM APIs ILE C

1 H OPM API program name

RPG QRPGSRC OPM API program name or

OPM API program name

with the letter E replacing

the letter Q for members

containing array definitions

ILE RPG QRPGLESRC OPM API program name

COBOL QLBLSRC OPM API name

ILE COBOL QCBLLESRC OPM API program name

ILE APIs ILE C H Service program name or

API program name

2

ILE RPG QRPGLESRC Service program name or

API program name

2

ILE COBOL QCBLLESRC Service program name or

API program name

2

UNIX type ILE C ARPA Industry defined

ILE C H Industry defined

ILE C NET Industry defined

ILE C NETINET Industry defined

ILE C NETNS Industry defined

ILE C SYS Industry defined

Notes:

1. CEE ILE APIs are included in this part of the table.

2. The API can be either bindable when you use the service program name or callable when you use the API

program name.

Besides the includes for specific APIs, other includes existing in the QSYSINC library follow:

 API Description

QLIEPT and QUSEPT Allow C-language application programs to call OPM

APIs directly through the system entry point table

QUSGEN Defines the generic header for list APIs

QUSEC Contains the structures for the error code parameter

Qxx Provides common structures that are used by multiple

APIs (where the xx is the component identifier, for

example, QMH, QSY, and so forth)

The include files that are shipped with the system define only the fixed portions of the formats. You must

define the varying-length fields. The QSYSINC include files are read-only files. If you use a structure that

contains one or more varying-length fields, you need to copy the include file to your library and edit

your copy. Uncomment the varying-length fields in your copy of the include file, and specify the actual

lengths you want. When using a structure as an input to an API, initialize the structure in its entirety

(typically to x’00’ but refer to the specific API documentation for the correct value) prior to setting

APIs 63

specific field values within the structure. This will avoid having to initialize reserved fields by name, as

the reserved field name may change in future releases. The files are built with a CCSID of 00037. When

you compile a program in a specific CCSID, any QSYSINC include file is converted to the program

CCSID.

Exit programs only have an include if the exit program contains a structure. The member names for these

exit programs start with the letter E. Except for RPG array definitions for APIs that also start with E, any

member names in the QSYSINC library that start with the letter E are include files for exit programs. The

QSYSINC member name of these includes is provided in the parameter box for the applicable exit

programs.

For development of client-based applications, integrated-file-system symbolic links to QSYSINC openness

includes are also provided in the /QIBM/include path.

All source physical files are shipped with read capabilities only; changes cannot be made to the QSYSINC

library. All are built with a CCSID of 00037. When you compile a program in a specific CCSID, any

QSYSINC include file is converted to the program CCSID.

If you are coding in ILE C, the header files in the QSYSINC library are considered system include files.

You should use the < and > symbols on the #include statement; this affects how the library list is used to

search for header files.

If you are coding in RPG or COBOL and need to define storage for variable length fields, you should

copy the appropriate QSYSINC system include to a user source library. You can then customize the

include file to your specific needs and use the customized member when you compile your application.

If you are developing applications on a release n system that will run on a release n-1 system, you may

want to copy each release’s include files to user source libraries. This will minimize the impact of include

file changes as APIs are enhanced over time with additional fields.

 Related concepts

 “Extracting a field from the format” on page 53

The format section describes where the field that you want is located within the receiver variable.
 Related reference

 “Error code parameter” on page 56

An API error code parameter is a variable-length structure that is common to all of the system APIs.

 “Examples: APIs” on page 301

Contains example programs that use APIs and exit programs.

Internal object types

This topic provides the i5/OS internal object types and their corresponding predefined values.

The following table lists the predefined values for all the i5/OS internal object types. For external object

types, see External object types in the CL topic.

 Table 1. Predefined Values and Default Library Locations for Internal i5/OS Object Types

Value Object Type Hexadecimal Format

*ACNAME Auto-configuration names 19F0

*ADO Asynchronous distribution object 19E0

*AUT Authorized user table 0EC5

*AUTHLR Authority holder 1BC1

*CBLK Commit block 0FC1

*CCSIDI CCSID information 0ED2

64 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Table 1. Predefined Values and Default Library Locations for Internal i5/OS Object Types (continued)

Value Object Type Hexadecimal Format

*CDJOBLK Transaction control structure with

externally-managed commitment

definitions

23A1

*CDTCSLK Transaction control structure with

UDB-managed commitment

definitions

23A0

*CFGSPC Configuration space 19A4

*CHRSFC Character special file clone object 1EC1

*CIO Cluster information object 19A5

*CMTCDRI Commit recovery object 0EA0

*CNVTBL System conversion table 19FB

*CRGM Cluster resource group manager 0EA5

*DBCOLES Data Base column extension 1955

*DBDIR Data Base directory 1950

*DBRCVR Database recovery object 19D4

*DCRENO DC rename object 19F5

*DCTQ Data dictionary queue 0AC4

*DCXITC DCX inter-task communication index 0ECF

*DCXMSQ DCX operator message queue 0AC5

*DEACR Directory extended attribute cursor 0D52

*DEADI Directory extended attribute index 0C50

*DEADS Directory extended attribute

dataspace

0B51

*DFTJRN Default journal 09C1

*DFTRCV Default journal receiver 07C1

*DIRCR Directory cursor 0D51

*DIRDS Directory dataspace 0B50

*DIRJ Integrated file system directory for

user journaling

1E50

*DLSTMF Document library services stream file 1EA0

*DMPSP Dump space 1390

*DOCBSS Document byte string space 06C1

*DRQ Distribution recipient queue 0AC3

*DRX Distribution recipient index 0ED1

*DSNXO DSNX system object 19E9

*DTO Distribution tracking object 19E2

*DUO Document unit object 19E3

*EDTIDX Element description index OED0

*EPTAB Data management entry point table 19D7

*EXITSP Exit registration space 1953

*FACB File available control block 0EC6

*FCNUL Function usage list 0ECA

APIs 65

Table 1. Predefined Values and Default Library Locations for Internal i5/OS Object Types (continued)

Value Object Type Hexadecimal Format

*FIDTBL File ID table 0BA0

*FCS File constraint space 1958

*FMT File format 1951

*FSO FMS system object 19E8

*GDA Group data area 19CD

*GENIDX Permanent generic index 0EA4

*GENQ Permanent generic queue 0AC8

*GRPDLS Group dataLink space 1959

*HFSD HFS description 19F7

*HPQ Office host print queue 0AC6

*ICO Install communication object 19C6

*IDDEDT Internal data dictionary 19EB

*IGCINT Ideographic character table 19E1

*IMPLREP Implementation repository 0E50

*INAUT Install authority object 19D5

*INAUTO Automatic install 19F4

*INITSP Install initial template space 19C1

*INTLIB Internal library 04C1

*INTPRF Interactive profile 0EC4

*IPLJMQ LIC internally-created queue space 18A1

*IFSIDX Integrated file system index 0EF3

*ISYSLIB Internal system library 04C2

*JAR Job APAR repository 19CA

*JVAGRP Java™ group 2150

*JVAPGM Java program 0250

*JMQ Job message queue 18A0

*JRNIX Journal receiver index 0EA6

*JSQ Job schedule queue 0AF0

*JTMMQ Measurement message queue 0AC1

*LDA Local data area 19CE

*LIBRCVR Library recovery object 19D1

*LIRCVR Library recovery object for rename 19F2

*MCBSF Management Collection Byte Stream

File

1E52

*MCO Measurement collection object 19C0

*MCOTBL Measurement collection object table 19C8

*MDO Measurement descriptor object 19C9

*MDOC Mail document 19E6

*MEM database file member 0D50

*MNINX Menu index 0EC1

66 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Table 1. Predefined Values and Default Library Locations for Internal i5/OS Object Types (continued)

Value Object Type Hexadecimal Format

*MNTXT Menu text 19CB

*MQLOCK Message queue locking protocol 19DF

*MSCSP Permanent miscellaneous space 19EE

*MSRVI master service index 0E91

*NFSP Network facility space 19E5

*OCUR Database operational cursor 0DEF

*OHCUR Data base operational hybrid cursor 0DEE

*OIRS OIR space 1952

*OLBSF Open List Byte Stream File 1E51

*OPTBSS Optical byte string 06A0

*OPTSTMF Optical stream file 1EED

*OSSCB Session control block 19E4

*OWCUR Database operational wrapper cursor ODED

*PCCR Problem change control record 19CC

*PDT Process definition template 19C7

*POBSF Print Object Byte Stream File 1EB2

*PRDAVLI Product availability index 0EF1

*PRMGEN Permanent generic space 19A1

*PROCT Operation code table 19DA

*PRODT Operand description table 0ECB

*PRTQ Print queue 0EC7

*PTCSPC Protected space 19FC

*QDAG Access group 0190

*QDDS Data space 0B90

*QDDSI Data space index 0C90

*QDIDX Composite index 0E90

*QDPCS Process control space 1A90

*QDQ Composite queue 0A90

*QDSP Composite space 1990

*QFSIDX QSYS directory I/O index 0EA3

*QTAG Temporary access group 01EF

*QTDS Temporary data space 0BEF

*QTDSI Temporary data space index 0CEF

*QTIDX Temporary index 0EEF

*QTPCS Temporary process control space 1AEF

*QTQ Temporary queue 0AEF

*QTSP Temporary space 19EF

*RCYAP Recovery times for SMAPP 19A0

*RWCB Read/write control block 19C5

*RZHRIPD HRI-saved persistent data 19A3

APIs 67

Table 1. Predefined Values and Default Library Locations for Internal i5/OS Object Types (continued)

Value Object Type Hexadecimal Format

*SCO Service communication object 19DC

*SCPFSP SCPF space 19DE

*SDQ SNADS distribution queue 0EC2

*SECOBJ Internal security object for a user

profile

0EC3

*SEPT System entry point table 19C3

*SHRCV SH recovery object 19F8

*SIQ FM queue 0AC2

*SLFSMS Secondary logic unit index 0EC9

*SMBSF Shared memory byte stream file 1EB1

*SMIDX System management index 0EF2

*SMQ System management internal queue 0AF1

*SNMTBL System program name table 19F9

*SORTSEQ Sort sequence table repository 0EA7

*SPLCB Spool control block 19C2

*SRAUTH Save/restore authorizations table 19CF

*SRDS Save/restore descriptor space 19DB

*SRMIDX System resource manager index 0EC8

*SRMSPC System resource manager space 19F3

*STPWIDX Password index 0ED3

*STREAM Stream object 85A0

*SVAL System value 19D2

*SVRSTGD Server storage space 1954

*SWFL System-wide folder list 0ECD

*SYAUTS Security authorization space 19F6

*SYSBC System control block 19D3

*SYSPRTI System print image part numbers 19D6

*SYSRPYL System reply list 19D8

*S36BCH System/36 batch object 19F1

*S36EPT System/36 entry point table 19EA

*S36HLP System/36 help object 0ECE

*S36HST System/36 history object 19EC

*S36IDX System/36 index 0ECC

*TCPIPQ TCP/IP queue 0AC7

*TDS Trigger definition space 1960

*TNIPLMQ TN IPL message queue 0AF2

*TOKTBL DSOM token mapping table 0EA2

*UBPSPC Usage-based pricing space 19FE

*UFCB User file control block 19D9

*UFO Unfiled folder object 19E7

68 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Table 1. Predefined Values and Default Library Locations for Internal i5/OS Object Types (continued)

Value Object Type Hexadecimal Format

*WCBT Work control block table 19D0

*WCBTRO Work control block table recovery

object

19DD

*X40 X400 object 19FA

*X4Q X400 queue 0EF0

*ZMFINX Message space pool 0EA1

*ZMFSPC Message framework 19A2

 Related reference

 External object types

 “Creating an MI version of CLCRTPG” on page 511

This topic discusses how to create an MI version of the CLCRTPG program that can be used to create

MI programs. This program is called MICRTPG.

Data types

APIs support character data and binary data.

Character data

In the API parameter tables, CHAR(*) represents character data that has:

v A type that is not known, such as character, binary, and so on

v A length that might not be known or is based on another value (for example, a length you specify)

Binary data

In the API parameter tables, BINARY(2) and BINARY(4) represent numeric data. These parameters must

be signed, 2- or 4-byte numeric values with a precision of 15 (halfword) or 31 (fullword) bits and one

high-order bit for the sign. Numeric parameters that must be unsigned 4-byte numeric values are

explicitly defined as BINARY(4) UNSIGNED.

When you develop applications that use binary values, be aware that some high-level languages allow

the definition of binary variables by using precision and not length. For example, an RPG definition of

binary length 4 specifies a precision of 4 digits, which can be stored in a 2-byte binary field. For API

BINARY(4) fields, RPG developers should use one of the following:

v Positional notation

v A length of 5 to 9 in order to allocate a 4-byte binary field

v A length of 10 in order to allocate a 4-byte integer field
 Related reference

 “Example in OPM RPG: Retrieving the HOLD parameter (error code structure)” on page 136

This sample program shows exceptions being returned in the error code parameter.

 “Define data structures” on page 536

When a data structure is defined for use with an API, the structure must be built to receive what the

API returns.

Internal identifiers

You know of jobs, spooled files, and so forth, by their names. The system uses an ID that is associated

with the name. The ID is assigned based on usage.

APIs 69

Several of the APIs either require or allow you to use an internal ID. When you use an internal ID, it is

generally faster because the system does not have to convert the external name to the internal ID.

A variety of terminology is used to identify internal IDs. For example:

v Work Management uses an internal job identifier.

v Spooling uses an internal spooled file identifier.

v Security uses the term handle to mean the user profile that is currently running the job.

v Message handling uses the term message key (also appears on CL commands) to identify a message in a

message queue.

The internal values are often accessed in one API and then used in another. For example, if you want a

list of jobs, you would use the List Jobs (QUSLJOB) API, which provides the internal job ID for each job

in the list. You could then use the internal job ID to access a spooled file for a job with the Retrieve

Spooled File Attributes (QUSRSPLA) API.

User spaces and receiver variables

APIs that return information to a caller generally return the information in a user space (used by list APIs)

or a receiver variable (used by retrieve APIs).

User spaces

List APIs require a user space for returning information. A user space is an object consisting of a

collection of bytes that can be used for storing any user-defined information.

Following are some of the advantages of using user spaces:

v User spaces can be automatically extendable.

v User spaces can be shared across jobs.

v User spaces can exist across IPLs.

To provide a consistent design and use of the user space (*USRSPC) objects, the list APIs use a common

data structure. The list APIs are those APIs that generate a list unique to that API. This includes any list

API that has a user space parameter, such as the List Spooled Files and List Objects APIs.

 Related concepts

 “User spaces for list APIs” on page 81

The list APIs require a user space for returning information.

 “Receiver variables” on page 75

A receiver variable is a program variable that is used as an output field to contain information that is

returned from an API.

 “List APIs overview” on page 78

List APIs return a list unique to a given API. The section discusses the characteristics of a list API and

provides information that you should be aware of when you use list APIs.
 Related reference

 “Example in OPM RPG: Using keys with List Spooled Files API” on page 173

This example shows the steps necessary to process keyed output from an API.

General data structure:

The list APIs use a general data structure.

70 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

All offset values are from the beginning of the user space. The offset values for the Dump Object

(DMPOBJ) and Dump System Object (DMPSYSOBJ) commands also start at the beginning of the user

space. To get the correct starting position for the Change User Space (QUSCHGUS) and Retrieve User

Space (QUSRTVUS) APIs, add one to the offset value.

Common data structure formats:

APIs 71

This topic shows the generic user space layout. Format 0100 shows the format for an original program

model (OPM) layout. Format 0300 shows the format for an Integrated Language Environment (ILE)

model layout. The fields are described in detail after the table.

 Generic header format 0100

 Offset

Type Field Dec Hex

0 0 CHAR(64) User area

64 40 BINARY(4) Size of generic header

68 44 CHAR(4) Structure’s release and level

72 48 CHAR(8) Format name

80 50 CHAR(10) API used

90 5A CHAR(13) Date and time created

103 67 CHAR(1) Information status

104 68 BINARY(4) Size of user space used

108 6C BINARY(4) Offset to input parameter

section

112 70 BINARY(4) Size of input parameter

section

116 74 BINARY(4) Offset to header section

120 78 BINARY(4) Size of header section

124 7C BINARY(4) Offset to list data section

128 80 BINARY(4) Size of list data section

132 84 BINARY(4) Number of list entries

136 88 BINARY(4) Size of each entry

140 8C BINARY(4) CCSID of data in the list

entries

144 90 CHAR(2) Country or region ID

146 92 CHAR(3) Language ID

149 95 CHAR(1) Subsetted list indicator

150 96 CHAR(42) Reserved

Generic header format 0300

 Offset

Type Field Dec Hex

0 0 Everything from the 0100

format

192 C0 CHAR(256) API entry point name

448 1C0 CHAR(128) Reserved

72 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Field descriptions

This topic describes the fields returned in further detail. Field descriptions are in alphabetical order.

API entry point name. The name of the ILE bindable API entry point that generated the list.

API used. For format 0100, this is the name of the original program model (OPM) API that generated the

list. For format 0300, this is a reserved field. See the API entry point name field for the API used.

CCSID of the data in the list entries. The coded character set ID for data in the list entries. If 0, then the

data is not associated with a specific CCSID and should be treated as hexadecimal data.

Country or region ID. The country or region identifier of the data written to the user space.

Date and time created. The date and time when the list was created. The 13 characters are:

 Value Description

1 Century, where 0 indicates years 19 xx and 1 indicates

years 20 xx.

2-7 The date, in YYMMDD (year, month, day) format.

8-13 The time of day, in HHMMSS (hours, minutes, seconds)

format.

Format name. The name of the format for the list data section.

Information status. Whether or not the information is complete and accurate. Possible values are:

 Value Description

C Complete and accurate.

I Incomplete. The information you received is not accurate

or complete.

P Partial but accurate. The information you received is

accurate, but the API had more information to return

than the user space could hold. See “List sections” on

page 74 for more information about partial lists.

Language ID. The language identifier of the data written to the user space.

Number of list entries. The number of fixed-length entries in the list data section.

Offset to (all) section. The byte offset from the beginning of the user space to the start of the section.

Reserved. An ignored field.

Size of each entry. The size of each list data section entry, in bytes. All entries are the same size. For

formats that return variable length records, this is zero.

Size of generic header. The size of the generic header, in bytes. This does not include the size of the user

area; refer to “General data structure” on page 70 for a diagram showing the user area.

Size of header section. The size of the header section, in bytes.

Size of input parameter section. The size of the input parameter section, in bytes.

APIs 73

Size of list data section. The size of the list data section, in bytes. For formats that return variable length

records, this is zero.

Size of user space used. The combined size of the user area, generic header, input parameter section,

header section, and list data section, in bytes. This determines what is changed in the user space.

Structure’s release and level. The release and level of the generic header format for this list. The value of

this field is 0100 for generic header format 0100 and 0300 for generic header format 0300. List APIs put

this value into the user space.

Subsetted list indicator. A flag that indicates if the data selected from the list API can be stored in that

format.

 Value Description

0 List is not subsetted; all of the information can be stored

in the format.

1 List is subsetted. For example, integrated file system

names may be longer than the available area in the

format. See the API specific documentation for detail.

User area. An area within the user space that is provided for the caller to use to communicate system

programmer-related information between applications that use the user space.

Example: User space format:

This example illustrates the format of a user space. This example does not contain all of the fields in the

fixed portion of a user space.

 User Space Fixed locations

 ------------------------ in the user space

 | | *----------------*

 | |

 | |

 | XXXX *----+---> Offset to data

section

 | |

 | XXXX *----+---> Number of list

entries

 | |

 | XXXX *----+---> Size of each entry

 | |

 | |

 2nd entry *--|-----------------* |

 | | | Variable locations in the

 1st entry *--|--* | | user space

 | V V | *-----------------------*

 |AAAAABBBBCCCDDDEEAAAABB |*---> List of entries

 |BBBCCCDDDEEAAAABBBBBCCD |

 |DDDEEAAAABBBBCCCDDDEE.. |

List sections:

Each list API provides a input parameter, header, and list data section.

 List Section Contents

Input parameter section An exact copy of the parameters coded in the call to the

API. In general, this section contains all the parameters

available.

74 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

List Section Contents

Header section Parameter feedback and global information about each

object. Some APIs do not use this section; in those cases,

the value of the size-of-header-section field is zero.

List data section The generated list data. All entries in the list section are

the same length.

When you retrieve list entry information from a user space, you should use the entry size designated in

your application. To get the next entry, use the entry size returned in the generic header. The size of each

entry may be padded at the end. If you do not use the entry size, the result may not be valid.

Partial list considerations

Some APIs may be able to return more information to the application than fits in a receiver variable or a

user space. The information returned is correct, but not complete.

If the list information is not complete, the first item and possibly the second item occur:

v A P is returned in the information status field of the generic user space layout; refer to “General data

structure” on page 70.

v The API supports a continuation handle.

If an indicator of a partial list is returned, the application should call the API again with the continuation

handle in the list header section of the API and specify that the list begin with the next entry to be

returned.

Note: If this is the first time the API is attempting to return information, the continuation handle must be

set to blanks. If the API does not support a continuation handle, you need to call the API again

and use more restrictive values for the parameters.

Receiver variables

A receiver variable is a program variable that is used as an output field to contain information that is

returned from an API.

Retrieve APIs use receiver variables to place returned information. For example, instead of using a user

space to return the information, the information is placed in a receiver variable. A retrieve API requires

only addressability to storage of fixed size (typically a field or structure defined in your program),

whereas a list API requires a user space because the amount of information returned by a list API may be

large and not of a predictable size.

Retrieve APIs that return information to a receiver variable use the storage provided for the receiver

variable parameter. The returned information is in a specific format. The format name is usually a

parameter on the call to the API, and the format indicates to the API the information that you want

returned. On the return from the call to the API, the caller parses through the receiver variable and

extracts the information that is needed. The caller knows how the information is returned by the

documented format of the information. An API may have one or many formats that give you the

flexibility to choose the information that you need. To see examples of using receiver variables, see

Scenario: Original Program Model (OPM) API.

Some formats have variable-length fields, some only fixed-length fields, and yet others have repeating

entries. To move through the information, some formats use offsets, some use lengths, and some use

displacements. When the field is defined as an offset, the offset is always the number of bytes from the

beginning of the receiver variable. When a length or displacement is used to move through the receiver

APIs 75

variable entries, the length is always added to the current position within the receiver variable. For

examples of repeating entry types and the various ways to move through receiver variable entries, see

Example: Receiver variables using ILE APIs.

Offsets and displacements are not the same. An offset is relative to the beginning of a receiver variable or

the beginning of a user space, whereas a displacement is relative to the current position of the pointer plus

the value within the displacement field. If a format uses a displacement, you will see the word

displacement in the Field column of the API description.

 Related concepts

 “API information format” on page 48
API names contain verbs that are similar to the i5/OS licensed program: change, create, remove, and

retrieve.
 Related reference

 “User spaces” on page 70

List APIs require a user space for returning information. A user space is an object consisting of a

collection of bytes that can be used for storing any user-defined information.

 Example: Receiver variables using ILE APIs

 Example: Keyed interface using ILE APIs

 “Define byte alignment” on page 549

Correct byte alignment ensures that data used with an API is correct. Byte alignment is also essential

when APIs are used to retrieve and then print or display data.

 “Example in OPM RPG: Using keys with List Spooled Files API” on page 173

This example shows the steps necessary to process keyed output from an API.

Bytes available and bytes returned fields:

Most formats used by retrieve APIs have a bytes available field and a bytes returned field. The bytes

available field contains the length in bytes of all the data available to be returned to the user. The bytes

returned field contains the length in bytes of all the data that is actually returned to the user.

 All available data is returned if enough space is provided in the receiver variable. If the size of the

receiver variable is at least large enough to contain all of the data, the bytes returned field equals the

bytes available field. If the receiver variable is not large enough to contain all of the data, the bytes

available field contains the number of bytes that can be returned.

Your code could check the values for both the bytes available and bytes returned fields. If the bytes

available field is greater than the bytes returned field, the API had more information to return than what

would fit in the receiver variable. This could occur, over time, because the APIs that you use may be

enhanced with new releases. The API may also have more information to return if the receiver variable is

being used to return a variable-length field (or array) and a very large value was returned on this API

call. If both values are the same, the API returned all the information.

Depending on the capabilities of your high-level language, some API users take advantage of the

following technique to avoid guessing the appropriate size for the receiver variable:

1. Call the API with a receiver variable length of 8 bytes (that is, just enough for the bytes available and

the bytes returned fields).

2. Dynamically allocate an amount of storage equivalent to the bytes available.

3. Set the length of receiver variable parameter to the amount of storage allocated.

4. Pass the address of the storage allocated in step 2 by using pass by value (directly).

This technique provides for highly flexible use of APIs that can return variable amounts of data.

Keyed interface:

76 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Some APIs have a keyed interface for selecting what information you want returned. A keyed interface

allows the user of the API to provide information to the API through the use of keys.

 Keys are API-specific values that inform the API that a certain function should be performed. Keys also

are used to pass information to an API or to retrieve information from an API.

Through the use of keys, you can be more selective; you can choose one item or a number of items rather

than all of them. For example, using the List Job (QUSLJOB) API, you can receive selected information

about a job based on the keys that you specify. If you want job information about the output queue

priority, you only need to specify the output queue priority key.

The keys are typically supplied to an API and are passed to the API using a variable-length record (there

are some exceptions). A variable-length record is a collection of information that specifies the key being

used and the data that is associated with the key. If a given structure contains binary values, it must be

4-byte aligned.

Some APIs that use variable-length records in addition to the List Job API are the Change Object

Description (QLICOBJD) API and the Register Exit Point (QUSRGPT, QusRegisterExitPoint) API. You can

use the appropriate include file in member QUS in the system include (QSYSINC) library when you have

variable-length records as either input or output.

A keyed interface provides an easy-to-use means for later enhancing an API without affecting the user

who chooses not to use the enhancements. For examples that use a keyed interface, see Example: Using

keys with List Spooled Files API and Example: Keyed interface using ILE APIs.

User space alternative:

Although a receiver variable is usually used for returning information from a retrieve API, sometimes a

user space should be used instead.

 If the number of bytes of information being returned is not known or is large, a user space is preferred.

You can create a user space so that it can automatically extend up to 16MB of storage to accommodate

the information being retrieved.

The disadvantage of using a receiver variable when it may be too small for the amount of data being

returned is that the API must be called again to receive the remaining data.

Continuation handle

Some APIs that return information offer a continuation handle.

A continuation handle is a value that is passed between a high-level language program and an API. It is

used to mark the last value put in either the receiver variable or the user space. When a call to an API is

made and the API has more information to return than what could fit in the receiver variable or user

space provided by the caller, the API returns a continuation handle. If a continuation handle is returned

to the caller because there is more information to return, the caller can then call the API again and pass

the continuation handle that was returned. The API continues to return information from the point that it

left off on the call that generated the continuation handle.

When you use the continuation handle parameter, that is the only parameter that can change. All other

parameters must appear as they did on the call to the API that generated the continuation handle to

obtain predictable results.

 Related reference

 “Example in ILE C: Retrieve exit point and exit program information” on page 216

This program retrieves exit point and exit program information. After retrieving the exit point

APIs 77

information, the program resolves to each associated exit program and calls each exit program. The

Retrieve Exit Information API returns a continuation handle when it has more information to return

than what fits in the receiver variable.

 “List Object API general data structure” on page 79

Describes some of the more important fields that comprise the general data structure.

 “Example in OPM COBOL: Retrieve exit point and exit program information” on page 221

This program retrieves exit point and exit program information. After retrieving the exit point

information, the program calls each exit program. The Retrieve Exit Information API returns a

continuation handle when it has more information to return than what fits in the receiver variable.

 “Example in ILE COBOL: Retrieve exit point and exit program information” on page 225

This program retrieves exit point and exit program information. After retrieving the exit point

information, the program calls each exit program. The Retrieve Exit Information API returns a

continuation handle when it has more information to return than what fits in the receiver variable.

 “Example in OPM RPG: Retrieve exit point and exit program information” on page 229

This program retrieves exit point and exit program information. After retrieving the exit point

information, the program calls each exit program. The Retrieve Exit Information API returns a

continuation handle when it has more information to return than what fits in the receiver variable.

 “Example in ILE RPG: Retrieve exit point and exit program information” on page 233

This program retrieves exit point and exit program information. After retrieving the exit point

information, the program calls each, exit program. The Retrieve Exit Information API returns a

continuation handle when it has more information to return than what fits in the receiver variable.

Using a continuation handle

To make use of a continuation handle, do the following:

1. Blank out the continuation handle to let the API know that this is a first attempt at the retrieve

operation.

2. Call the API to retrieve the information.

3. Make use of the information returned.

4. If the continuation handle field in the receiver variable is not set to blanks, do the following steps

until the continuation handle equals blanks:

a. Copy the continuation handle from the receiver variable to the continuation handle parameter.

b. Call the API again by using the continuation handle that is returned. Keep all other parameters

the same as the original API call.

List APIs overview

List APIs return a list unique to a given API. The section discusses the characteristics of a list API and

provides information that you should be aware of when you use list APIs.

The List Objects That Adopt Owner Authority (QSYLOBJP) API is referred to throughout this chapter.

List APIs return information to a user space. List APIs generally have a user space parameter that uses a

general (or common) data structure. You must use the general data structure to get at the information

placed in the user space by the list API.

 Related reference

 List Objects That Adopt Owner Authority (QSYLOBJP)

 “User spaces” on page 70

List APIs require a user space for returning information. A user space is an object consisting of a

collection of bytes that can be used for storing any user-defined information.

 “Example in OPM RPG: Using keys with List Spooled Files API” on page 173

This example shows the steps necessary to process keyed output from an API.

78 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

List Object API general data structure

Describes some of the more important fields that comprise the general data structure.

The following structure shows the common fields that list APIs use. All list APIs have an input parameter

section, a header section, and a list data section.

General data structure

 Header

 ------------------------------------ *-------------------------*

 +00| | | |

 | 64-Byte User Area | | |

 | | | |

 ------------------------------------ *--->| Input Parameter Section |

 +40| Size of Generic Header | | | |

 ------------------------------------ | . .

 | | | . .

 | Generic Header | | *-------------------------*

 | | | | |

 | | |

 +6C| Offset to Input Parameter Section -+----*

 | | | |

 +70| Input Parameter Section Size | *-------------------------*

 | | | |

 +74| Offset to Header Section-----------+-------->| Header Section |

 | | | |

 +78| Header Section Size | | |

 | | | |

 +7C| Offset to List Data Section--------+----* | |

 | | | | |

 +80| List Data Section Size | | | |

 | | | . .

 +84| Number of List Entries | | . .

 | | | | |

 +88| Size of Each Entry | | *-------------------------*

 | | | | |

 +8C| CCSID of data in the user space | |

 | | |

 +90| Country ID | | | |

 | | | | List Data Section |

 +93| Language ID | | |-------------------------*

 | | *--->| Entry 1 |

 +95| Subsetted list indicator | |-------------------------*

 | | | Entry 2 |

 +C0| API entry point name | |-------------------------*

 | | | Entry 3 |

 | | | |

 ------------------------------------ . .

 . .

 | |

 |-------------------------*

 | Last Entry |

 |-------------------------*

 | |

User area

The first field in the general data structure is called the user area. This is a 64-byte field that is not used

or changed by the system. Whatever information you place in this field remains there. For example, you

may specify the date last used, include comments about the list, and so forth.

APIs 79

Size of generic header

The size of the generic header does not include the size of the user area. All sections have a size, which

may differ for each API.

Some fields may be added to the generic header from release to release. Because fields may be added,

you may want to check the size of this field. If your application works across multiple releases, it is

recommended that you check the size of this field to determine which fields are applicable.

Offset to input parameter section

The offset to input parameter section is an offset to the start of the input parameter section. The input

parameter section may contain a copy of the input parameters that you pass to the list API. The

QSYLOBJP API’s input parameter section is shown in Input Parameter Section.

The input parameter section contains a copy of the continuation handle value that you passed as the

continuation handle parameter to the API. “Other fields of generic header” discusses continuation

handles further.

Offset to header section

The header section includes an offset to where the header section starts and the size of the header section.

This section is needed in the event any input parameters have a special value. The fields in the header

section tell what the special value resolved to. For example, the special value *CURRENT for the user

name parameter would resolve to the user profile name for the job that called the API.

This section is also sometimes used for API-specific control information that is not related to a particular

list entry.

The QSYLOBJP API’s header section is shown in Header section.

Offset to list data section

The offset to the list data section is the offset to the start of the format. The specific format that the API

uses is determined by the name you specify for the format name parameter. The specific format that you

use determines what information is returned in the user space.

The number of list entries field tells how many entries have been returned to you.

The size of each entry field within the list data section tells how large each entry is. In the list data

section, each entry is of the same length for a given list. If the size of each entry field is 0, the entries

have different lengths and the format tells the length of each entry.

The list data sections for the QSYLOBJP API are shown in the OBJP0100 Format, OBJP0110 Format, and

the OBJP0200 Format. This API has three possible formats.

For more information about formats and how to extract a field from a format, see Format and Extracting

a field from the format.

Other fields of generic header

The field called structure’s release and level is part of the generic header. This field tells the layout of the

generic header. For an original program model (OPM) layout, this value should be 0100. For an

Integrated Language Environment (ILE) model layout, the value should be 0300.

80 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

The information status field tells you whether the information in the user space is complete and accurate,

or partial. You need to check the value of this field before you do anything with the information in the

user space, shown at (1) in the RPG example program. Possible values for this field follow:

 Status value Description

C Complete and accurate.

I Incomplete. The information you received is not accurate

or complete.

P Partial but accurate. The information you received is

accurate, but the API had more information to return

than the user space could hold.

If the value is P, the API has more information to return than what could fit in the user space. If you

received the value P, you need to process the current information in the user space before you get the

remaining information. The API returns a continuation handle usually in the form of a parameter. You

can use this continuation handle value to have the remaining information placed in the user space. You

specify the continuation handle value that the API returned as the value of the continuation handle input

parameter on your next call to the API.

The QSYLOBJP API provides a continuation handle in the header section to return the remaining

information to the user space, as shown at (2) in the RPG example program. The user then passes this

value back to the API as an input parameter so that the API can locate the remaining information and

place it in the user space, as shown at (3) in the RPG example program.

If the API does not have a continuation handle and the information status field value is P, you must

further qualify what you want in the list. In other words, you must be more specific on the parameter

values that you pass to the API. For example, the QUSLOBJ API asked to get a list of objects; however, all

of the objects on the system would not fit in the user space. To further qualify or limit the number of

objects returned, the user might specify all libraries that start with a specific letter.

For more information about continuation handles and how to use them, see Continuation handle.

 Related concepts

 “API format” on page 52

The format section in API information describes a format name.

 “Extracting a field from the format” on page 53

The format section describes where the field that you want is located within the receiver variable.
 Related tasks

 “Continuation handle” on page 77

Some APIs that return information offer a continuation handle.
 Related reference

 Input Parameter Section

 “Example in RPG: List Object API” on page 89

This example program prints a report that shows all objects that adopt owner authority.

User spaces for list APIs

The list APIs require a user space for returning information.

A user space is an object type that is created by the Create User Space (QUSCRTUS) API. Generally, a

user space is used when information about more than one object is being requested.

Most lists returned by APIs are made up of a series of entries where each entry is a data structure.

Special fields are placed in the user space at consistent locations that describe:

APIs 81

v Where the list begins.

v The number of entries. Logic flow of processing a list of entries shows the logic for processing a list of

entries.

v The length of each entry.

User spaces are used for such functions as returning either a list of members in a file or objects in a

library. When you use one of the list APIs, the parameter list requires that you name the user space that

will be used.

User spaces can be processed in two ways:

v If your language supports pointers, you can access or change the information directly. Language

selection considerations describes each supported language and whether it supports pointers.

Generally, pointer access is faster than API access.

v For languages that do not support pointers, you can use APIs to access or change the data in a user

space. For example, the data in a user space can be accessed by the Retrieve User Space (QUSRTVUS)

API. The API identifies a receiver variable that receives a number of bytes of information from the user

space.

You can pass the user space as a parameter to a program. You do need to use a language that has pointer

support to be able to pass the address of the first byte of the user space as a parameter to the processing

program.

 Related reference

 “User spaces” on page 70

List APIs require a user space for returning information. A user space is an object consisting of a

collection of bytes that can be used for storing any user-defined information.

 “Language selection considerations” on page 9
You can use APIs with all the languages available on iSeries business computing systems, except for

the ILE APIs.

Logic flow of processing a list of entries:

This topic shows you what a logic flow looks like when you process a list containing multiple entries.

 | |

 | Initialize the next |

 | entry with ’Where |

 | the list begins’ |

 -----------------------*

 |

 V

 | |

 | Have all of the | YES

 *------->| entries been *-------*

 | | processed? | |

 | *------------*-----------* *

 | |NO List is

 | V complete

 | *------------------------*

 | | |

 | | Access the entry. Use |

 | | the next entry value |

 | | as an index. |

 | *-----------*------------*

 | |

 | V

 | *------------------------*

 | | Process |

82 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

| | the |

 | | entry |

 | | |

 | *------------*-----------*

 | |

 | V

 | *------------------------*

 | | |

 | | Add the length of |

 | | each entry |

 | | to the next entry |

 | *------------*-----------*

 | |

 | V

 | *------------------------*

 | | Add 1 to a count of |

 | | how many have |

 | | been processed |

 | | |

 | *------------*-----------*

 | |

 | |

It is important from an upward compatibility viewpoint to use the offset, length of each entry, and the

number of entries rather than hard coding the values in your program.

Manipulating a user space with pointers:

Some languages, such as ILE C, Visual Age for C++, ILE COBOL, ILE RPG, COBOL, Pascal, and PL/I,

support pointers. Pointers allow you to manipulate information more rapidly from the user space.

 Synchronizing between two or more jobs

If you are using the Change User Space (QUSCHGUS) or Retrieve User Space (QUSRTVUS) API to

manipulate user spaces, you do not need to synchronize update and retrieve operations when multiple

jobs access the user space. The APIs already do that for you. However, if you are using space pointers to

retrieve the information directly from the user space, you should synchronize your application programs

to avoid data errors. This ensures that no two users update the space at the same time, which can cause

unpredictable results.

Locks are typically used to synchronize two jobs on the system, and you can lock user spaces. To

synchronize multiple jobs, you can use one of the following:

v Compare and swap (CMPSWP MI instructions)

v Space location locks (LOCKSL and UNLOCKSL MI instructions)

v Object locks (LOCK and UNLOCK MI instructions)

v Allocate Object (ALCOBJ) and Deallocate Object (DLCOBJ) commands

The preceding list is ordered by relative performance where CMPSWP is the fastest. If you do not

synchronize two or more jobs, multiple concurrent updates to the user space or read operations can occur

while information is being updated. As a result, the data may not be accurate.

Using offset values with pointers

When using a pointer to manipulate the user space, you must:

1. Get a space pointer to the first byte (offset value of zero) of the user space.

2. Retrieve the offset value of the information you want to use from the user space.

3. Add that offset value to the space pointer value.

APIs 83

4. Use the space pointer value to directly refer to the information in the user space.

See Example: Changing a user space with an ILE RPG program for an example of this procedure.

Updating usage data

If you are using the Change User Space (QUSCHGUS) or Retrieve User Space (QUSRTVUS) API to

manipulate user spaces, you do not need to update usage data information. If you directly retrieve data

using pointers, your application programs should update the usage data information. To do this, use the

QUSCHGUS API to update the date last changed and use the QUSRTVUS API to update the date last

retrieved. You do not need to do this for each retrieve or change operation to the user space, but you

should do this once within each application program to maintain accurate usage data information.

 Related reference

 “Examples: Change a user space”

These examples illustrate how a user space can be changed.

Manipulate a user space without pointers:

When programming in a language that does not support pointers, you can use the Change user space

(QUSCHGUS) and Retrieve user space (QUSRTVUS) APIs to manipulate data. However, you must first

understand how to use positions and lengths with these APIs.

 Position values

Some APIs return offset values into a user space. To use other APIs, such as the Retrieve user space

(QUSRTVUS) API, you must use position values to locate bytes.

Position values and offset values are different ways to express the same thing. An offset value is the

relative distance of a byte from the first byte of the user space, which has an offset value of 0. A position

value is the offset value plus 1.

For examples of HLL programs that use positions, see Example in RPG: List Object API.

Lengths

List APIs return the length of the information in the different sections of the user space, as well as the

length of the list entries in the user space. You should code your application using the lengths returned

instead of specifying the current length returned by the API or the size of a data structure in the data

structure files. The amount of information returned for any format may increase in future releases, but

the information will be placed at the end of the existing information. In order for your application to

function properly, it should retrieve the length of the information returned and add that length to a

pointer or to a starting position.

Using offset values with the change and retrieve user space APIs

When you use the Change User Space (QUSCHGUS) or Retrieve User Space (QUSRTVUS) API, your

application program should first retrieve the offset value for the information you want. You must then

add one to the offset value to get the starting position for the information.

 Related reference

 “Example in RPG: List Object API” on page 89

This example program prints a report that shows all objects that adopt owner authority.

Examples: Change a user space:

These examples illustrate how a user space can be changed.

84 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

 Related concepts

 “Manipulating a user space with pointers” on page 83

Some languages, such as ILE C, Visual Age for C++, ILE COBOL, ILE RPG, COBOL, Pascal, and PL/I,

support pointers. Pointers allow you to manipulate information more rapidly from the user space.

Example: Change a user space:

This example includes before and after illustrations that show how the QUSCHGUS API changes a user

space.

 The following is a user space before you change it with one of the change examples.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
5763SS1 V3R1M0 940909 AS/400 Dump 128747/ERICJ/ERICJS1 03/22/94 11:03:26

DMPSYSOBJ PARAMETERS

 TEMPSPACE CONTEXT-QGPL

OBJ-

 *USRSPC

OBJTYPE-

OBJECT TYPE- SPACE *USRSPC

NAME- TEMPSPACE TYPE- 19 SUBTYPE- 34

LIBRARY- QGPL TYPE- 04 SUBTYPE- 01

CREATION- 3/22/93 11:02:56 SIZE- 0000400

OWNER- ERICJ TYPE- 08 SUBTYPE- 01

ATTRIBUTES- 0800 ADDRESS- 01841400 0000

SPACE ATTRIBUTES-

 000000 00000080 00000060 1934E3C5 D4D7E2D7 C1C3C540 40404040 40404040 40404040 * -TEMPSPACE *

 000020 40404040 40404040 E0000000 00000000 00000200 5C800000 00000000 00000000 * \ * *

 000040 00000000 00000000 00020002 6E000400 00000000 00000000 00000000 00000000 * > *

SPACE-

 0000E00 5C5C5C5C 5C5C5C5C 5C5C5C5C 5C5C5C5C 5C5C5C5C 5C5C5C5C 5C5C5C5C 5C5C5C5C *******************

 LINES 000200 TO 0001FF SAME AS ABOVE

.POINTERS-

 NONE

OIR DATA-

.TEXT

 000000 E4A28599 40A29781 83854086 969940C3 88819587 8540E4A2 859940E2 97818385 *user space for Change User *

 000020 40C5A781 94979385 *Space Example *

.SERVICE-

 000000 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * 1 *

 000020 40404040 40404040 404040D9 F0F3D4F0 F0F0F9F0 F0F3F2F2 F1F1F0F2 F5F64040 * V3R1M0094032210256 *

 000040 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 *

 000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000 *

 000080 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *

 0000A0 00000000 00000000

APIs 85

|
|
|
|
|

|
|

|

|
|

|

|
|
|

END OF DUMP

 * * * * * E N D O F L I S T I N G * * * * *

The following is a user space after you change it with one of the change examples. Notice that the change

takes place in SPACE-.

5763SS1 V3R1M0 940909 AS/400 Dump 128747/ERICJ/ERICJS1 03/22/94 11:03:26

DMPSYSOBJ PARAMETERS

 TEMPSPACE CONTEXT-QGPL

OBJ-

 *USRSPC

OBJTYPE-

OBJECT TYPE- SPACE *USRSPC

NAME- TEMPSPACE TYPE- 19 SUBTYPE- 34

LIBRARY- QGPL TYPE- 04 SUBTYPE- 01

CREATION- 3/22/93 11:02:56 SIZE- 0000400

OWNER- ERICJ TYPE- 08 SUBTYPE- 01

ATTRIBUTES- 0800 ADDRESS- 01841400 0000

SPACE ATTRIBUTES-

 000000 00000080 00000060 1934E3C5 D4D7E2D7 C1C3C540 40404040 40404040 40404040 * -TEMPSPACE

 000020 40404040 40404040 E0000000 00000000 00000200 5C800000 00000000 00000000 * \ * *

 000040 00000000 00000000 00020002 6E000400 00000000 00000000 00000000 00000000 * > *

SPACE-

 000000 C2898740 E2A39989 95874097 81848485 8440A689 A3884082 93819592 A2404040 *Big string padded with blanks*

 000020 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040

 000040 5C5C5C5C 5C5C5C5C 5C5C5C5C 5C5C5C5C 5C5C5C5C 5C5C5C5C 5C5C5C5C 5C5C5C5C *******************************

 LINES 000060 TO 0001FF SAME AS ABOVE

.POINTERS-

 NONE

OIR DATA-

.TEXT

 000000 E4A28599 40A29781 83854086 969940C3 88819587 8540E4A2 859940E2 97818385 *user space for Change User *

 000020 40C5A781 94979385 *Space Example *

.SERVICE-

 000000 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * 1 *

 000020 40404040 40404040 404040D9 F0F3D4F0 F0F0F9F0 F0F3F2F2 F1F1F0F2 F5F64040 * V3R1M0094032210256 *

 000040 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 *

 000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000 *

 000080 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *

 0000A0 00000000 00000000

 END OF DUMP

 * * * * * E N D O F L I S T I N G * * * * *

Example: Changing a user space with an ILE RPG program:

This example changes the contents of information in the user area in the user space using a pointer.

 Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

To change the user area of a user space as shown in the previous example with a call from an ILE RPG

program, specify the following:

 H***

 H*

 H* PROGRAM: CHANGUSPTR

 H*

 H* LANGUAGE: ILE RPG for i5/OS

 H*

 H* DESCRIPTION: CHANGE THE CONTENTS OF INFORMATION IN THE USER

 H* AREA IN THE USER SPACE USING A POINTER

 H*

 H***

 D*

 DUSRSPCNAM S 20 INZ(’TEMPSPACE QTEMP ’)

 DNEWVALUE S 64 INZ(’Big String padded with blanks’)

 DUSRSPCPTR S *

 DUSERAREA DS BASED(USRSPCPTR)

 D CHARFIELD 1 64

 D*

 D* Following QUSEC structure copied from QSYSINC library

 D*

86 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

DQUSEC DS

 D* Qus EC

 D QUSBPRV 1 4B 0

 D* Bytes Provided

 D QUSBAVL 5 8B 0

 D* Bytes Available

 D QUSEI 9 15

 D* Exception Id

 D QUSERVED 16 16

 D* Reserved

 D* End of QSYSINC copy

 D*

 C*

 C* Initialize Error code structure to return error ids

 C*

 C Z-ADD 16 QUSBPRV

 C*

 C* Set USRSPCPTR to the address of the user space

 C*

 C CALL ’QUSPTRUS’

 C PARM USRSPCNAM

 C PARM USRSPCPTR

 C PARM QUSEC

 C*

 C* Check for successful setting of pointer

 C*

 C QUSBAVL IFGT 0

 C*

 C* If an error, then display the error message id

 C*

 C DSPLY QUSEI

 C ELSE

 C*

 C* Otherwise, update the user space via the based structure

 C*

 C MOVEL NEWVALUE USERAREA

 C END

 C*

 C* And return to our caller

 C*

 C SETON LR

 C RETURN

Example: Changing a user space with an OPM RPG program:

This program changes the contents of information in the user area in the user space.

 Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

To change the user area of a user space with a call from an OPM RPG program, specify the following:

 H**

 H**

 H* *

 H* PROGRAM: CHANGUS *

 H* *

 H* LANGUAGE: RPG *

 H* *

 H* DESCRIPTION: THIS PROGRAM WILL CHANGE THE CONTENTS OF *

 H* INFORMATION IN THE USER AREA IN THE USER SPACE*

 H* (FIRST 64 BYTES). *

 H* *

 H* APIs USED: QUSCHGUS *

 H* *

 H**

 H**

APIs 87

E ARY 1 1 20

 E CHG 1 1 64

 IUSRSPC DS

 I 1 10 USNAME

 I 11 20 USLIB

 I DS

 I B 1 40LENDTA

 I B 5 80STRPOS

 C* *

 C**

 C**

 C* *

 C* OPERABLE CODE STARTS HERE *

 C* *

 C**

 C**

 C* *

 C* MOVE THE USER SPACE AND LIBRARY NAME FROM ARY ARRAY INTO THE *

 C* USRSPC DATA STRUCTURE. ALSO, MOVE THE NEW USER DATA FROM *

 C* CHG ARRAY INTO NEWVAL. *

 C* *

 C MOVELARY,1 USRSPC

 C MOVELCHG,1 NEWVAL 64

 C* *

 C Z-ADD64 LENDTA LEN OF USERAREA

 C Z-ADD1 STRPOS STARTING POS

 C MOVE ’1’ FORCE 1 FORCE PARM

 C* *

 C* CALL THE QUSCHGUS API WHICH WILL CHANGE THE USER AREA IN THE *

 C* USER SPACE. *

 C* *

 C CALL ’QUSCHGUS’

 C PARM USRSPC

 C PARM STRPOS

 C PARM LENDTA

 C PARM NEWVAL

 C PARM FORCE

 C* *

 C* IF MORE OF THE USER SPACE NEEDS TO BE CHANGED, THIS PROGRAM *

 C* COULD BE UPDATED TO LOOP UNTIL THE END OF THE ARRAY WAS *

 C* REACHED. *

 C* *

 C SETON LR

 C RETRN

** ARY

TEMPSPACE QGPL

** CHG

Big String padded with blanks

Additional information about list APIs and a user space:

Before you can use a list API to create a list, the *USRSPC object must exist.

 If the user space is too small to contain the list and you have *CHANGE authority to the user space, the

list API extends the user space to the nearest page boundary. If the user space is too small and you do

not have *CHANGE authority, an authority error results. An extended user space is not truncated when

you run the API again.

When you are creating a list into a user space and the user space cannot hold all of the available

information (the list is greater than 16MB in length), the API places as much information as possible in

the user space and sends a message (typically CPF3CAA) to the user of the API. The returned list

contains only the number of entries that can fit inside the user space (not the total number of entries

available).

88 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Example: List database file members with a CL program:

This program generates a list of members that start with M, and places the list into a user space named

example in Library QGPL.

 Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

To generate a list of members that start with M and are in file QCLSRC in library QGPL, specify the

following:

/**/

 /* */

 /* PROGRAM: LSTMBR2 */

 /* */

 /* LANGUAGE: CL */

 /* */

 /* DESCRIPTION: THIS PROGRAM WILL GENERATE A LIST OF MEMBERS, */

 /* THAT START WITH M, AND PLACE THE LIST INTO A */

 /* USER SPACE NAMED EXAMPLE IN LIBRARY QGPL. */

 /* */

 /* APIs USED: QUSCRTUS, QUSLMBR */

 /* */

 /**/

 PGM

 /**/

 /* CREATE A *USRSPC OBJECT TO PUT THE LIST INFORMATION INTO. */

 /**/

 CALL QUSCRTUS +

 (’EXAMPLE QGPL ’ /* USER SPACE NAME AND LIB */ +

 ’EXAMPLE ’ /* EXTENDED ATTRIBUTE */ +

 X’0000012C’ /* SIZE OF USER SPACE */ +

 ’ ’ /* INITIALIZATION VALUE */ +

 ’*CHANGE ’ /* AUTHORITY */ +

 ’USER SPACE FOR QUSLMBR EXAMPLE ’)

 /**/

 /* LIST THE MEMBERS BEGINNING WITH "M" OF A FILE CALLED */

 /* QCLSRC FROM LIBRARY QGPL USING THE OUTPUT FORMAT MBRL0200. */

 /* OVERRIDE PROCESSING SHOULD OCCUR. */

 /**/

 CALL QUSLMBR +

 (’EXAMPLE QGPL ’ /* USER SPACE NAME AND LIB */ +

 ’MBRL0200’ /* FORMAT NAME */ +

 ’QCLSRC QGPL ’ /* DATABASE FILE AND LIBRARY */ +

 ’M* ’ /* MEMBER NAME */ +

 ’1’) /* OVERRIDE PROCESSING */

ENDPGM

Example in RPG: List Object API

This example program prints a report that shows all objects that adopt owner authority.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
F*

F***

F***

F***

F***

F*

F*Program Name: List objects which adopt owner authority

F*

F*Language: OPM RPG

F*

F*Description: This program prints a report showing all objects

F* that adopt owner authority. The two parameters

F* passed to the program are the profile to be

F* checked and the type of objects to be listed.

APIs 89

F* The parameter values are the same as those

F* accepted by the QSYLOBJP API.

F*

F*APIs Used: QSYLOBJP - List Objects that Adopt Owner Authority

F* QUSCRTUS - Create User Space

F* QUSROBJD - Retrieve Object Description /

F* QUSRTVUS - Retrieve From User Space /

F*

F***

F***

F*

FQSYSPRT O F 132 OF PRINTER

F***

I/COPY QSYSINC/QRPGSRC,QSYLOBJP

I/COPY QSYSINC/QRPGSRC,QUSROBJD

I/COPY QSYSINC/QRPGSRC,QUSGEN

C***

I* Error Code Structure

I*

I* This shows how the user can define the variable length portion

I* of error code for the exception data.

I*

I*/COPY QSYSINC/QRPGSRC,QUSEC

I*** START HEADER FILE SPECIFICATIONS ****************************

I*

I*Header File Name: QRPGSRC/QUSEC

I*

I*Descriptive Name: Error Code Parameter.

I*

I*5763-SS1 (C) Copyright IBM Corp. 1994,1994

I*All rights reserved.

I*US Government Users Restricted Rights -

I*Use, duplication or disclosure restricted

I*by GSA ADP Schedule Contract with IBM Corp.

I*

I*Licensed Materials-Property of IBM

I*

I*

I*Description: Include header file for the error code parameter.

I*

I*Header Files Included: None.

I*

I*Macros List: None.

I*

I*Structure List: Qus_EC_t

I* Qus_ERRC0200_t

I*

I*Function Prototype List: None.

I*

I*Change Activity:

I*

I*CFD List:

I*

I*FLAG REASON LEVEL DATE PGMR CHANGE DESCRIPTION

I*---- ------------ ----- ------ --------- ----------------------

I*$A0= D2862000 3D10 931201 DPOHLSON: New Include

I*$B1= D9179400 3D60 940904 GEORGE : Add Qus_ERRC0200_t

I* structure.

I*

I*End CFD List.

I*

I*Additional notes about the Change Activity

I*End Change Activity.

I*** END HEADER FILE SPECIFICATIONS ******************************

I***

I*Record structure for Error Code Parameter

I**** ***

90 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

I*NOTE: The following type definition only defines the fixed

I* portion of the format. Varying length field Exception

I* Data will not be defined here.

I***

IQUSBN DS

I* Qus EC

I B 1 40QUSBNB

I* Bytes Provided

I B 5 80QUSBNC

I* Bytes Available

I 9 15 QUSBND

I* Exception Id

I 16 16 QUSBNF

I* Reserved

I* Following statement was uncommented and 17 was changed to 100

I 17 100 QUSBNG

I*

I* Varying length

IQUSKY DS

I* Qus ERRC0200

I B 1 40QUSKYB

I* Key

I B 5 80QUSKYC

I* Bytes Provided

I B 9 120QUSKYD

I* Bytes Available

I 13 19 QUSKYF

I* Exception Id

I 20 20 QUSKYG

I* Reserved

I B 21 240QUSKYH

I* CCSID

I B 25 280QUSKYJ

I* Offset Exc Data

I B 29 320QUSKYK

I* Length Exc Data

I* 33 33 QUSKYL

I* Reserved2

I*

I* 34 34 QUSKYM

I*

I*

I* Global Variables

I*

I DS

I 1 10 APINAM

I 11 30 CONHDL

I I ’QSYSLOBJP ’ 31 40 EXTATR

I 41 41 LSTSTS

I I ’OBJP0200’ 42 49 MBRLST

I I ’OBJD0100’ 68 75 RJOBDF

I I ’*ALL ’ 76 85 SPCAUT

I I ’*USER ’ 86 95 SPCDMN

I I X’00’ 96 96 SPCINT

I I ’ADOPTS QTEMP ’ 97 116 SPCNAM

I I ’*YES ’ 117 126 SPCREP

I 127 176 SPCTXT

I I ’*USRSPC ’ 177 186 SPCTYP

I I 8 B 197 2000RCVLEN

I B 201 2040SIZENT

I I 1 B 205 2080SPCSIZ

I B 209 2120I

I B 213 2160NUMENT

I B 217 2200OFFSET

I B 221 2240STRPOS

IRCVVAR DS 2000

C*

APIs 91

C* Beginning of Mainline

C*

C* Two parameters are being passed into this program.

C*

C *ENTRY PLIST

C PARM USRPRF 10

C PARM OBJTYP 10

C*

C***

C EXSR INIT

C EXSR PROCES

C EXSR DONE

C*

C* End of MAINLINE

C*

C*

C***

C* Function: getlst

C*

C* Description: This function calls QSYLOBJP to build a list.

C*

C***

C*

C GETLST BEGSR

C MOVEL’OBJP0200’MBRLST

C***

C* Call QSYLOBJP API to generate a list. The continuation handle

C* is set by the caller of this function.

C***

C CALL ’QSYLOBJP’

C PARM SPCNAM User space/lib

C PARM MBRLST Member list

C PARM USRPRF User profile

C PARM OBJTYP Object type sc

C PARM CONHDL Continuation ha (3)

C PARM QUSBN Error Code

C***

C* Check for errors on QSYLOBJP.

C***

C QUSBNC IFGT 0

C MOVEL’QSYLOBJP’APINAM

C EXSR APIERR

C ENDIF

C ENDSR

C***

C* Function: INIT

C*

C* Description: This function does all the necessary

C* initialization for this program and the

C* rest is done in the I specs.

C***

C INIT BEGSR

C***

C Z-ADD100 QUSBNB

C***

C* Call QUSROBJD to see if the user space was previously created

C* in QTEMP. If it was, simply reuse it.

C***

C CALL ’QUSROBJD’

C PARM RCVVAR Receiver Var

C PARM RCVLEN Rec Var Length

C PARM RJOBDF Format

C PARM SPCNAM Qual User Space

C PARM SPCTYP User object typ

C PARM QUSBN Error Code

C*

C QUSBNC IFGT 0

92 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C***

C* If a CPF9801 error was received, then the user space was not

C* found.

C***

C QUSBND IFEQ ’CPF9801’

C***

C* Create a user space for the list generated by QSYLOBJP.

C***

C CALL ’QUSCRTUS’

C PARM SPCNAM Qual User Space

C PARM EXTATR Extended Attrib

C PARM SPCSIZ Size user space

C PARM SPCINT Space Initializ

C PARM SPCAUT Public Authorit

C PARM SPCTXT User space text

C PARM SPCREP Replace existin

C PARM QUSBN Error Code

C PARM SPCDMN Domain of us

C***

C* Check for errors on QUSCRTUS.

C***

C QUSBNC IFGT 0

C MOVEL’QUSCRTUS’APINAM

C EXSR APIERR

C ENDIF

C***

C* An error occurred accessing the user space.

C***

C ELSE

C MOVEL’QUSROBJD’APINAM

C EXSR APIERR

C ENDIF CPF9801 ELSE

C ENDIF BYTAVL > 0

C***

C* Set QSYLOBJP (via GETLST) to start a new list.

C***

C MOVE *BLANKS CONHDL

C EXSR GETLST

C***

C* Let’s retrieve the generic header information from the user

C* space since OPM RPG does not have pointer support.

C***

C Z-ADD1 STRPOS

C Z-ADD192 RCVLEN Format 100

C CALL ’QUSRTVUS’

C PARM SPCNAM Qual User Space

C PARM STRPOS Start Position

C PARM RCVLEN Length of Data

C PARM QUSBP Receiver Var.

C PARM QUSBN Error Code

C***

C* Check for errors on QUSRTVUS.

C***

C QUSBNC IFGT 0

C MOVEL’QUSRTVUS’APINAM

C EXSR APIERR

C ENDIF

C 1 ADD QUSBPQ STRPOS Offset to List (5)

C ENDSR

C***

C* Function: proc2

C*

C* Description: This function processes each entry returned by

C* QSYLOBJP.

C*

C***

C PROC2 BEGSR

APIs 93

C CALL ’QUSRTVUS’

C PARM SPCNAM Qual User Space

C PARM STRPOS Start Position

C PARM SIZENT Length of Data

C PARM QSYB6 Receiver Var.

C PARM QUSBN Error Code

C***

C* Check for errors on QUSRTVUS.

C***

C QUSBNC IFGT 0

C MOVEL’QUSRTVUS’APINAM

C EXSR APIERR

C ENDIF

C EXCPTPRTENT

C***

C* After each entry, increment to the next entry.

C***

C STRPOS ADD SIZENT STRPOS (7)

C ENDSR

C***

C* Function: proc1

C*

C* Description: This function processes each entry returned by

C* QSYLOBJP.

C*

C***

C PROC1 BEGSR

C***

C* If valid information was returned. (1)

C***

C Z-ADDQUSBPS NUMENT

C QUSBPJ IFEQ ’P’

C QUSBPJ OREQ ’C’

C NUMENT IFGT 0

C***

C* Get the size of each entry to use later. (4)

C***

C Z-ADDQUSBPT SIZENT

C***

C* Increment to the first list entry.

C***

C 1 ADD QUSBPQ OFFSET

C***

C* Process all of the entries.

C***

C 1 DO NUMENT I (6)

C EXSR PROC2

C ENDDO

C***

C* If all entries in this user space have been processed, check

C* if more entries exist than can fit in one user space.

C**

C QUSBPJ IFEQ ’P’

C***

C* Address the input parameter header.

C***

C 1 ADD QUSBPL STRPOS

C Z-ADD68 RCVLEN Format 100

C CALL ’QUSRTVUS’

C PARM SPCNAM Qual User Space

C PARM STRPOS Start Position

C PARM RCVLEN Length of Data

C PARM QUSBP Receiver Var.

C PARM QUSBN Error Code

C***

C* Check for errors on QUSRTVUS.

C***

94 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C QUSBNC IFGT 0

C MOVEL’QUSRTVUS’APINAM

C EXSR APIERR

C ENDIF

C***

C* If the continuation handle in the input parameter header

C* is blank, then set the list status to complete.

C***

C QSYCRJ IFEQ *BLANKS

C MOVE ’C’ LSTSTS

C ELSE

C***

C* Else, call QSYLOBJP reusing the user space to get more

C* list entries.

C**

C MOVELQSYCRJ CONHDL (2)

C EXSR GETLST

C Z-ADD1 STRPOS

C Z-ADD192 RCVLEN Format 100

C CALL ’QUSRTVUS’

C PARM SPCNAM Qual User Space

C PARM STRPOS Start Position

C PARM RCVLEN Length of Data

C PARM QUSBP Receiver Var.

C PARM QUSBN Error Code

C***

C* Check for errors on QUSRTVUS.

C***

C QUSBNC IFGT 0

C MOVEL’QUSRTVUS’APINAM

C EXSR APIERR

C ENDIF

C MOVE QUSBPJ LSTSTS

C ENDIF HDL = BLANKS

C ENDIF INFOSTS = 0

C ELSE

C***

C*If there exists an unexpected status, log an error (not shown)

C*and exit.

C***

C EXSR DONE done();

C ENDIF #ENT > 0

C ENDIF USRSPC=P/C

C ENDSR

C***

C* Function: proces

C*

C* Description: Processes entries until they are complete.

C*

C***

C PROCES BEGSR

C MOVELQUSBPJ LSTSTS

C LSTSTS DOUEQ’C’

C LSTSTS OREQ ’I’

C EXSR PROC1 proces1();

C ENDDO

C ENDSR

C***

C* Function: done

C*

C* Description: Exits the program.

C*

C***

C DONE BEGSR

C EXCPTENDLST

C SETON LR

C ENDSR

APIs 95

C***

C* Function: apierr

C*

C* Description: This function prints the API name, and exception

C* identifier of an error that occurred.

C***

C APIERR BEGSR

C APINAM DSPLY

C QUSBND DSPLY

C EXSR DONE

C ENDSR

O***

O* Function: PRTENT

O*

O* Description: This function prints the information returned in

O* user space.

O***

OQSYSPRT E 106 PRTENT

O ’Object: ’

O QSYB6C

O ’Library: ’

O QSYB6D

O ’Type: ’

O QSYB6F

O ’Text: ’

O QSYB6J

O***

O* Function: ENDLST

O*

O* Description: This function prints the end of listing print

O* line and returns to the caller.

O***

OQSYSPRT E 106 ENDLST

O ’*** End of List’

The value in the information status field is shown at (1). The continuation handle in the header section to

return the remaining information to the user space is shown at (2). The user then passes this value back

to the API as an input parameter so that the API can locate the remaining information and place it in the

user space, as shown at (3).

Processing a list

This is the preferred method for processing lists. To correctly process through a list, do the following:

1. Use the offset to list data section field (5)

2. Look at the number of list entries field in the list (6)

3. For processing lists with fixed-length entries, add the size of each entry field to get to the start of the

next entry (7)

4. For variable-length entries, you add the length of the entry (or displacement in some cases) to the

next entry.

IBM may add fields to the bottom of formats in future releases. If this occurs and your code uses the size

of each entry for a previous release, your list would not process at the start of each entry.

The example program defines the size of each entry at (4). For another example that shows the correct

and incorrect way, see Defining list entry format lengths.

See the following for the same example in different languages:

v COBOL and ILE COBOL

v ILE C

v ILE RPG

96 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Related concepts

 “Manipulate a user space without pointers” on page 84

When programming in a language that does not support pointers, you can use the Change user space

(QUSCHGUS) and Retrieve user space (QUSRTVUS) APIs to manipulate data. However, you must

first understand how to use positions and lengths with these APIs.
 Related reference

 “List Object API general data structure” on page 79

Describes some of the more important fields that comprise the general data structure.

 “Define list entry format lengths” on page 543

The example programs in this topic show how to code flexibility into your program as it works its

way through the formats used by an API.

 “Example in ILE COBOL: List Object API” on page 112

The example program prints a report that shows all objects that adopt owner authority.

 “Example in ILE C: List Object API” on page 100

The example program prints a report that shows all objects that adopt owner authority.

 “Example in ILE RPG: List Object API” on page 107

The example program prints a report that shows all objects that adopt owner authority.

Example in ILE CL: List Object API

The example program prints a report that shows all objects that adopt owner authority.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Refer to Example in RPG: List Object API for the original example.

/**/

/* */

/* Program: List objects which adopt owner authority */

/* */

/* Language: ILE CL */

/* */

/* Description: This program displays all objects that adopt */

/* owner authority. The two parameters passed to */

/* the program are the profile to be checked and */

/* the type of objects to be listed. The parameter */

/* values are the same as those accepted by the */

/* QSYLOBJP API */

/* */

/* APIs Used: QSYLOBJP - List Objects that Adopt Owner Authority */

/* QUSCRTUS - Create User Space */

/* QUSPTRUS - Retrieve Pointer to User Space */

/* QUSROBJD - Retrieve Object Description */

/* */

/**/

 PGM PARM(&USR_PRF &OBJ_TYPE)

 DCL VAR(&USR_PRF) TYPE(*CHAR) LEN(10)

 DCL VAR(&OBJ_TYPE) TYPE(*CHAR) LEN(10)

 DCL VAR(&ERRCDE) TYPE(*CHAR) LEN(16)

 DCL VAR(&BYTPRV) TYPE(*INT) STG(*DEFINED) LEN(4) +

 DEFVAR(&ERRCDE)

 DCL VAR(&BYTAVL) TYPE(*INT) STG(*DEFINED) LEN(4) +

 DEFVAR(&ERRCDE 5)

 DCL VAR(&MSGID) TYPE(*CHAR) STG(*DEFINED) LEN(7) +

 DEFVAR(&ERRCDE 9)

 DCL VAR(&RCVVAR) TYPE(*CHAR) LEN(8)

 DCL VAR(&RCVVARSIZ) TYPE(*INT) LEN(4) VALUE(8)

 DCL VAR(&SPC_NAME) TYPE(*CHAR) LEN(20) +

 VALUE(’ADOPTS QTEMP ’)

 DCL VAR(&SPC_SIZE) TYPE(*INT) LEN(4) VALUE(1)

 DCL VAR(&SPC_INIT) TYPE(*CHAR) LEN(1) VALUE(X’00’)

 DCL VAR(&BLANKS) TYPE(*CHAR) LEN(50)

APIs 97

DCL VAR(&CONTIN_HDL) TYPE(*CHAR) LEN(20)

 DCL VAR(&SPCPTR) TYPE(*PTR)

 DCL VAR(&LISTHDR) TYPE(*CHAR) STG(*BASED) +

 LEN(192) BASPTR(&SPCPTR)

 DCL VAR(&LISTSTS) TYPE(*CHAR) STG(*DEFINED) +

 LEN(1) DEFVAR(&LISTHDR 104)

 DCL VAR(&PARMHDROFS) TYPE(*INT) STG(*DEFINED) +

 LEN(4) DEFVAR(&LISTHDR 109)

 DCL VAR(&LISTENOFS) TYPE(*INT) STG(*DEFINED) +

 DEFVAR(&LISTHDR 125)

 DCL VAR(&LISTENTNBR) TYPE(*INT) STG(*DEFINED) +

 DEFVAR(&LISTHDR 133)

 DCL VAR(&LISTENTSIZ) TYPE(*INT) STG(*DEFINED) +

 DEFVAR(&LISTHDR 137)

 DCL VAR(&LST_STATUS) TYPE(*CHAR) LEN(1)

 DCL VAR(&LSTPTR) TYPE(*PTR)

 DCL VAR(&LSTENT) TYPE(*CHAR) STG(*BASED) +

 LEN(100) BASPTR(&LSTPTR)

 DCL VAR(&OBJECT) TYPE(*CHAR) STG(*DEFINED) +

 LEN(10) DEFVAR(&LSTENT 1)

 DCL VAR(&CONTIN) TYPE(*CHAR) STG(*DEFINED) +

 LEN(20) DEFVAR(&LSTENT 11)

 DCL VAR(&CURENT) TYPE(*INT) LEN(4)

 CALLSUBR SUBR(INIT)

 CALLSUBR SUBR(PROCES)

 RETURN

 SUBR SUBR(PROCES)

/* */

/* This subroutine processes each entry returned by QSYLOBJP */

/* */

/* Do until the list is complete */

/* */

 CHGVAR VAR(&LST_STATUS) VALUE(&LISTSTS)

 DOUNTIL COND(&LST_STATUS *EQ ’C’)

 IF COND((&LISTSTS *EQ ’C’) *OR (&LISTSTS *EQ +

 ’P’)) THEN(DO)

/* */

/* And list entries were found */

/* */

 IF COND(&LISTENTNBR *GT 0) THEN(DO)

/* */

/* Set &LSTPTR to first byte of the User Space */

/* */

 CHGVAR VAR(&LSTPTR) VALUE(&SPCPTR)

/* */

/* Increment &LSTPTR to the first list entry */

/* */

 CHGVAR VAR(%OFFSET(&LSTPTR)) VALUE(%OFFSET(&LSTPTR) +

 + &LISTENTOFS)

/* */

/* And process all the entries */

/* */

 DOFOR VAR(&CURENT) FROM(1) TO(&LISTENTNBR)

 SNDPGMMSG MSG(&OBJECT) TOPGMQ(*EXT)

/* */

/* After each entry, increment &LSTPTR to the next entry */

/* */

 CHGVAR VAR(%OFFSET(&LSTPTR)) +

 VALUE(%OFFSET(&LSTPTR) + &LISTENTSIZ)

 ENDDO

 ENDDO

/* */

/* If all entries in this list have been processed, check if */

/* more entries exist than can fit in one User Space */

/* */

 IF COND(&LISTSTS *EQ ’P’) THEN(DO)

98 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* */

/* by reseting LSTPTR to the start of the User Space */

/* */

 CHGVAR VAR(&LSTPTR) VALUE(&SPCPTR)

/* */

/* and then incrementing &LSTPTR to Input Parameter Header */

/* */

 CHGVAR VAR(%OFFSET(&LSTPTR)) VALUE(%OFFSET(&LSTPTR) +

 + &PARMHDROFS)

/* */

/* if the continuation handle is blank then the list is complete */

/* */

 IF COND(&CONTIN *EQ ’ ’) THEN(CHGVAR +

 VAR(&LST_STATUS) VALUE(’C’))

 ELSE CMD(DO)

/* */

/* call QSYLOBP to get more entries */

/* */

 CHGVAR VAR(&CONTIN_HDL) VALUE(&CONTIN)

 CALLSUBR SUBR(GETLST)

 CHGVAR VAR(&LST_STATUS) VALUE(&LISTSTS)

 ENDDO

 ENDDO

 ENDDO

 ELSE CMD(DO)

/* */

/* and if unexpected status, log an error */

/* */

 SNDPGMMSG MSG(’Unexpected status’) TOPGMQ(*EXT)

 RETURN

 ENDDO

 ENDDO

 ENDSUBR

 SUBR SUBR(GETLST)

/* */

/* Call QSYLOBJP to generte a list */

/* The continuation handle is primed by the caller of this */

/* subroutine */

/* */

 CALL PGM(QSYLOBJP) PARM(&SPC_NAME ’OBJP0200’ +

 &USR_PRF &OBJ_TYPE &CONTIN_HDL &ERRCDE)

/* */

/* Check for errors on QSYLOBJP */

/* */

 IF COND(&BYTAVL *GT 0) THEN(DO)

 SNDPGMMSG MSG(’Failure with QSYLOBJP’) TOPGMQ(*EXT)

 RETURN

 ENDDO

 ENDSUBR

 SUBR SUBR(INIT)

/* */

/* One time initialization code for this program */

/* */

/* Set Error Code structure not to use exceptions */

/* */

 CHGVAR VAR(&BYTPRV) VALUE(16)

/* */

/* Check if the User Space was previously created */

/* */

 CALL PGM(QUSROBJD) PARM(&RCVVAR &RCVVARSIZ +

 ’OBJD0100’ &SPC_NAME ’*USRSPC’ &ERRCDE)

/* */

/* Check for errors on QUSROBJD */

/* */

 IF COND(&BYTAVL *GT 0) THEN(DO)

APIs 99

/* */

/* If CPF9801, then User Space not found */

/* */

 IF COND(&MSGID *EQ ’CPF9801’) THEN(DO)

/* */

/* So create a User Space for the list generated by QSYLOBJP */

/* */

 CALL PGM(QUSCRTUS) PARM(&SPC_NAME ’QSYLOBJP’ +

 &SPC_SIZE &SPC_INIT ’*ALL’ &BLANKS ’*YES’ +

 &ERRCDE ’*USER’)

/* */

/* Check for errors on QUSCRTUS */

/* */

 IF COND(&BYTAVL *GT 0) THEN(DO)

 SNDPGMMSG MSG(’Failure with QUSCRTUS’) TOPGMQ(*EXT)

 RETURN

 ENDDO

/* */

/* Else an error accessing the User Space */

/* */

 ELSE CMD(DO)

 SNDPGMMSG MSG(’Failure with QUSROBJD’) TOPGMQ(*EXT)

 RETURN

 ENDDO

 ENDDO

 ENDDO

/* */

/* Set QSYLOBJP (via GETLST) to start a new list */

/* */

 CHGVAR VAR(&CONTIN_HDL) VALUE(&BLANKS)

 CALLSUBR SUBR(GETLST)

/* */

/* Get a resolved pointer to the User Space */

/* */

 CALL PGM(QUSPTRUS) PARM(&SPC_NAME &SPCPTR &ERRCDE)

/* */

/* Check for errors on QUSPTRUS */

/* */

 IF COND(&BYTAVL *GT 0) THEN(DO)

 SNDPGMMSG MSG(’Failure with QUSPTRUS’) TOPGMQ(*EXT)

 RETURN

 ENDDO

 ENDSUBR

 ENDPGM

Example in ILE C: List Object API

The example program prints a report that shows all objects that adopt owner authority.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Refer to Example in RPG: List Object API for the original example.

/**/

/**/

/* */

/* Program: List objects that adopt owner authority */

/* */

/* Language: ILE C */

/* */

/* Description: This program prints a report showing all objects */

/* that adopt owner authority. The two parameters */

/* passed to the program are the profile to be */

/* checked and the type of objects to be listed. */

/* The parameter values are the same as those */

/* accepted by the QSYLOBJP API. */

/* */

100 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* APIs Used: QSYLOBJP - List Objects that Adopt Owner Authority */

/* QUSCRTUS - Create User Space */

/* QUSPTRUS - Retrieve Pointer to User Space */

/* QUSROBJD - Retrieve Object Description */

/* */

/**/

/**/

#include <stdio.h>

#include <string.h>

#include <qsylobjp.h> /* QSYLOBJP API Header */

#include <quscrtus.h> /* QUSCRTUS API Header */

#include <qusptrus.h> /* QUSPTRUS API Header */

#include <qusrobjd.h> /* QUSROBJD API Header */

#include <qusgen.h> /* Format Structures for User Space */

#include <qusec.h> /* Error Code Parameter Include for the APIs */

#include <qliept.h> /* Entry Point Table Include */

/**/

/* Error Code Structure */

/* */

/* This shows how the user can define the variable length portion of */

/* error code for the exception data. */

/* */

/**/

typedef struct {

 Qus_EC_t ec_fields;

 char Exception_Data[100];

 } error_code_t;

/**/

/* Global Variables */

/**/

char api_name[10];

char cont_hdl[20];

char ext_attr[10];

char list_status;

char mbr_list[8];

char obj_type[10];

char rcvvar[8];

char rjobd_fmt[8];

char space_auth[10];

char space_dmn[10];

char space_init;

char space_name[20];

char space_rep[10];

char space_text[50];

char space_type[10];

char usr_prf[10];

char *usrspc_ptr, *usrspc_base;

int rcvlen = 8;

int size_entry;

int space_size = 1;

error_code_t error_code;

FILE *record;

/**/

/* Function: done */

/* */

/* Description: This function prints the end of listing print line */

/* and returns to the caller. */

/**/

void done()

{

 char command_string[32];

 fwrite("*** End of List",1, 15, record);

APIs 101

fclose(record);

 exit();

} /* done */

/**/

/* Function: apierr */

/* */

/* Description: This function prints the API name, and exception */

/* identifier of an error that occurred. */

/**/

void apierr()

{

 printf("API: %.10s\n", api_name);

 printf("Failed with exception: %.7s\n",

 error_code.ec_fields.Exception_Id);

 done();

} /* apierr */

/**/

/* Function: getlst */

/* */

/* Description: This function calls QSYLOBJP to build a list. */

/* */

/**/

void getlst()

{

 memcpy(mbr_list, "OBJP0200", 8);

 /**/

 /* Call QSYLOBJP API to generate a list. The continuation handle */

 /* is set by the caller of this function. */

 /**/

 QSYLOBJP(space_name, /* User space and library */

 mbr_list, /* Member list */

 usr_prf, /* User profile */

 obj_type, /* Object type */

 cont_hdl, /* Continuation handle (3) */

 &error_code); /* Error code */

 /**/

 /* Check for errors on QSYLOBJP. */

 /**/

 if(error_code.ec_fields.Bytes_Available > 0)

 {

 memcpy(api_name, "QSYLOBJP ", 10);

 apierr();

 }

} /* getlst */

/**/

/* Function: init */

/* */

/* Description: This function does all the necessary initialization */

/* for this program. */

/**/

void init()

{

 memcpy(space_name, "ADOPTS QTEMP ", 20);

 space_init = 0x00;

 memcpy(mbr_list, "OBJP0200", 8);

 memcpy(rjobd_fmt, "OBJD0100", 8);

 memcpy(space_type, "*USRSPC ", 10);

 memcpy(ext_attr, "QSYLOBJP ", 10);

102 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

memcpy(space_auth, "*ALL ", 10);

 memcpy(space_rep, "*YES ", 10);

 memcpy(space_dmn, "*USER ", 10);

 /**/

 /* Open QPRINT file so that data can be written to it. If the file */

 /* cannot be opened, print a message and exit. */

 /**/

 if((record = fopen("QPRINT", "wb, lrecl=132, type=record")) == NULL)

 {

 printf("File could not be opened\n");

 exit(1);

 }

 error_code.ec_fields.Bytes_Provided = sizeof(error_code_t);

 /**/

 /* Call QUSROBJD to see if the user space was previously created in */

 /* QTEMP. If it was, simply reuse it. */

 /**/

 QUSROBJD(rcvvar, /* Receiver variable */

 rcvlen, /* Receiver variable length */

 rjobd_fmt, /* Format */

 space_name, /* User space name and library */

 space_type, /* User object type */

 &error_code); /* Error code */

 if(error_code.ec_fields.Bytes_Available > 0)

 {

 /**/

 /* If a CPF9801 error was received, then the user space was not */

 /* found. */

 /**/

 if(memcmp(error_code.ec_fields.Exception_Id, "CPF9801", 7) == 0)

 {

 /**/

 /* Create a user space for the list generated by QSYLOBJP. */

 /**/

 QUSCRTUS(space_name, /* User space name and library */

 ext_attr, /* Extended attribute */

 space_size, /* Size of the user space */

 &space_init, /* Space initialization */

 space_auth, /* Public authority to user space */

 space_text, /* User space text */

 space_rep, /* Replace existing user space? */

 &error_code, /* Error Code */

 space_dmn); /* Domain of created user space */

 /**/

 /* Check for errors on QUSCRTUS. */

 /**/

 if(error_code.ec_fields.Bytes_Available > 0)

 {

 memcpy(api_name, "QUSCRTUS ", 10);

 apierr();

 }

 }

 /**/

 /* An error occurred accessing the user space. */

 /**/

 else

 {

 memcpy(api_name, "QUSRJOBD ", 10);

 apierr();

 }

 }

APIs 103

/**/

 /* Set QSYLOBJP (via GETLST) to start a new list. */

 /**/

 memset(cont_hdl, ’ ’, 20);

 getlst();

 /**/

 /* Get a resolved pointer to the user space for performance. */

 /**/

 QUSPTRUS(space_name, /* User space name and library */

 &usrspc_ptr, /* User space pointer */

 &error_code); /* Error Code */

 /**/

 /* Check for errors on QUSPTRUS. */

 /**/

 if(error_code.ec_fields.Bytes_Available > 0)

 {

 memcpy(api_name, "QUSPTRUS ", 10);

 apierr();

 }

 usrspc_base = usrspc_ptr;

} /* init */

/**/

/* Function: proces2 */

/* */

/* Description: This function processes each entry returned by */

/* QSYLOBJP. */

/* */

/**/

void proces2()

{

 char obj_type[112];

 sprintf(obj_type, "Object: %.10s Library: %.10s Type: %.10s Text: %.50s\n",

 ((Qsy_OBJP0200_List_T *)usrspc_ptr)->Object.Name,

 ((Qsy_OBJP0200_List_T *)usrspc_ptr)->Object.Library,

 ((Qsy_OBJP0200_List_T *)usrspc_ptr)->Object_Type,

 ((Qsy_OBJP0200_List_T *)usrspc_ptr)->Object_Text);

 fwrite(obj_type, 1, 112, record);

 /**/

 /* After each entry, increment to the next entry. */

 /**/

 usrspc_ptr += size_entry; (7)

} /* proces2 */

/**/

/* Function: proces1 */

/* */

/* Description: This function processes each entry returned by */

/* QSYLOBJP. */

/* */

/**/

void proces1()

{

 int i;

 int num_entries;

 int offset;

 num_entries = ((Qus_Generic_Header_0100_t *)\

 usrspc_ptr)->Number_List_Entries;

104 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/**/

 /* If valid information was returned. (1) */

 /**/

 if((((Qus_Generic_Header_0100_t *)usrspc_ptr)->Information_Status == ’C’) ||

 (((Qus_Generic_Header_0100_t *)usrspc_ptr)->Information_Status == ’P’))

 {

 if(num_entries > 0)

 {

 /**/

 /* Get the size of each entry to use later. (4) */

 /**/

 size_entry = ((Qus_Generic_Header_0100_t *)usrspc_ptr)->Size_Each_Entry;

 /**/

 /* Increment to the first list entry. */

 /**/

 offset = ((Qus_Generic_Header_0100_t *)usrspc_ptr)->Offset_List_Data; (5)

 usrspc_ptr += offset;

 /**/

 /* Process all of the entries. */

 /**/

 for(i=0; i<num_entries; i++) (6)

 proces2();

 /**/

 /* Reset the user space pointer to the beginning. */

 /**/

 usrspc_ptr = usrspc_base;

 /**/

 /* If all entries in this user space have been processed, check */

 /* if more entries exist than can fit in one user space. */

 /**/

 if(((Qus_Generic_Header_0100_t *)usrspc_ptr)->Information_Status == ’P’)

 {

 /**/

 /* Address the input parameter header. */

 /**/

 offset = ((Qus_Generic_Header_0100_t *)\

 usrspc_ptr)->Offset_Input_Parameter;

 usrspc_ptr += offset;

 /**/

 /* If the continuation handle in the input parameter header */

 /* is blank, then set the list status to complete.

 /**/

 if(memcmp(((Qsy_OBJP_Input_T *)usrspc_ptr)->Continuation_Handle,

 " ", 20) == 0)

 {

 list_status = ’C’;

 }

 else

 /**/

 /* Else, call QSYLOBJP reusing the user space to get more */

 /* list entries. */

 /**/

 {

 memcpy(cont_hdl, ((Qsy_OBJP_Input_T *)\

 usrspc_ptr)->Continuation_Handle, 20); (2)

 getlst();

 list_status = ((Qus_Generic_Header_0100_t *)\

 usrspc_ptr)->Information_Status;

 }

 }

 }

 else

APIs 105

/**/

 /* If there exists an unexpected status, log an error (not shown) */

 /* and exit. */

 /**/

 {

 done();

 }

 }

} /* proces1 */

/**/

/* Function: proces */

/* */

/* Description: Processes entries until they are complete. */

/* */

/**/

void proces()

{

 list_status = ((Qus_Generic_Header_0100_t *)usrspc_ptr)->Information_Status;

 do

 {

 proces1();

 } while (list_status != ’C’);

} /* proces */

/**/

/* main */

/**/

main(int argc, char *argv[])

{

 /**/

 /* Make sure we received the correct number of parameters. The argc */

 /* parameter will contain the number of parameters that was passed */

 /* to this program. This number also includes the program itself, */

 /* so we need to evaluate argc-1. */

 /**/

 if (((argc - 1) < 2) || ((argc - 1 > 2)))

 /**/

 /* We did not receive all of the required parameters so exit the */

 /* program. */

 /**/

 {

 exit(1);

 }

 else

 /**/

 /* Copy parameters into local variables. */

 /**/

 {

 memcpy(usr_prf, argv[1], 10);

 memcpy(obj_type, argv[2], 10);

 }

 init();

 proces();

 done();

} /* main */

 Related reference

 “Example in RPG: List Object API” on page 89

This example program prints a report that shows all objects that adopt owner authority.

106 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Example in ILE RPG: List Object API

The example program prints a report that shows all objects that adopt owner authority.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Refer to Example in RPG: List Object API for the original example.

 F***

 F***

 F*

 F* Program: List objects that adopt owner authority

 F*

 F* Language: ILE RPG

 F*

 F* Description: This program prints a report showing all objects

 F* that adopt owner authority. The two parameters

 F* passed to the program are the profile to be

 F* checked and the type of objects to be listed.

 F* The parameter values are the same as those

 F* accepted by the QSYLOBJP API.

 F*

 F* APIs Used: QSYLOBJP - List Objects that Adopt Owner Authority

 F* QUSCRTUS - Create User Space

 F* QUSPTRUS - Retrieve Pointer to User Space

 F* QUSROBJD - Retrieve Object Description

 F*

 F***

 F***

 F*

 FQPRINT O F 132 PRINTER OFLIND(*INOF)

 D*

 D* Error Code parameter include

 D*

 D/COPY QSYSINC/QRPGLESRC,QUSEC

 D*

 DSPC_NAME S 20 INZ(’ADOPTS QTEMP ’)

 DSPC_SIZE S 9B 0 INZ(1)

 DSPC_INIT S 1 INZ(X’00’)

 DLSTPTR S *

 DSPCPTR S *

 DARR S 1 BASED(LSTPTR) DIM(32767)

 DRCVVAR S 8

 DRCVVARSIZ S 9B 0 INZ(8)

 D***

 D*

 D* The following QUSGEN include from QSYSINC is copied into

 D* this program so that it can be declared as BASED on SPCPTR

 D*

 D***

 DQUSH0100 DS BASED(SPCPTR)

 D* Qus Generic Header 0100

 D QUSUA 1 64

 D* User Area

 D QUSSGH 65 68B 0

 D* Size Generic Header

 D QUSSRL 69 72

 D* Structure Release Level

 D QUSFN 73 80

 D* Format Name

 D QUSAU 81 90

 D* API Used

 D QUSDTC 91 103

 D* Date Time Created

 D QUSIS 104 104

 D* Information Status

 D QUSSUS 105 108B 0

APIs 107

D* Size User Space

 D QUSOIP 109 112B 0

 D* Offset Input Parameter

 D QUSSIP 113 116B 0

 D* Size Input Parameter

 D QUSOHS 117 120B 0

 D* Offset Header Section

 D QUSSHS 121 124B 0

 D* Size Header Section

 D QUSOLD 125 128B 0

 D* Offset List Data

 D QUSSLD 129 132B 0

 D* Size List Data

 D QUSNBRLE 133 136B 0

 D* Number List Entries

 D QUSSEE 137 140B 0

 D* Size Each Entry

 D QUSSIDLE 141 144B 0

 D* CCSID List Ent

 D QUSCID 145 146

 D* Country ID

 D QUSLID 147 149

 D* Language ID

 D QUSSLI 150 150

 D* Subset List Indicator

 D QUSERVED00 151 192

 D* Reserved

 D***

 D*

 D* The following QSYLOBJP include from QSYSINC is copied into

 D* this program so that it can be declared as BASED on LSTPTR

 D*

 D***

 D QSYLOBJP C ’QSYLOBJP’

 D***

 D*Header structure for QSYLOBJP

 D***

 DQSYOBJPH DS BASED(LSTPTR)

 D* Qsy OBJP Header

 D QSYUN00 1 10

 D* User name

 D QSYCV00 11 30

 D* Continuation Value

 D***

 D*Record structure for OBJP0200 format

 D***

 DQSY0200L02 DS BASED(LSTPTR)

 D* Qsy OBJP0200 List

 D QSYNAME06 1 10

 D* Name

 D QSYBRARY06 11 20

 D* Library

 D QSYOBJT13 21 30

 D* Object Type

 D QSYOBJIU00 31 31

 D* Object In Use

 D QSYOBJA11 32 41

 D* Object Attribute

 D QSYOBJT14 42 91

 D* Object Text

 C*

 C* Start of mainline

 C*

 C *ENTRY PLIST

 C PARM USR_PRF 10

 C PARM OBJ_TYPE 10

 C EXSR INIT

108 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C EXSR PROCES

 C EXSR DONE

 C*

 C* Start of subroutines

 C*

 C***

 C PROCES BEGSR

 C*

 C* This subroutine processes each entry returned by QSYLOBJP

 C*

 C*

 C* Do until the list is complete

 C*

 C MOVE QUSIS LST_STATUS 1

 C*

 C LST_STATUS DOUEQ ’C’

 C*

 C* If valid information was returned

 C*

 C QUSIS IFEQ ’C’

 C QUSIS OREQ ’P’

 C*

 C* and list entries were found

 C*

 C QUSNBRLE IFGT 0

 C*

 C* set LSTPTR to the first byte of the User Space

 C*

 C EVAL LSTPTR = SPCPTR

 C*

 C* increment LSTPTR to the first List entry

 C*

 C EVAL LSTPTR = %ADDR(ARR(QUSOLD + 1)) (5)

 C*

 C* and process all of the entries

 C*

 C DO QUSNBRLE (6)

 C EXCEPT OBJ_ENTRY

 C*

 C* after each entry, increment LSTPTR to the next entry

 C*

 C EVAL LSTPTR = %ADDR(ARR(QUSSEE + 1)) (7)

 C END

 C END

 C*

 C* If all entries in this User Space have been processed, check

 C* if more entries exist than can fit in one User Space

 C*

 C QUSIS IFEQ ’P’

 C*

 C* by resetting LSTPTR to the start of the User Space

 C*

 C EVAL LSTPTR = SPCPTR

 C*

 C* and then incrementing LSTPTR to the Input Parameter Header

 C*

 C EVAL LSTPTR = %ADDR(ARR(QUSOIP + 1))

 C*

 C* If the continuation handle in the Input Parameter Header is

 C* blank, then set the List status to Complete

 C*

 C QSYCV00 IFEQ *BLANKS

 C MOVE ’C’ LST_STATUS

 C ELSE

 C*

 C* Else, call QSYLOBJP reusing the User Space to get more

 C* List entries

APIs 109

C*

 C MOVE QSYCV00 CONTIN_HDL (2)

 C EXSR GETLST

 C MOVE QUSIS LST_STATUS

 C END

 C END

 C ELSE

 C*

 C* And if an unexpected status, log an error (not shown) and exit

 C*

 C EXSR DONE

 C END

 C END

 C ENDSR

 C***

 C GETLST BEGSR

 C*

 C* Call QSYLOBJP to generate a list

 C* The continuation handle is set by the caller of this

 C* subroutine.

 C*

 C CALL QSYLOBJP

 C PARM SPC_NAME

 C PARM ’OBJP0200’ MBR_LIST 8

 C PARM USR_PRF

 C PARM OBJ_TYPE

 C PARM CONTIN_HDL 20 (3)

 C PARM QUSEC

 C*

 C* Check for errors on QSYLOBJP

 C*

 C QUSBAVL IFGT 0

 C MOVEL ’QSYLOBJP’ APINAM 10

 C EXSR APIERR

 C END

 C ENDSR

 C***

 C INIT BEGSR

 C*

 C* One time initialization code for this program

 C*

 C* Set Error Code structure not to use exceptions

 C*

 C Z-ADD 16 QUSBPRV

 C*

 C* Check to see if the User Space was previously created in

 C* QTEMP. If it was, simply reuse it.

 C*

 C CALL ’QUSROBJD’

 C PARM RCVVAR

 C PARM RCVVARSIZ

 C PARM ’OBJD0100’ ROBJD_FMT 8

 C PARM SPC_NAME

 C PARM ’*USRSPC’ SPC_TYPE 10

 C PARM QUSEC

 C*

 C* Check for errors on QUSROBJD

 C*

 C QUSBAVL IFGT 0

 C*

 C* If CPF9801, then User Space was not found

 C*

 C QUSEI IFEQ ’CPF9801’

 C*

 C* So create a User Space for the List generated by QSYLOBJP

 C*

 C CALL ’QUSCRTUS’

110 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C PARM SPC_NAME

 C PARM ’QSYLOBJP ’ EXT_ATTR 10

 C PARM SPC_SIZE

 C PARM SPC_INIT

 C PARM ’*ALL’ SPC_AUT 10

 C PARM *BLANKS SPC_TEXT 50

 C PARM ’*YES’ SPC_REPLAC 10

 C PARM QUSEC

 C PARM ’*USER’ SPC_DOMAIN 10

 C*

 C* Check for errors on QUSCRTUS

 C*

 C QUSBAVL IFGT 0

 C MOVEL ’QUSCRTUS’ APINAM 10

 C EXSR APIERR

 C END

 C*

 C* Else, an error occurred accessing the User Space

 C*

 C ELSE

 C MOVEL ’QUSROBJD’ APINAM 10

 C EXSR APIERR

 C END

 C END

 C*

 C* Set QSYLOBJP (via GETLST) to start a new list

 C*

 C MOVE *BLANKS CONTIN_HDL

 C EXSR GETLST

 C*

 C* Get a resolved pointer to the User Space for performance

 C*

 C CALL ’QUSPTRUS’

 C PARM SPC_NAME

 C PARM SPCPTR

 C PARM QUSEC

 C*

 C* Check for errors on QUSPTRUS

 C*

 C QUSBAVL IFGT 0

 C MOVEL ’QUSPTRUS’ APINAM 10

 C EXSR APIERR

 C END

 C ENDSR

 C***

 C APIERR BEGSR

 C*

 C* Log any error encountered, and exit the program

 C*

 C APINAM DSPLY

 C QUSEI DSPLY

 C EXSR DONE

 C ENDSR

 C***

 C DONE BEGSR

 C*

 C* Exit the program

 C*

 C EXCEPT END_LIST

 C EVAL *INLR = ’1’

 C RETURN

 C ENDSR

 OQPRINT E OBJ_ENTRY 1

 O ’Object: ’

 O QSYNAME06

 O ’ Library: ’

 O QSYBRARY06

APIs 111

O ’ Type: ’

 O QSYOBJT13

 O ’ Text: ’

 O QSYOBJT14

 OQPRINT E END_LIST 1

 O ’*** End of List’

 Related reference

 “Example in RPG: List Object API” on page 89

This example program prints a report that shows all objects that adopt owner authority.

Example in ILE COBOL: List Object API

The example program prints a report that shows all objects that adopt owner authority.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Refer to Example in RPG: List Object API for the original example. The following program also works for

OPM COBOL.

 IDENTIFICATION DIVISION.

 *

 * Program: List objects that adopt owner authority

 *

 * Language: COBOL

 *

 * Description: This program prints a report showing all objects

 * that adopt owner authority. The two parameters

 * passed to the program are the profile to be

 * checked and the type of objects to be listed.

 * The parameter values are the same as those

 * accepted by the QSYLOBJP API.

 *

 * APIs Used: QSYLOBJP - List Objects that Adopt Owner Authority

 * QUSCRTUS - Create User Space

 * QUSPTRUS - Retrieve Pointer to User Space

 * QUSROBJD - Retrieve Object Description

 *

 *

 PROGRAM-ID. LISTADOPT.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT LISTING ASSIGN TO PRINTER-QPRINT

 ORGANIZATION IS SEQUENTIAL.

 DATA DIVISION.

 FILE SECTION.

 FD LISTING RECORD CONTAINS 132 CHARACTERS

 LABEL RECORDS ARE STANDARD

 DATA RECORD IS LIST-LINE.

 01 LIST-LINE PIC X(132).

 *

 WORKING-STORAGE SECTION.

 *

 * Error Code parameter include. As this sample program

 * uses COPY to include the error code structure, only the first

 * 16 bytes of the error code structure are available. If the

 * application program needs to access the variable length

 * exception data for the error, the developer should physically

 * copy the QSYSINC include and modify the copied include to

112 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

* define additional storage for the exception data.

 *

 COPY QUSEC OF QSYSINC-QLBLSRC.

 *

 * Listing text

 *

 01 OBJ-ENTRY.

 05 OBJECT.

 09 TEXT1 PIC X(08) VALUE "Object: ".

 09 NAME PIC X(10).

 09 TEXT2 PIC X(10) VALUE " Library: ".

 09 LIBRARY PIC X(10).

 05 TEXT3 PIC X(07) VALUE " Type: ".

 05 OBJECT-TYPE PIC X(10).

 05 TEXT4 PIC X(07) VALUE " Text: ".

 05 OBJECT-TEXT PIC X(50).

 01 END-LIST.

 05 TEXT1 PIC X(15) VALUE "*** End of List".

 *

 01 MISC.

 05 SPC-NAME PIC X(20) VALUE "ADOPTS QTEMP ".

 05 SPC-SIZE PIC S9(09) VALUE 1 BINARY.

 05 SPC-INIT PIC X(01) VALUE X"00".

 05 SPCPTR POINTER.

 05 RCVVAR PIC X(08).

 05 RCVVARSIZ PIC S9(09) VALUE 8 BINARY.

 05 LST-STATUS PIC X(01).

 05 MBR-LIST PIC X(08) VALUE "OBJP0200".

 05 CONTIN-HDL PIC X(20).

 05 APINAM PIC X(10).

 05 ROBJD-FMT PIC X(08) VALUE "OBJD0100".

 05 SPC-TYPE PIC X(10) VALUE "*USRSPC".

 05 EXT-ATTR PIC X(10) VALUE "QSYLOBJP".

 05 SPC-AUT PIC X(10) VALUE "*ALL".

 05 SPC-TEXT PIC X(50).

 05 SPC-REPLAC PIC X(10) VALUE "*YES".

 05 SPC-DOMAIN PIC X(10) VALUE "*USER".

 *

 LINKAGE SECTION.

 *

 * Input parameters.

 *

 01 USR-PRF PIC X(10).

 01 OBJ-TYPE PIC X(10).

 *

 * String to map User Space offsets into

 *

 01 STRING-SPACE PIC X(32000).

 *

 * User Space Generic Header include. These includes will be

 * mapped over a User Space.

 *

 COPY QUSGEN OF QSYSINC-QLBLSRC.

 *

 * List Objects that Adopt API include. These includes will be

 * mapped over a User Space.

 *

 COPY QSYLOBJP OF QSYSINC-QLBLSRC.

 *

 * Beginning of mainline

 *

 PROCEDURE DIVISION USING USR-PRF, OBJ-TYPE.

 MAIN-LINE.

 PERFORM INIT.

 PERFORM PROCES.

 PERFORM DONE.

 *

APIs 113

* Start of subroutines

 *

 PROCES.

 *

 * Do until the list is complete

 *

 MOVE INFORMATION-STATUS OF QUS-GENERIC-HEADER-0100 TO

 LST-STATUS.

 *

 PERFORM PROCES1 WITH TEST AFTER UNTIL LST-STATUS = "C".

 *

 PROCES1.

 *

 * This subroutine processes each entry returned by QSYLOBJP

 *

 *

 * If valid information was returned

 *

 IF (INFORMATION-STATUS OF QUS-GENERIC-HEADER-0100 = "C"

 OR INFORMATION-STATUS OF QUS-GENERIC-HEADER-0100 = "P")

 IF NUMBER-LIST-ENTRIES OF QUS-GENERIC-HEADER-0100 > 0

 *

 * increment to the first list entry

 *

 SET ADDRESS OF QSY-OBJP0200-LIST TO

 ADDRESS OF STRING-SPACE(

 (OFFSET-LIST-DATA OF QUS-GENERIC-HEADER-0100 + 1):1), (5)

 SET ADDRESS OF STRING-SPACE TO ADDRESS OF

 QSY-OBJP0200-LIST,

 *

 * and process all of the entries

 *

 PERFORM PROCES2

 NUMBER-LIST-ENTRIES OF QUS-GENERIC-HEADER-0100 TIMES, (6)

 *

 * If all entries in this User Space have been processed, check

 * if more entries exist than can fit in one User Space

 *

 IF INFORMATION-STATUS OF QUS-GENERIC-HEADER-0100 = "P"

 *

 * by addressing the input parameter header

 *

 SET ADDRESS OF STRING-SPACE TO SPCPTR,

 SET ADDRESS OF QSY-OBJP-INPUT TO

 ADDRESS OF STRING-SPACE((OFFSET-INPUT-PARAMETER

 OF QUS-GENERIC-HEADER-0100 + 1):1),

 *

 * If the continuation handle in the Input Parameter Header is

 * blank, then set the List status to Complete

 *

 IF CONTINUATION-HANDLE OF QSY-OBJP-INPUT = SPACES

 MOVE "C" TO LST-STATUS

 ELSE

 *

 * Else, call QSYLOBJP reusing the User Space to get more

 * List entries

 *

 MOVE CONTINUATION-HANDLE OF QSY-OBJP-INPUT

 TO CONTIN-HDL OF MISC, (2)

 PERFORM GETLST,

 MOVE INFORMATION-STATUS OF QUS-GENERIC-HEADER-0100

 TO LST-STATUS,

 END-IF,

 END-IF,

 END-IF,

 ELSE

114 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

*

 * And if an unexpected status, log an error (not shown) and exit

 *

 PERFORM DONE,

 END-IF.

 *

 PROCES2.

 MOVE CORRESPONDING QSY-OBJP0200-LIST TO OBJ-ENTRY.

 WRITE LIST-LINE FROM OBJ-ENTRY.

 *

 * after each entry, increment to the next entry

 *

 SET ADDRESS OF QSY-OBJP0200-LIST TO ADDRESS OF

 STRING-SPACE(

 (SIZE-EACH-ENTRY OF QUS-GENERIC-HEADER-0100 + 1):1). (7)

 SET ADDRESS OF STRING-SPACE TO ADDRESS OF QSY-OBJP0200-LIST.

 GETLST.

 *

 * Call QSYLOBJP to generate a list

 * The continuation handle is set by the caller of this

 * subroutine.

 MOVE "OBJP0200" TO MBR-LIST.

 *

 CALL "QSYLOBJP" USING SPC-NAME, MBR-LIST, USR-PRF,

 OBJ-TYPE, CONTIN-HDL, QUS-EC. (3)

 *

 * Check for errors on QSYLOBJP

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 MOVE "QSYLOBJP" TO APINAM,

 PERFORM APIERR.

 INIT.

 *

 * One time initialization code for this program

 *

 * Open LISTING file

 *

 OPEN OUTPUT LISTING.

 *

 * Set Error Code structure to not use exceptions

 *

 MOVE LENGTH OF QUS-EC TO BYTES-PROVIDED OF QUS-EC.

 *

 * Check to see if the User Space was previously created in

 * QTEMP. If it was, simply reuse it.

 *

 CALL "QUSROBJD" USING RCVVAR, RCVVARSIZ, ROBJD-FMT,

 SPC-NAME, SPC-TYPE, QUS-EC.

 *

 * Check for errors on QUSROBJD

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 *

 * If CPF9801, then User Space was not found

 *

 IF EXCEPTION-ID OF QUS-EC = "CPF9801"

 *

 * So create a User Space for the List generated by QSYLOBJP

 *

 CALL "QUSCRTUS" USING SPC-NAME, EXT-ATTR, SPC-SIZE,

 SPC-INIT, SPC-AUT, SPC-TEXT,

 SPC-REPLAC, QUS-EC, SPC-DOMAIN

 *

 * Check for errors on QUSCRTUS

 *

APIs 115

IF BYTES-AVAILABLE OF QUS-EC > 0

 MOVE "QUSCRTUS" TO APINAM,

 PERFORM APIERR,

 ELSE

 CONTINUE,

 ELSE

 *

 * Else, an error occurred accessing the User Space

 *

 MOVE "QUSROBJD" TO APINAM,

 PERFORM APIERR.

 *

 * Set QSYLOBJP (via GETLST) to start a new list

 *

 MOVE SPACES TO CONTIN-HDL.

 PERFORM GETLST.

 *

 * Get a resolved pointer to the User Space for performance

 *

 CALL "QUSPTRUS" USING SPC-NAME, SPCPTR, QUS-EC.

 *

 * Check for errors on QUSPTRUS

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 MOVE "QUSPTRUS" TO APINAM,

 PERFORM APIERR.

 *

 * If no error, then set addressability to User Space

 *

 SET ADDRESS OF QUS-GENERIC-HEADER-0100 TO SPCPTR.

 SET ADDRESS OF STRING-SPACE TO SPCPTR.

 *

 APIERR.

 *

 * Log any error encountered, and exit the program

 *

 DISPLAY APINAM.

 DISPLAY EXCEPTION-ID OF QUS-EC.

 PERFORM DONE.

 DONE.

 *

 * Exit the program

 *

 WRITE LIST-LINE FROM END-LIST.

 STOP RUN.

 Related reference

 “Example in RPG: List Object API” on page 89

This example program prints a report that shows all objects that adopt owner authority.

Domain concepts

All objects are assigned a domain attribute when they are created.

A domain is a characteristic of an object that controls how programs can access the object. Once set, the

domain remains in effect for the life of the object. The two possible attributes are system and user.

Most object types on the system are created in system domain. When you run your system at security

level 40 or 50, system domain objects can be accessed only by using the commands and callable APIs

provided.

These object types can be either system or user domain. The list includes the symbolic object type.

116 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

v User space (*USRSPC)

v User index (*USRIDX)

v User queue (*USRQ)

Objects of the type *USRSPC, *USRIDX, and *USRQ in the user domain can be manipulated directly by

MI instructions without using the system-provided APIs and commands.

Note: Objects of the type *PGM, *SRVPGM, and *SQLPKG also can be in the user domain. Their contents

cannot be manipulated directly by MI instructions.

Prior to Version 2 Release 3 Modification 0, all user objects were created into the user domain. Starting in

Version 2 Release 3 Modification 0, user objects can exist in either the user domain or the system domain.

The allow user domain (QALWUSRDMN) system value determines which libraries can contain

user-domain user objects. The default QALWUSRDMN system value is set to *ALL, but can be changed

by system administrators on individual machines to be one library or a list of libraries. If your

application requires direct pointer access to user-domain user objects in a library that is not specified in

the QALWUSRDMN value, your system administrator can add the library to the system value.

The ability to create user domain objects on a system with a security level 40 or 50 is controlled by the

allow user domain (QALWUSRDMN) system value. See the User queue domain table in the description

of the Create User Queue (QUSCRTUQ) API for more information.

Note: On a system configured for C2 system security, QALWUSRDMN is set to QTEMP (only the

QTEMP library can contain user-domain user objects).

For more information about C2 security, refer to the Guide to Enabling C2 Security book, SC41-0103.

 Related reference

 User queue domain

 “Examples: Using data queues or user queues” on page 286

Data queues and user queues both provide a means for one or more processes to communicate

asynchronously. The queues can be processed FIFO (first-in first-out), LIFO (last-in first-out), or by

key.

Exit programs

Exit programs are called and given control by an application program or system program. They can be

used to customize particular functions to your needs. An exit program is a program to which control is

passed from a calling program.

Exit programs are usually user-written programs; however, a few are system-supplied (such as a few of

the Operational Assistant exit programs).

To transfer control to an exit program, you do an external call as you would to any other program.

There are no general requirements for using exit programs. For any specific requirements, see the

documentation for the specific exit program.

Exit points

An exit point signifies the point in a system function or program where control is turned over to one or

more exit programs to perform a function.

Prior to Version 3 Release 1, the exit program might have been represented as network attributes, system

values, CL command parameters, or attributes of system objects. Also, in previous releases, all exit point

providers had to supply their own means of registering and deregistering exit programs.

APIs 117

The registration facility provides a central point to store and retrieve information about i5/OS and

non-i5/OS exit points and their associated exit programs. This information is stored in the registration

facility repository and can be retrieved to determine which exit points and exit programs already exist.

You can use the registration facility APIs to register and deregister exit points, to add and remove exit

programs, and to retrieve information about exit points and exit programs. You can also perform some of

these functions by using the Work with Registration Information (WRKREGINF) command.

The exit point provider is responsible for defining the exit point information, defining the format in which

the exit program receives data, and calling the exit program.

 Related reference

 Work with Registration Information (WRKREGINF)

User index considerations

The performance of a user index is much better than that of a database file. However, before using a user

index, you must know the functional differences between a user index and a database file.

The contents of a database file are not affected by an abnormal system end. On the other hand, the

contents of a user index may become totally unusable if the system ends abnormally. Therefore, you

should not use a user index if the information you want to store needs to remain without errors after an

abnormal system end.

If your system abnormally ends when you are removing or inserting a user index entry, unpredictable

results may occur. If you are inserting or removing a user index entry and you should force the index

entry to the disk unit using one of the following:

v A user index created with the immediate update parameter set to 1 (affects performance)

v A modify index (MODIDX) MI instruction with the immediate update bit set to 1

v The set access state (SETACST) MI instruction

If you do not force the index entry and the system abnormally ends, your index will probably be

damaged.

To determine if your last system power down was normal or abnormal, you can check the system value

QABNORMSW.

You will not get an error message if your index is damaged. The definition of your index is usable; it is

probably the data in your index that is bad.

You can log changes to a database file in a journal, and you can use the journal to apply or remove those

changes later. You can also use the journal to audit who is using the database file. However, the system

does not support the journaling of indexes. As a result, user applications should log entries in a journal

to keep track of changes to the index, but you cannot update the index using apply and remove journal

entry functions. For more information on journaling, see the Journal and Commit APIs.

Indexes support the storage of data that does not need to remain after an abnormal system end. If an

abnormal system end does occur, you must use a backup copy of the index that was previously saved or

create a new copy of the index.

 Related reference

 Journal and Commit APIs

Performance considerations

The retrieve APIs allow you to control the performance cost for information you retrieve.

118 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

The format specified for any API influences the performance cost of the API. In general, when more

information is returned, the performance is slower.

Some list APIs, such as list jobs, list spooled files, and list objects, generate the list with minimal cost.

This is why these formats do not retrieve very much information. Some of the APIs, such as list record

formats and list fields, have only one format, because there is no additional performance cost to supply

the complete information.

The retrieve APIs, such as retrieve member description and retrieve spooled file attributes, have formats

that are generally ordered from fastest performance to slowest performance. That is, the lower numbered

formats run faster but retrieve less information, and the higher numbered formats run slower but retrieve

more information. One exception is the Retrieve Job Information (QUSRJOBI) API where the order of the

formats does not have anything to do with performance characteristics. For more information about the

performance characteristics for the QUSRJOBI API formats, see the Retrieve Job Information (QUSRJOBI)

API in Work Management APIs.

 Related reference

 Retrieve Job Information (QUSRJOBI) API

APIs and internal system objects

APIs retrieve information from internal system objects.

Some of the information contains special values. For example, the list object API returns the object type as

a special value (*PGM, *LIB, and so on). However, special values may be added in future releases. Even

numeric values may have new special values. When you code to APIs, you should assume that the

format of the information returned will not change from release to release, but the content of the

information might change.

Open list information format

The format of the open list information is common across many of the open list APIs.

This common open list structure provides information necessary to the API caller in order to properly

process the list. If the API error code parameter indicates that no error occurred then the Information

complete indicator should be checked for a value of either ’C’ (complete and accurate) or ’P’ (partial and

accurate). If one of these values is found then the caller should process the number of entries indicated

by Records returned.

When these records have been processed the API caller should then determine if all records that could be

returned in the list have been returned. This is accomplished by comparing Total records to the sum of

First record in receiver variable and Records returned less 1. When Total records is greater than or equal

to First record in receiver variable + Records returned -1 then additional calls to QGYGTLE may continue

to receive new records if List status indicator is not ’3’ or ’5’. When Total records have been processed

and List status is ’2’ or ’5’, or if the caller no longer needs to process the list, a call to QGYCLST should

be done.

The open list APIs return data for use by the process open list APIs. The process open list APIs are

located in the Process Open List category, whereas the open list APIs can be found in the applicable

sections. For example, the Open List of Messages (QGYOLMSG) API is located in the Message Handling

part.

The following shows the format of the list information parameter in the open list APIs. For a detailed

description of each field, see “Field descriptions” on page 120.

APIs 119

Offset

Type Field Dec Hex

0 0 BINARY(4) Total records

4 4 BINARY(4) Records returned

8 8 CHAR(4) Request handle

12 C BINARY(4) Record length

16 10 CHAR(1) Information complete

indicator

17 11 CHAR(13) Date and time created

30 1E CHAR(1) List status indicator

31 1F CHAR(1) Reserved

32 20 BINARY(4) Length of information

returned

36 24 BINARY(4) First record in receiver

variable

40 28 CHAR(40) Reserved

Field descriptions

Date and time created. The date and time when the list was created. The 13 characters are:

 Character Description

1 Century, where 0 indicates years 19 xx and 1 indicates

years 20 xx.

2-7 The date, in YYMMDD (year, month, day) format.

8-13 The time of day, in HHMMSS (hours, minutes, seconds)

format.

First record in receiver variable. The number of the first record returned in the receiver variable.

Information complete indicator. Whether all requested information has been supplied. Possible values

follow:

 Value Description

C Complete and accurate information. All of the requested

records have been returned in the receiver variable.

I Incomplete information. An interruption causes the

receiver variable to contain incomplete information.

P Partial and accurate information. Partial information is

returned when the receiver variable is full and not all of

the records requested are returned.

Length of information returned. The size, in bytes, of the information that is returned in the receiver

variable.

120 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

List status indicator. The status of building the list. Possible values follow:

 Value Description

0 The building of the list is pending.

1 The list is in the process of being built.

2 The list has been completely built.

3 An error occurred when building the list. The next call to

the Get List Entries (QGYGTLE) API will cause the error

to be signaled to the caller of the QGYGTLE API.

4 The list is primed and ready to be built. The list will be

built asynchronously by a server job, but the server job

has not necessarily started building the list yet.

5 Given the current selection criteria and information

requested, there is too much data to be returned. The list

is incomplete, but data collected to this point is available.

Record length. The length of each record of information returned. For variable length records, this value

is set to zero. For variable length records, you can obtain the length of individual records from the

records themselves.

Records returned. The number of records that are returned in the receiver variable. This number is the

smallest of the following values:

v The number of records that will fit into the receiver variable.

v The number of records in the list.

v The number of records that are requested.

Request handle. The handle of the request that can be used for subsequent requests of information from

the list. The handle is valid until the Close List (QGYCLST) API is called to close the list, or until the job

ends.

Note: This field should be treated as a hexadecimal field. It should not be converted from one CCSID to

another, for example, EBCDIC to ASCII, because doing so could result in an unusable value.

Reserved. An ignored field.

Total records. The total number of records available in the list.

 Related reference

 Process Open List APIs

Path name format

The path name format is common across application programming interfaces that work with objects that

are supported across file systems. These APIs require a path name to identify the object with which the

API will work.

The format of the path name is as follows. For a detailed description of each field, see “Field

descriptions” on page 122.

 Offset

Use Type Field Dec Hex

0 0 INPUT BINARY(4) CCSID

4 4 INPUT CHAR(2) Country or region ID

APIs 121

Offset

Use Type Field Dec Hex

6 6 INPUT CHAR(3) Language ID

9 9 INPUT CHAR(3) Reserved

12 C INPUT BINARY(4) Path type indicator

16 10 INPUT BINARY(4) Length of path name

20 14 INPUT CHAR(2) Path name delimiter

character

22 16 INPUT CHAR(10) Reserved

32 26 INPUT CHAR(*) Path name

Field descriptions

This section describes the path name format fields in further detail. Field descriptions are in alphabetical

order.

CCSID. The CCSID (coded character set ID) the path name is in. The possible values follow:

 Value Description

0 Use the current job default CCSID.

1-65533 A valid CCSID in this range.

Country or region ID. The country or region ID for the path name. The possible values follow:

 Value Description

X’0000’ Use the current job country or region ID.

Country or region ID A valid country or region ID.

Language ID. The language ID for the path name. The possible values follow:

 Value Description

X’000000’ Use the current job language ID.

Language ID A valid language ID.

Length of path name. The length of the path name in bytes.

Path name. Depending on the path type indicator field, this field contains either a pointer to a character

string that contains the path name, or a character string that contains the path name.

The path name must be an absolute path name or a relative path name. An absolute path name is a path

name that starts with the path name delimiter, usually the slash (/) character. A relative path name is a

path name that does not start with the path name delimiter. When a relative name is specified, the API

assumes that this path name starts at the current directory of the process that the API is running in.

The dot and dot dot (. ..) directories are valid in the path name. The home directory, generally

represented by using the tilde character in the first character position of the path name, is not supported.

122 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

A null character value is not allowed as one of the characters in the path name unless a null character is

specified as a path name delimiter.

To avoid confusion with iSeries server special values, path names should not start with a single asterisk

(*) character.

Path name delimiter character. The delimiter character used between the element names in the path

name. This is in the same CCSID as the path name. The most common delimiter is the slash (/) character.

If the delimiter is 1 character, the first character of the 2-character field is used.

Path type indicator. Whether the path name contains a pointer or is a character string and whether the

path name delimiter character is 1 or 2 characters long. The possible values follow:

 Value Description

0 The path name is a character string, and the path name

delimiter character is 1 character long.

1 The path name is a pointer, and the path name delimiter

character is 1 character long.

2 The path name is a character string, and the path name

delimiter character is 2 characters long.

3 The path name is a pointer, and the path name delimiter

character is 2 characters long.

Reserved. A reserved field that must be set to hexadecimal zeros.

 Related information

 Integrated File System

Using APIs

Provides scenarios for and practical application of using APIs.

Scenario: Original Program Model (OPM) API

This scenario demonstrates the use of an original program model (OPM) API in several different

programs.

These examples focus on descriptions, formats, variable-length fields as output, and optional parameters.

This scenario accesses information from a job description to demonstrate how to code APIs. While this

may not be what your application requires, you can use the same approach to access information when

you use most of the APIs.

Assume that you are interested in accessing the value of the hold parameter on the Retrieve Job

Description (RTVJOBD) command. The hold parameter determines whether the job is held on the job

queue. Two values are supported:

*NO The job is not held.

*YES The job is held on the job queue.

The first step is to find the correct API to use. To do this, you must identify the part of the i5/OSprogram

that is most closely related to the function in which you are interested. If you want to access information

from a job description, as in our scenario, you should know that a job description object is considered

part of the work management function.

APIs 123

API names contain verbs that are similar to the i5/OS licensed program: change, create, remove, and

retrieve. For a complete list of verbs, see OPM and ILE API verbs and abbreviations.

These examples use the Retrieve Job Description Information (QWDRJOBD) API.

For a detailed description of how to use the API, use information in API information format.

Note: These descriptions and the programs that support them are in RPG. You can, however, view the

same programs in different languages.

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

 Related concepts

 “APIs for the Original Program Model environment” on page 11

This topic describes the naming conventions of Original Program Model (OPM) APIs, the initial APIs

on the system.

 “API information format” on page 48
API names contain verbs that are similar to the i5/OS licensed program: change, create, remove, and

retrieve.
 Related reference

 “OPM and ILE API verbs and abbreviations” on page 7

The two to three letters following the APIs make up an internal component identifier. The last part of

the API name identifies the action or function of the API. The information after the component ID is

an abbreviation of the verb that describes the function of the API.

 Retrieve Job Description Information (QWDRJOBD)

Example in OPM RPG: Retrieving the HOLD parameter (exception message)

This example expects errors to be sent as escape messages.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

In the following program example, all the pieces have been put together with an RPG program that

accesses the hold on job queue information from a job description. A message is sent for the value found.

To make the RPG program more general purpose, two parameters for the job description (JOBD) name

and library (JOBDL) name are passed to it, as shown at (5). The program example, which is named

JOBDAPI (this program name is also used in other examples in this chapter), does not handle errors. Any

errors that are received are returned as exception messages.

124 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

|
|
|
|
|

|
|

|

|
|

|

|
|
|

I***

 I***

 I*

 I*Program Name: JOBDAPI

 I*

 I*Language: OPM RPG

 I*

 I*Descriptive Name: Job Description

 I*

 I*Description: This example expects errors to be sent as escape

 I* messages.

 I*

 I*Header Files Included: QUSEC - Error Code Parameter

 I* QWDRJOBD - Retrieve Job Description API

 I*

 I***

 I***

 I*

 I* Error Code Parameter Include for the APIs

 I*

 I/COPY QSYSINC/QRPGSRC,QUSEC

 I*

 I* Retrieve Job Description API Include

 I*

 I/COPY QSYSINC/QRPGSRC,QWDRJOBD (1)

 I*

 I* Command String Data Structure

 I*

 ICMDSTR DS

 I I ’SNDMSG MSG(’’HOLD - 1 26 CMD1

 I ’value is ’

 I 27 36 HOLD

 I I ’’’) TOUSR(QPGMR)’ 37 51 CMD2

 I*

 I* Miscellaneous Data Structure

 I*

 I DS

 I* (2)

 I I 390 B 1 40RCVLEN

 I I ’JOBD0100’ 5 12 FORMAT

 I* (3)

 C*

 C* Beginning of Mainline

 C*

 C* Two parameters are being passed into this program.

 C*

 C *ENTRY PLIST (5)

 C PARM JOBD 10

 C PARM JOBDL 10

 C*

 C* Move the two parameters passed into LFNAM.

 C*

 C JOBD CAT JOBDL LFNAM 20 (6)

 C* Error code bytes provided is set to 0

 C*

 C Z-ADD0 QUSBNB (4)

 C*

 C* Instead of specifying ’QWCRJOBD’, I could have used the

 C* constant QWDBGB that was defined in the QWDRJOBD include.

 C*

 C CALL ’QWDRJOBD’

 C PARM QWDBH Receiver Var.

 C PARM RCVLEN Length RCVVAR

 C PARM FORMAT Format Name

 C PARM LFNAM Qual. Job Desc

 C PARM QUSBN Error Code

 C*

APIs 125

C MOVELQWDBHN HOLD

 C*

 C* Let’s tell everyone what the hold value was for this jobd.

 C*

 C Z-ADD51 LENSTR 155

 C CALL ’QCMDEXC’

 C PARM CMDSTR

 C PARM LENSTR

 C*

 C SETON LR

 C RETRN

 C*

 C* End of MAINLINE

 C*

The program declares the variables to be used. The QWDBH variable is length 390 as shown by (2).

In the example, the program places a value of JOBD0100 in the format variable. A literal could have been

used instead for those languages that support a literal on a call, as shown at (5). The program generates

the qualified name of the job description (JOBD) by concatenating the simple name and the library

qualifier, as shown at (6). A 20-character variable must be used, and the simple name must begin in byte

1 with the library qualifier in byte 11. Because CAT is used, a simple concatenation of two 10-byte

variables occurs so that the names are in the correct place for the LFNAM parameter.

The QWDRJOBD API is called with the correct parameter list. The API uses the parameter list and

accesses the job description specified. The API extracts the values from the internal object form and

places them in a data structure that matches the JOBD0100 format. The API then returns with the data

structure placed in variable QWDBH, which is located in member QWDRJOBD in the QSYSINC library.

The output is similar to the following:

+--+

| |

| |

| Display Messages |

| |

| System: GENSYS90 |

| Queue : QPGMR Program : *DSPMSG |

| Library . . . : QUSRSYS Library . . . : |

| Severity . . . : 00 Delivery . . . : *HOLD |

| Type reply (if required), press Enter. |

| From . . . : SMITH 07/23/94 10:25:14 |

| HOLD value is *NO |

| |

+--+

The API does not need to be called each time that you want a separate field because all fields are

returned that would fit within the size indicated by the length of receiver variable (RCVLEN) parameter.

You can run the program against the QBATCH job description in library QGPL by using the following

call statement:

CALL JOBDAPI PARM(QBATCH QGPL)

If QGPL is on the library list, you can run the program against the QBATCH job description by using the

following call statement:

CALL JOBDAPI PARM(QBATCH *LIBL)

You can run the program on one of your own job descriptions or on a test job description where you

have specified HOLD(*YES).

126 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Example in OPM RPG: Handling error conditions

For this example, assume that the XYZ job description does not exist:

CALL JOBDAPI PARM(XYZ *LIBL)

You probably will receive the inquiry message CPA0701 that states an unmonitored exception (CPF9801)

has occurred and offers several possible replies. At this point, you would enter C for Cancel and press

the Enter key.

If you displayed the low-level messages, you would see the following: CPF9801 (Object not found),

followed by the inquiry message (CPA0701), followed by your reply.

When you specify the error code parameter as zero, you are specifying that exceptions be sent as escape

messages. You can code the RPG program so that any errors on the call set the indicator 01 to on, as

shown at (10). This causes a different path to be taken in the code.

For RPG, the CALL operation specifies the error indicator. Based on whether the error indicator is on or

off, a set of instructions can be processed. The API must receive an error code parameter that consists of a

binary 4 field with a value of binary zeros, as shown at (11)). The message ID can be accessed from the

program-status data structure. You would define this as follows:

 I* Program status DS ((12))

 IPGMSTS SDS

 I 40 46 MSGIDD

If you are going to do something about an error condition, you must test for an error condition in RPG:

v If you use the error-code data structure, test the bytes available field.

v If you let exceptions occur, test the error indicator on the CALL operation ((10)).

Because you must test for some condition (one of the error messages in Error Messages), no great

difference exists in how you handle error conditions in RPG. The error-code data structure is a little more

straightforward (the program-status data structure is not used). The only disadvantage of the error-code

data structure is that the escape message that occurred was removed from the job log.

The following program shows how to code for an error condition, test for that condition, and send a

message to the QPGMR message queue if the condition occurs:

 I***

 I***

 I*

 I*Program Name: JOBDAPI

 I*

 I*Language: OPM RPG

 I*

 I*Descriptive Name: Get Job Description

 I*

 I*Description: This program handles any errors that are

 I* returned

 I*

 I*Header Files Included: QUSEC - Error Code Parameter

 I* QWDRJOBD - Retrieve Job Description API

 I*

 I***

 I***

 I*

 I* Error Code Parameter Include for the APIs

 I*

 I/COPY QSYSINC/QRPGSRC,QUSEC

 I*

 I* Retrieve Job Description API Include

 I*

APIs 127

I/COPY QSYSINC/QRPGSRC,QWDRJOBD

 I* Program status DS

 IPGMSTS SDS (12)

 I 40 46 MSGIDD

 I*

 I* Command String Data Structure

 I*

 ICMDSTR DS

 I I ’SNDMSG MSG(’’HOLD - 1 26 CMD1

 I ’value is ’

 I 27 36 HOLD

 I I ’’’) TOUSR(QPGMR)’ 37 51 CMD2

 I*

 IMSG3 DS

 I I ’SNDMSG MSG(’’No such- 1 35 MSG3A

 I ’ *JOBD exists’’) ’

 I I ’TOUSR(QPGMR)’ 36 47 MSG3B

 I*

 I* Miscellaneous Data Structure

 I*

 I DS

 I I 390 B 1 40RCVLEN

 I I ’JOBD0100’ 5 12 FORMAT

 C*

 C* Beginning of Mainline

 C*

 C* Two parameters are being passed into this program.

 C*

 C *ENTRY PLIST

 C PARM JOBD 10

 C PARM JOBDL 10

 C*

 C* Move the two parameters passed into LFNAM.

 C*

 C JOBD CAT JOBDL LFNAM 20

 C* Error code bytes provided is set to 0

 C*

 C Z-ADD0 QUSBNB (11)

 C*

 C* Instead of specifying ’QWCRJOBD’, I could have used the

 C* constant QWDBGB that was defined in the QWDRJOBD include.

 C*

 C CALL ’QWDRJOBD’ 01 (10)

 C PARM QWDBH Receiver Var.

 C PARM RCVLEN Length RCVVAR

 C PARM FORMAT Format Name

 C PARM LFNAM Qual. Job Desc

 C PARM QUSBN Error Code

 C 01 EXSR ERROR Error Subroutine

 C*

 C N01 MOVELQWDBHN HOLD

 C*

 C* Let’s tell everyone what the hold value was for this job.

 C*

 C N01 Z-ADD51 LENSTR 155

 C N01 CALL ’QCMDEXC’

 C PARM CMDSTR

 C PARM LENSTR

 C*

 C SETON LR

 C RETRN

 C*

 C* End of MAINLINE

 C*

 C* Subroutine to handle errors received on the CALL

 C*

 C ERROR BEGSR

128 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C MSGIDD IFEQ ’CPF9801’

 C*

 C* Process errors returned from the API.

 C*

 C Z-ADD47 LENSTR 155

 C CALL ’QCMDEXC’

 C PARM MSG3

 C PARM LENSTR

 C END

 C ENDSR

If the CPF9801 exception occurs, your program sends a message to the QPGMR message queue as shown

in the following display:

+--+

| |

| |

| Display Messages |

| |

| |

| System: GENSYS90 |

| Queue : QPGMR Program : *DSPMSG |

| Library . . . : QUSRSYS Library . . . : |

| Severity . . . : 00 Delivery . . . : *HOLD |

| Type reply (if required), press Enter. |

| From . . . : SMITH 07/25/94 11:10:12 |

| No such *JOBD exists |

| |

+--+

If another exception occurs (for example, a library name that is not valid), you do not receive an

indication that an error occurred because of the way the error subroutine is currently coded.

In addition, you can use the Message Handling APIs to receive the messages sent to your program

message queue.

The call to the API fails if you specify a valid job description but use a library qualifier such as *ALLUSR.

The value *ALLUSR is not supported by the description of the required parameter group.

See the following for the same example in different languages:

v COBOL and ILE COBOL

v ILE C

v ILE RPG
 Related concepts

 “API description” on page 49

For most APIs, the API description information has similar section headings.
 Related reference

 Error Messages

 “Example in ILE COBOL: Retrieving the HOLD parameter (exception message)” on page 130

This example expects errors sent as escape messages.

 “Example in ILE C: Retrieving the HOLD parameter (exception message)” on page 131

This example expects errors sent as escape messages.

 “Example in ILE RPG: Retrieving the HOLD parameter (exception message)” on page 133

This program retrieves the HOLD value from a job description. It expects errors to be sent as escape

messages.

 “Example in OPM RPG: Retrieving the HOLD parameter (error code structure)” on page 136

This sample program shows exceptions being returned in the error code parameter.

APIs 129

“Example in OPM RPG: Accessing the HOLD attribute” on page 148

The following program prints out the name of the job description or prints an error if the API could

not find the job description name specified.

Example in ILE COBOL: Retrieving the HOLD parameter (exception message)

This example expects errors sent as escape messages.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Refer to Example in OPM RPG: Retrieving the HOLD parameter (exception message) for the original

example. The following program also works for OPM COBOL.

 IDENTIFICATION DIVISION.

 *

 *Program Name: JOBDAPI

 *

 *Programming Language: COBOL

 *

 *Description: This example expects errors sent as

 * escape messages.

 *

 *Header Files Included: QUSEC - Error Code Parameter

 * QWDRJOBD - Retrieve Job Description API

 *

 *

 PROGRAM-ID. JOBDAPI.

 *

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 *

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 COPY QUSEC OF QSYSINC-QLBLSRC.

 *

 * Retrieve Job Description API Include

 *

 COPY QWDRJOBD OF QSYSINC-QLBLSRC. (2)

 *

 * Command String Data Structure

 *

 01 COMMAND-STRING.

 05 TEXT1 PIC X(26) VALUE ’SNDMSG MSG(’’HOLD value is’.

 05 HOLD PIC X(10).

 05 TEXT2 PIC X(15) VALUE ’’’) TOUSR(QPGMR)’.

 *

 01 COMMAND-LENGTH PIC S9(10)V99999 COMP-3.

 01 RECEIVER-LENGTH PIC S9(9) COMP-4. (4)

 01 FORMAT-NAME PIC X(8) VALUE ’JOBD0100’. (5)

 01 QCMDEXC PIC X(10) VALUE ’QCMDEXC’.

 *

 * Job Description and Library Name Structure

 *

 01 JOBD-AND-LIB-NAME.

 05 JOB-DESC PIC X(10).

 05 JOB-DESC-LIB PIC X(10).

 *

 LINKAGE SECTION.

 *

 * Two Parameters are being passed into this program.

 *

130 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

01 JOBD PIC X(10).

 01 JOBDL PIC X(10).

 *

 PROCEDURE DIVISION USING JOBD, JOBDL. (8)

 MAIN-LINE.

 *

 * Beginning of Mainline

 *

 * Move the two parameters passed into JOB-DESC and JOB-DESC-LIB. (9)

 MOVE JOBD TO JOB-DESC.

 MOVE JOBDL TO JOB-DESC-LIB.

 *

 * Error Code Parameter is set to 0.

 *

 MOVE 0 TO BYTES-PROVIDED. (6)

 *

 * Receiver Length Set to 390.

 *

 MOVE 390 TO RECEIVER-LENGTH. (3)

 *

 * Call the QWDRJOBD API.

 *

 CALL QWDRJOBD USING QWD-JOBD0100, RECEIVER-LENGTH,

 FORMAT-NAME, JOBD-AND-LIB-NAME, QUS-EC.

 *

 * Move HOLD-JOB-QUEUE to HOLD so that we can display the value using

 * the command string.

 *

 MOVE HOLD-JOB-QUEUE TO HOLD.

 *

 * Let’s tell everyone what the hold value was for this job.

 *

 MOVE 51 TO COMMAND-LENGTH.

 CALL QCMDEXC USING COMMAND-STRING, COMMAND-LENGTH.

 *

 STOP RUN.

 Related reference

 “Example in OPM RPG: Retrieving the HOLD parameter (exception message)” on page 124

This example expects errors to be sent as escape messages.

Example in ILE C: Retrieving the HOLD parameter (exception message)

This example expects errors sent as escape messages.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Refer to Example in OPM RPG: Retrieving the HOLD parameter (exception message) for the original

example.

/***/

/***/

/* */

/*Program Name: JOBDAPI */

/* */

/*Programming Language: ILE C */

/* */

/*Description: This example expects errors sent as */

/* escape messages. */

/* */

/*Header Files Included: SIGNAL - C Error Signalling Routines */

/* STDIO - Standard Input/Output */

/* STRING - String Functions */

/* QUSEC - Error Code Parameter */

/* QWDRJOBD - Retrieve Job Description API */

/* QLIEPT - Entry Point Table */

/* */

APIs 131

/***/

/***/

#include <signal.h>

#include <stdio.h>

#include <string.h>

#include <qusec.h> /* Error Code Parameter Include for the APIs */

#include <qwdrjobd.h> (2)

 /* Retrieve Job Description API Include */

#include <qliept.h>

char received[8];

 /* Used to receive error msgs signaled */

 /* from QWDRJOBD API. */

/***/

/* Function: error_handler */

/* Description: This function handles exceptions signalled from the */

/* QWDRJOBD API. The message identifier received is */

/* assigned to the variable ’received’. */

/***/

void error_handler(int dummy)

{

 _INTRPT_Hndlr_Parms_T ExcDta = {0};

 _GetExcData(&ExcDta);

 memcpy(received,ExcDta.Msg_Id,7);

 signal(SIGALL,error_handler);

}

/***/

/* Error Code Structure */

/* */

/* This shows how the user can define the variable length portion of */

/* error code for the exception data. */

/* */

/***/

typedef struct {

 Qus_EC_t ec_fields;

 char Exception_Data[100];

 } error_code_t;

main(int argc, char *argv[] (8)

{

 error_code_t error_code;

 char qual_job_desc[20];

 char *qual_job_ptr = qual_job_desc;

 char rec_var[390];

 char hold_value[10];

 char command_string[53];

 /***/

 /* Enable error handler. */

 /***/

 signal(SIGALL,error_handler);

 memset(hold_value, ’ ’, 10);

 memset(received, ’ ’, 7);

 /***/

 /* Make sure we received the correct number of parameters. The argc */

 /* parameter will contain the number of parameters that was passed */

 /* to this program. This number also includes the program itself, */

 /* so we need to evaluate argc-1. */

 /***/

 if (((argc - 1) < 2) || ((argc - 1 > 2)))

132 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/***/

 /* We did not receive all of the required parameters so exit the */

 /* program. */

 /***/

 {

 exit(1);

 }

 /***/

 /* Move the two parameters passed into qual_job_desc. (9) */

 /***/

 memcpy(qual_job_ptr, argv[1], 10);

 qual_job_ptr += 10;

 memcpy(qual_job_ptr, argv[2], 10); (6)

 /***/

 /* Set the error code parameter to 0. */

 /***/

 error_code.ec_fields.Bytes_Provided = 0;

 /***/

 /* Call the QWDRJOBD API. */

 /***/

 QWDRJOBD(rec_var, /* Receiver Variable */

 390, (3) /* Receiver Length */

 "JOBD0100", (5) /* Format Name */

 qual_job_desc, /* Qualified Job Description */

 &error_code); /* Error Code */

 if(memcmp(received, " ", 7) == 0)

 memcpy(hold_value, ((Qwd_JOBD0100_t *)rec_var)->Hold_Job_Queue, 10);

 /***/

 /* Let’s tell everyone what the hold value was for this job. */

 /***/

 sprintf(command_string,

 "SNDMSG MSG(’HOLD value is %.7s’) TOUSR(QPGMR)",

 hold_value);

 system(command_string);

} /* main */

 Related reference

 “Example in OPM RPG: Retrieving the HOLD parameter (exception message)” on page 124

This example expects errors to be sent as escape messages.

Example in ILE RPG: Retrieving the HOLD parameter (exception message)

This program retrieves the HOLD value from a job description. It expects errors to be sent as escape

messages.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Refer to Example in OPM RPG: Retrieving the HOLD parameter (exception message) for the original

example.

 D***

 D***

 D*

 D* Program Name: JOBDAPI

 D*

 D* Programming Language: ILE RPG

 D*

 D* Description: This program retrieves the HOLD value from

 D* a job description. It expects errors to be

 D* sent as escape messages.

 D*

APIs 133

D* Header Files Included: QUSEC - Error Code Parameter

 D* QWDRJOBD - Retrieve Job Description API

 D*

 D***

 D***

 D*

 D* Error Code parameter include

 D*

 D/COPY QSYSINC/QRPGLESRC,QUSEC

 D*

 D* Retrieve Job Description API Include

 D*

 D/COPY QSYSINC/QRPGLESRC,QWDRJOBD (2)

 D*

 D* Command string data structure

 D*

 DCMD_STRING DS

 D 26 INZ(’SNDMSG MSG(’’HOLD value is ’)

 D HOLD 10

 D 15 INZ(’’’) TOUSR(QPGMR)’)

 D*

 D* Miscellaneous data structure

 D* (4) (2) (3)

 DRCVLEN S 9B 0 INZ(%SIZE(QWDD0100))

 DFORMAT S 8 INZ(’JOBD0100’) (5)

 DLENSTR S 15 5 INZ(%SIZE(CMD_STRING))

 C*

 C* Beginning of mainline

 C*

 C* Two parameters are being passed into this program

 C*

 C *ENTRY PLIST (8)

 C PARM JOBD 10

 C PARM JOBD_LIB 10

 C*

 C* Move the two parameters passed into LFNAM

 C*

 C JOBD CAT JOBD_LIB LFNAM 20 (9)

 C*

 C* Error Code Bytes Provided is set to 0

 C*

 C Z-ADD 0 QUSBPRV (6)

 C*

 C* Call the API.

 C*

 C CALL QWDRJOBD

 C PARM QWDD0100

 C PARM RCVLEN

 C PARM FORMAT

 C PARM LFNAM

 C PARM QUSEC

 C*

 C MOVEL QWDHJQ HOLD

 C*

 C* Let’s tell everyone what the hold value was for this job

 C*

 C CALL ’QCMDEXC’

 C PARM CMD_STRING

 C PARM LENSTR

 C*

 C EVAL *INLR = ’1’

 C RETURN

 C*

 C* End of MAINLINE

 C*

134 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Example in ILE RPG: Handling Error Conditions

Refer to Example in OPM RPG: Handling error conditions for the original example. This example can be

written only in OPM RPG and ILE RPG.

 D***

 D***

 D*

 D* Program Name: JOBDAPI

 D*

 D* Programming Language: ILE RPG

 D*

 D* Description: This program retrieves the HOLD value from

 D* a job description. It expects errors to be

 D* sent as escape messages.

 D*

 D* Header Files Included: QUSEC - Error Code Parameter

 D* QWDRJOBD - Retrieve Job Description API

 D*

 D***

 D***

 D*

 D* Error Code parameter include

 D*

 D/COPY QSYSINC/QRPGLESRC,QUSEC

 D*

 D* Retrieve Job Description API Include

 D*

 D/COPY QSYSINC/QRPGLESRC,QWDRJOBD

 D*

 D* Program status DS

 D*

 DPGMSTS SDS (12)

 D MSG_ID 40 46

 D*

 D* Command string data structure

 D*

 DCMD_STRING DS

 D 26 INZ(’SNDMSG MSG(’’HOLD value is ’)

 D HOLD 10

 D 15 INZ(’’’) TOUSR(QPGMR)’)

 D*

 D* Miscellaneous data structure

 D*

 DRCVLEN S 9B 0 INZ(%SIZE(QWDD0100))

 DFORMAT S 8 INZ(’JOBD0100’)

 DLENSTR S 15 5 INZ(%SIZE(CMD_STRING))

 DNO_JOBD S 47 INZ(’SNDMSG MSG(’’No such *JOBD -

 D exists’’) TOUSR(QPGMR)’)

 DNO_JOBD_SZ S 15 5 INZ(%SIZE(NO_JOBD))

 C*

 C* Beginning of mainline

 C*

 C* Two parameters are being passed into this program

 C*

 C *ENTRY PLIST

 C PARM JOBD 10

 C PARM JOBD_LIB 10

 C*

 C* Move the two parameters passed into LFNAM

 C*

 C JOBD CAT JOBD_LIB LFNAM 20

 C*

 C* Error Code Bytes Provided is set to 0

 C*

 C Z-ADD 0 QUSBPRV (11)

 C*

APIs 135

C* Call the API.

 C*

 C CALL QWDRJOBD 01 (10)

 C PARM QWDD0100

 C PARM RCVLEN

 C PARM FORMAT

 C PARM LFNAM

 C PARM QUSEC

 C*

 C* Test for an error on the API call

 C*

 C IF *IN01 = *ON

 C*

 C* If there was an error, exit to ERROR subroutine

 C*

 C EXSR ERROR

 C*

 C* Else, process the HOLD value

 C*

 C ELSE

 C MOVEL QWDHJQ HOLD

 C*

 C* Let’s tell everyone what the hold value was for this job

 C*

 C CALL ’QCMDEXC’

 C PARM CMD_STRING

 C PARM LENSTR

 C END

 C*

 C EVAL *INLR = ’1’

 C RETURN

 C*

 C* End of MAINLINE

 C*

 C* Subroutine to handle errors received on the CALL

 C*

 C ERROR BEGSR

 C IF MSG_ID = ’CPF9801’

 C*

 C* Process errors returned from the API

 C*

 C CALL ’QCMDEXC’

 C PARM NO_JOBD

 C PARM NO_JOBD_SZ

 C END

 C ENDSR

 Related reference

 “Example in OPM RPG: Retrieving the HOLD parameter (exception message)” on page 124

This example expects errors to be sent as escape messages.

Example in OPM RPG: Retrieving the HOLD parameter (error code structure)

This sample program shows exceptions being returned in the error code parameter.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

In the Example in OPM RPG: Retrieving the HOLD parameter (exception message), QUSBNB was set to

a value of binary zero to tell the API to send exceptions (escape messages) for any error conditions. The

example in this topic uses an error-code data structure as an alternative to receiving exceptions.

Some languages do not support the use of exceptions, so you may prefer to code for errors using error

code structures.

In your programs, you can use error code structures in the following ways:

136 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

v Define an 8-byte error code structure that provides feedback on whether an error occurred. If an error

does occur, you are not able to determine the specifics of the problem.

v Define a 16-byte error code structure that allows you to determine if an error exists and to access the

exception message ID. The exception message IDs are the same as shown in Error messages.

v Define a larger than 16-byte error code structure that provides the same information as described in the

previous two error code structures as well as some or all of the exception data. The exception data is

the message data that is sent with the exception message. Because the vast majority of exception

messages do not have more than 512 bytes of message data, a 600-byte error code structure would be

adequate for almost all cases.

Note: Lengths of 1 through 7 bytes are not valid for the error code structure.

Format of an error code structure

The format of the error code structure (QUSBN) is:

 Offset

Use Type Field Dec Hex

0 0 INPUT BINARY(4) Bytes provided

4 4 OUTPUT BINARY(4) Bytes available

8 8 OUTPUT CHAR(7) Exception ID

15 F OUTPUT CHAR(1) Reserved

16 10 OUTPUT CHAR(*) Exception data

The error code structure can be found in the QSYSINC library in the member QUSEC, as shown at (1).

Which of the files you use depends on the language. For more information on the QSYSINC library, see

Include files and the QSYSINC Library.

The bytes provided field describes the size of the error code structure that you declared in your program

and how you want errors returned. (This was set to 0 as shown by (6) in Example in OPM RPG:

Retrieving the HOLD parameter (exception message).)

The bytes available field describes how many bytes the API could have passed back. If this field is zero,

no exception occurred. The correct method for testing if an error occurred when using a

nonzero-bytes-provided value is to check this field for a value greater than zero, as shown at (2).

The exception ID is the normal 7-character message ID, such as CPF9801, that occurs for an

object-not-found condition. Do not test this field to determine if an error exists. The field is properly set

by the system only if the number of bytes available is greater than 0. Similarly, the exception data

(message data) information is not set properly unless an error exists; for example, any information left

from a prior call is not changed.

The following program is the same as the previous program except that a 16-byte error code structure is

used:

 I***

 I***

 I*

 I*Program Name: JOBDAPI

 I*

 I*Language: OPM RPG

 I*

 I*Descriptive Name: Get Job Description

 I*

 I*Description: This sample program shows exceptions being

APIs 137

I* returned in the error code parameter.

 I*

 I*Header Files Included: QUSEC - Error Code Parameter

 I* QWDRJOBD - Retrieve Job Description API

 I*

 I***

 I***

 I*

 I* Error Code Parameter Include for the APIs

 I*

 I/COPY QSYSINC/QRPGSRC,QUSEC (1)

 I*

 I* Retrieve Job Description API Include

 I*

 I/COPY QSYSINC/QRPGSRC,QWDRJOBD

 I*

 I* Command String Data Structure

 I*

 ICMDSTR DS

 I I ’SNDMSG MSG(’’HOLD - 1 26 CMD1

 I ’value is ’

 I 27 36 HOLD

 I I ’’’) TOUSR(QPGMR)’ 37 51 CMD2

 I*

 IMSG2 DS

 I I ’SNDMSG MSG(’’Progr- 1 43 MSG2A

 I ’am failed with mes-

 I ’sage ID ’

 I 44 50 MSGIDD

 I I ’’’) TOUSR(QPGMR)’ 51 65 MSG2B

 I*

 I* Miscellaneous Data Structure

 I*

 I DS

 I I 390 B 1 40RCVLEN

 I I ’JOBD0100’ 5 12 FORMAT

 C*

 C* Beginning of Mainline

 C*

 C* Two parameters are being passed into this program.

 C*

 C *ENTRY PLIST

 C PARM JOBD 10

 C PARM JOBDL 10

 C*

 C* Move the two parameters passed into the LFNAM.

 C*

 C JOBD CAT JOBDL LFNAM 20

 C*

 C* Error code parameter is set to 16

 C*

 C Z-ADD16 QUSBNB (3)

 C*

 C* Instead of specifying ’QWCRJOBD’, I could have used the

 C* constant QWDBGB that was defined in the QWDRJOBD include.

 C*

 C CALL ’QWDRJOBD’

 C PARM QWDBH Receiver Var.

 C PARM RCVLEN Length RCVVAR

 C PARM FORMAT Format Name

 C PARM LFNAM Qual. Job Desc

 C PARM QUSBN Error Code

 C* See if any errors were returned in the error code parameter.

 C EXSR ERRCOD

 C*

 C*

 C*

138 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C N01 MOVELQWDBHN HOLD

 C*

 C* Let’s tell everyone what the hold value was for this job.

 C*

 C N01 Z-ADD51 LENSTR 155

 C N01 CALL ’QCMDEXC’

 C PARM CMDSTR

 C PARM LENSTR

 C*

 C SETON LR

 C RETRN

 C*

 C* End of MAINLINE

 C*

 C*

 C* Subroutine to handle errors returned in the error code

 C* parameter.

 C*

 C ERRCOD BEGSR

 C QUSBNC IFGT 0 (2)

 C*

 C* Process errors returned from the API.

 C*

 C SETON 01

 C Z-ADD65 LENSTR 155

 C MOVELQUSBND MSGIDD

 C CALL ’QCMDEXC’

 C PARM MSG2

 C PARM LENSTR

 C END

 C ENDSR

The QUSBN error-code data structure is defined in the include file QUSEC, as shown at (1), and the

program initializes the bytes provided field (QUSBNB) with a value of 16, as shown at (3). This sets the

first field of the error code structure to tell the API not to send an exception but to use the first 16 bytes

of the QUSBN parameter to return the error information. After the CALL to the API, the program

accesses the bytes available (QUSBNC), as shown at (2). This contains the number of bytes of information

about the error condition. The program is coded so that it tests if the number exceeds zero. This is the

correct method of determining whether an error has occurred.

If an error occurred, you may want to handle the error in many different methods. The program shown

extracts the specific error message ID that occurred and sends the 7-character value as a message. The

QUSBN parameter is used for both input and output (see Format of an error code structure). The first 4

bytes are input to the API to tell it how to handle exceptions. The remaining bytes are output from the

API about any exception conditions.

To see the value of the HOLD attribute, use the following call statement to run the program against the

QBATCH job description in library QGPL:

CALL JOBDAPI (QBATCH QGPL)

You should see that the value of the HOLD attribute is *NO:

+--+

| |

| |

| Display Messages |

| |

| |

| System: GENSYS90 |

| Queue : QPGMR Program : *DSPMSG |

| Library . . . : QUSRSYS Library . . . : |

| Severity . . . : 00 Delivery . . . : *HOLD |

| Type reply (if required), press Enter. |

| From . . . : SMITH 07/23/94 10:25:14 |

APIs 139

| HOLD value is *NO |

| |

+--+

Example in OPM RPG: Handling error conditions

For this error condition, you should assume that the XYZ job description does not exist. Use the

following call statement to run the error condition:

CALL JOBDAPI (XYZ *LIBL)

You should see that the CPF9801 message (Object not found) was issued:

+--+

| |

| |

| Display Messages |

| |

| System: GENSYS90 |

| Queue : QPGMR Program : *DSPMSG |

| Library . . . : QUSRSYS Library . . . : |

| Severity . . . : 00 Delivery . . . : *HOLD |

| Type reply (if required), press Enter. |

| From . . . : SMITH 07/23/94 10:56:13 |

| Program failed with message ID CPF9801 |

| |

| |

+--+

Then run another error condition. For this error condition, you should assume that the XYZ library does

not exist. Use the following call statement:

CALL JOBDAPI (QPGMR XYZ)

The output is similar to the following:

+--+

| |

| |

| Display Messages |

| |

| System: GENSYS90 |

| Queue : QPGMR Program : *DSPMSG |

| Library . . . : QUSRSYS Library . . . : |

| Severity . . . : 00 Delivery . . . : *HOLD |

| Type reply (if required), press Enter. |

| From . . . : SMITH 07/23/94 10:56:13 |

| Program failed with message ID CPF9810 |

| |

+--+

You should see that the CPF9810 message (Library not found) was issued. An advantage of the error

return variable is that it can contain other information such as message data. The following are the

changes needed to return a 200-byte error code structure:

 I***

 I***

 I*

 I*Program Name: JOBDAPI

 I*

 I*Language: OPM RPG

 I*

 I*Descriptive Name: Get Job Description

 I*

 I*Description: This sample program shows the incorrect

 I* way of using the offset in a user space in RPG.

 I*

140 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

I*Header Files Included: QUSEC - Error Code Parameter

 I* (Copied into Program)

 I* QWDRJOBD - Retrieve Job Description API

 I*

 I***

 I* Error Code Parameter Include for the APIs

 I*

 I* The following QUSEC include is copied into this program

 I* so that the variable-length field can be defined as

 I* fixed length.

 I*

 I*** START HEADER FILE SPECIFICATIONS ****************************

 I*

 I*Header File Name: H/QUSEC

 I*

 I*Descriptive Name: Error Code Parameter.

 I*

 I*5763-SS1 (C) Copyright IBM Corp. 1994,1994

 I*All rights reserved.

 I*US Government Users Restricted Rights -

 I*Use, duplication or disclosure restricted

 I*by GSA ADP Schedule Contract with IBM Corp.

 I*

 I*Licensed Materials-Property of IBM

 I*

 I*

 I*Description: Include header file for the error code parameter.

 I*

 I*Header Files Included: None.

 I*

 I*Macros List: None.

 I*

 I*Structure List: Qus_EC_t

 I*

 I*Function Prototype List: None.

 I*

 I*Change Activity:

 I*

 I*CFD List:

 I*

 I*FLAG REASON LEVEL DATE PGMR CHANGE DESCRIPTION

 I*---- ------------ ----- ------ --------- ----------------------

 I*$A0= D2862000 3D10 931201 DPOHLSON: New Include

 I*

 I*End CFD List.

 I*

 I*Additional notes about the Change Activity

 I*End Change Activity.

 I*** END HEADER FILE SPECIFICATIONS ******************************

 I***

 I*Record structure for Error Code Parameter

 I**** ***

 I*NOTE: The following type definition defines only the fixed

 I* portion of the format. Varying-length field exception

 I* data is not defined here.

 I***

 IQUSBN DS

 I* Qus EC

 I B 1 40QUSBNB

 I* Bytes Provided

 I B 5 80QUSBNC

 I* Bytes Available

 I 9 15 QUSBND

 I* Exception Id

 I 16 16 QUSBNF

 I* Reserved

 I* 17 17 QUSBNG

APIs 141

I*

 I* Varying length

 I 17 200 QUSBNG (4)

 .

 .

 .

 C Z-ADD200 QUSBNB

 C*

 C CALL ’QWDRJOBD’

 C PARM QWDBH Receiver Var.

 C PARM RCVLEN Length RCVVAR

 C PARM FORMAT Format Name

 C PARM LFNAM Qual. Job Desc

 C PARM QUSBN Error Code

The value placed in the QUSBNG variable (4) is the message data associated with the message ID that is

identified as the exception. The message data follows the same format as if you had entered a Receive

Message (RCVMSG) command and requested the message data (MSGDTA) parameter. You can use the

Display Message Description (DSPMSGD) command to determine the layout of the message data for a

particular message ID. When you handle exceptions, the only information provided is the exception ID

and the message data associated with the exception. You cannot receive a diagnostic message (if one were

sent in addition to the escape message) in the error-code data structure. You can use the message

handling APIs to receive messages from your program message queue and to access the other messages

that may be issued from the API.

When you instruct the API to return all errors in the error-code data structure, the escape message does

not appear in the job log. The escape message not appearing in the job log is one of the major differences

between letting the API return errors in an error-code data structure and letting the API send escape

messages. For the error-code data structure, the escape messages have been removed from the job log by

the API. If a diagnostic message is sent first, the diagnostic message exists in the job log and can be

received.

See the following for the same example in different languages:

v COBOL and ILE COBOL

v ILE C

v ILE RPG
 Related concepts

 “Data types” on page 69

APIs support character data and binary data.
 Related reference

 “Example in OPM RPG: Retrieving the HOLD parameter (exception message)” on page 124

This example expects errors to be sent as escape messages.

 Error messages

 “Example in ILE COBOL: Retrieving the HOLD parameter (error code structure)” on page 143

This example shows how to make use of an error returned in the error code structure.

 “Example in ILE C: Retrieving the HOLD parameter (error code structure)” on page 145

This example shows how to make use of an error returned in the error code structure.

 “Example in ILE RPG: Retrieving the HOLD parameter (error code structure)” on page 147

This program retrieves the HOLD value from a job description. It expects errors to be returned via the

error code parameter.

 “Example in OPM RPG: Accessing the HOLD attribute” on page 148

The following program prints out the name of the job description or prints an error if the API could

not find the job description name specified.

142 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Example in ILE COBOL: Retrieving the HOLD parameter (error code structure)

This example shows how to make use of an error returned in the error code structure.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Refer to Example in OPM RPG: Retrieving the HOLD parameter (error code structure) for the original

example. The following program also works for OPM COBOL.

 IDENTIFICATION DIVISION.

 *

 *Program Name: JOBDAPI

 *

 *Programming Language: COBOL

 *

 *Description: This example shows how to make use of an

 * error returned in the error code

 * structure.

 *

 *Header Files Included: QUSEC - Error Code Parameter

 * QWDRJOBD - Retrieve Job Description API

 *

 *

 PROGRAM-ID. JOBDAPI.

 *

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 *

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 *

 * Error Code parameter include. As this sample program

 * uses COPY to include the error code structure, only the first

 * 16 bytes of the error code structure are available. If the

 * application program needs to access the variable length

 * exception data for the error, the developer should physically

 * copy the QSYSINC include and modify the copied include to

 * define additional storage for the exception data.

 *

 COPY QUSEC OF QSYSINC-QLBLSRC. (1)

 *

 * Retrieve Job Description API Include

 *

 COPY QWDRJOBD OF QSYSINC-QLBLSRC.

 *

 * Command String Data Structure

 *

 01 COMMAND-STRING.

 05 TEXT1 PIC X(26) VALUE ’SNDMSG MSG(’’HOLD value is’.

 05 HOLD PIC X(10).

 05 TEXT2 PIC X(15) VALUE ’’’) TOUSR(QPGMR)’.

 *

 * Message Identifier Data Structure

 *

 01 MESSAGE-TWO.

 05 MSG2A PIC X(43)

 VALUE ’SNDMSG MSG(’’Program failed with message ID’.

 05 MSGIDD PIC X(7).

 05 MSG2B PIC X(15) VALUE ’’’) TOUSR(QPGMR)’.

 *

 01 COMMAND-LENGTH PIC S9(10)V99999 COMP-3.

APIs 143

01 RECEIVER-LENGTH PIC S9(9) COMP-4.

 01 FORMAT-NAME PIC X(8) VALUE ’JOBD0100’.

 01 QCMDEXC PIC X(10) VALUE ’QCMDEXC’.

 *

 * Job Description and Library Name Structure

 *

 01 JOBD-AND-LIB-NAME.

 05 JOB-DESC PIC X(10).

 05 JOB-DESC-LIB PIC X(10).

 *

 LINKAGE SECTION.

 *

 * Two Parameters are being passed into this program.

 *

 01 JOBD PIC X(10).

 01 JOBDL PIC X(10).

 *

 PROCEDURE DIVISION USING JOBD, JOBDL.

 MAIN-LINE.

 *

 * Beginning of Mainline

 *

 * Move the two parameters passed into JOB-DESC and JOB-DESC-LIB.

 *

 MOVE JOBD TO JOB-DESC.

 MOVE JOBDL TO JOB-DESC-LIB.

 *

 * Error Code Parameter is set to 16.

 *

 MOVE 16 TO BYTES-PROVIDED. (3)

 *

 * Receiver Length Set to 390.

 *

 MOVE 390 TO RECEIVER-LENGTH.

 *

 * Call the QWDRJOBD API.

 *

 CALL QWDRJOBD USING QWD-JOBD0100, RECEIVER-LENGTH,

 FORMAT-NAME, JOBD-AND-LIB-NAME, QUS-EC.

 *

 * See if any errors were returned in the error code parameter.

 *

 PERFORM ERRCOD.

 *

 * Move HOLD-JOB-QUEUE to HOLD so that we can display the value using

 * the command string.

 *

 MOVE HOLD-JOB-QUEUE TO HOLD.

 *

 * Let’s tell everyone what the hold value was for this job.

 *

 MOVE 51 TO COMMAND-LENGTH.

 CALL QCMDEXC USING COMMAND-STRING, COMMAND-LENGTH.

 *

 STOP RUN.

 *

 * End of Mainline

 *

 *

 * Subroutine to handle errors returned in the error code

 * parameter.

 *

 ERRCOD.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0 (2)

 *

 * Process errors returned from the API.

144 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

*

 MOVE 65 TO COMMAND-LENGTH,

 MOVE EXCEPTION-ID TO MSGIDD,

 CALL QCMDEXC USING MESSAGE-TWO, COMMAND-LENGTH,

 STOP RUN.

 Related reference

 “Example in OPM RPG: Retrieving the HOLD parameter (error code structure)” on page 136

This sample program shows exceptions being returned in the error code parameter.

Example in ILE C: Retrieving the HOLD parameter (error code structure)

This example shows how to make use of an error returned in the error code structure.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Refer to Example in OPM RPG: Retrieving the HOLD parameter (error code structure) for the original

example.

/***/

/***/

/* */

/*Program Name: JOBDAPI */

/* */

/*Programming Language: ILE C */

/* */

/*Description: This example shows how to make use of an */

/* error returned in the error code structure. */

/* */

/*Header Files Included: STDIO - Standard Input/Output */

/* STRING - String Functions */

/* QUSEC - Error Code Parameter */

/* QWDRJOBD - Retrieve Job Description API */

/* QLIEPT - Entry Point Table */

/* */

/***/

/***/

#include <stdio.h>

#include <string.h>

#include <qusec.h> (1) /* Error Code Parameter Include for the API */

#include <qwdrjobd.h> /* Retrieve Job Description API Include */

#include <qliept.h>

/***/

/* Error Code Structure */

/* */

/* This shows how the user can define the variable length portion of */

/* error code for the exception data. */

/* */

/***/

typedef struct {

 Qus_EC_t ec_fields;

 char Exception_Data[100];

 } error_code_t;

main(int argc, char *argv[])

{

 error_code_t error_code;

 char qual_job_desc[20];

 char *qual_job_ptr = qual_job_desc;

 char rec_var[390];

 char hold_value[10];

 char message_id[7];

 char command_string[53];

 char message_string[67];

APIs 145

memset(hold_value, ’ ’, 10);

 /***/

 /* Make sure we received the correct number of parameters. The argc */

 /* parameter will contain the number of parameters that was passed */

 /* to this program. This number also includes the program itself, */

 /* so we need to evaluate argc-1. */

 /***/

 if (((argc - 1) < 2) || ((argc - 1 > 2)))

 /***/

 /* We did not receive all of the required parameters so exit the */

 /* program. */

 /***/

 {

 exit(1);

 }

 /***/

 /* Move the two parameter passed in into qual_job_desc. */

 /***/

 memcpy(qual_job_ptr, argv[1], 10);

 qual_job_ptr += 10;

 memcpy(qual_job_ptr, argv[2], 10);

 /***/

 /* Set the error code parameter to 16. */

 /***/

 error_code.ec_fields.Bytes_Provided = 16; (3)

 /***/

 /* Call the QWDRJOBD API. */

 /***/

 QWDRJOBD(rec_var, /* Receiver Variable */

 390, /* Receiver Length */

 "JOBD0100", /* Format Name */

 qual_job_desc, /* Qualified Job Description */

 &error_code); /* Error Code */

 /***/

 /* If an error was returned, send an error message. */

 /***/

 if(error_code.ec_fields.Bytes_Available > 0) (2)

 {

 memcpy(message_id, error_code.ec_fields.Exception_Id, 7);

 sprintf(message_string,

 "SNDMSG MSG(’Program failed with message ID %.7s’) TOUSR(QPGMR)",

 message_id);

 system(message_string);

 }

 /***/

 /* Let’s tell everyone what the hold value was for this job. */

 /***/

 else

 {

 memcpy(hold_value, ((Qwd_JOBD0100_t *)rec_var)->Hold_Job_Queue, 10);

 sprintf(command_string,

 "SNDMSG MSG(’HOLD value is %.10s’) TOUSR(QPGMR)",

 hold_value);

 system(command_string);

 }

} /* main */

 Related reference

 “Example in OPM RPG: Retrieving the HOLD parameter (error code structure)” on page 136

This sample program shows exceptions being returned in the error code parameter.

146 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Example in ILE RPG: Retrieving the HOLD parameter (error code structure)

This program retrieves the HOLD value from a job description. It expects errors to be returned via the

error code parameter.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Refer to Example in OPM RPG: Retrieving the HOLD parameter (error code structure) for the original

example.

 D***

 D***

 D*

 D* Program Name: JOBDAPI

 D*

 D* Programming Language: ILE RPG

 D*

 D* Description: This program retrieves the HOLD value from

 D* a job description. It expects errors to be

 D* returned via the error code parameter.

 D*

 D* Header Files Included: QUSEC - Error Code Parameter

 D* QWDRJOBD - Retrieve Job Description API

 D*

 D***

 D***

 D*

 D* Error Code parameter include

 D*

 D/COPY QSYSINC/QRPGLESRC,QUSEC (1)

 D*

 D* Retrieve Job Description API Include

 D*

 D/COPY QSYSINC/QRPGLESRC,QWDRJOBD

 D*

 D* Command string data structure

 D*

 DCMD_STRING DS

 D 26 INZ(’SNDMSG MSG(’’HOLD value is ’)

 D HOLD 10

 D 15 INZ(’’’) TOUSR(QPGMR)’)

 DCMD_STR2 DS

 D 43 INZ(’SNDMSG MSG(’’Program failed -

 D with message ID ’)

 D MSG_ID 7

 D 15 INZ(’’’) TOUSR(QPGMR)’)

 D*

 D* Miscellaneous data structure

 D*

 DRCVLEN S 9B 0 INZ(%SIZE(QWDD0100))

 DFORMAT S 8 INZ(’JOBD0100’)

 DLENSTR S 15 5 INZ(%SIZE(CMD_STRING))

 DLENSTR2 S 15 5 INZ(%SIZE(CMD_STR2))

 C*

 C* Beginning of mainline

 C*

 C* Two parameters are being passed into this program

 C*

 C *ENTRY PLIST

 C PARM JOBD 10

 C PARM JOBD_LIB 10

 C*

 C* Move the two parameters passed into LFNAM

 C*

 C JOBD CAT JOBD_LIB LFNAM 20

 C*

 C* Error Code Bytes Provided is set to 16

APIs 147

C*

 C EVAL QUSBPRV = %SIZE(QUSEC) (3)

 C*

 C* Call the API.

 C*

 C CALL QWDRJOBD

 C PARM QWDD0100

 C PARM RCVLEN

 C PARM FORMAT

 C PARM LFNAM

 C PARM QUSEC

 C*

 C* Test for an error on the API call

 C*

 C IF QUSBAVL > 0 (2)

 C*

 C* If there was an error, exit to ERROR subroutine

 C*

 C EXSR ERROR

 C*

 C* Else, process the HOLD value

 C*

 C ELSE

 C MOVEL QWDHJQ HOLD

 C*

 C* Let’s tell everyone what the hold value was for this job

 C*

 C CALL ’QCMDEXC’

 C PARM CMD_STRING

 C PARM LENSTR

 C END

 C*

 C EVAL *INLR = ’1’

 C RETURN

 C*

 C* End of MAINLINE

 C*

 C* Subroutine to handle errors received on the CALL

 C*

 C ERROR BEGSR

 C*

 C* Process errors returned from the API

 C*

 C MOVEL QUSEI MSG_ID

 C CALL ’QCMDEXC’

 C PARM CMD_STR2

 C PARM LENSTR2

 C ENDSR

 Related reference

 “Example in OPM RPG: Retrieving the HOLD parameter (error code structure)” on page 136

This sample program shows exceptions being returned in the error code parameter.

Example in OPM RPG: Accessing the HOLD attribute

The following program prints out the name of the job description or prints an error if the API could not

find the job description name specified.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

The following is the RPG code used to access the HOLD attribute. This is the same type of program as

the RPG program examples in Example in OPM RPG: Retrieving the HOLD parameter (exception

message) and example in OPM RPG: Retrieving the HOLD parameter (error code structure). The

program, named JOBDAPI, prints the value of HOLD if it is found, as shown at 1. If an error occurs, the

program prints a line that contains the error message ID to a spooled file called QPRINT, as shown at 2.

148 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

F***

 F***

 F*

 F*Program Name: JOBDAPI

 F*

 F*Language: OPM RPG

 F*

 F*Descriptive Name: Get Job Description

 F*

 F*Description: The following program prints out the name of

 F* the job description or prints an error if the

 F* API could not find the job description name

 F* specified.

 F*

 F*

 F*Header Files Included: QUSEC - Error Code Parameter

 F* QWDRJOBD - Retrieve Job Description API

 F*

 F***

 F***

 F* JOBDAPIR - Print value of HOLD parameter using API

 F* Uses error-code data structure

 F*

 FQPRINT O F 132 OF PRINTER

 I*

 I* Error Code Parameter Include for the APIs

 I*

 I/COPY QSYSINC/QRPGSRC,QUSEC

 I*

 I* Retrieve Job Description API Include

 I*

 I/COPY QSYSINC/QRPGSRC,QWDRJOBD

 I*

 I*

 I* Dummy data structure used to declare binary field (3)

 I*

 I DS

 I I 390 B 1 40RCVLEN

 I I ’JOBD0100’ 5 12FORMAT

 C*

 C* Beginning of Mainline

 C*

 C* Two parameters are being passed into this program.

 C*

 C *ENTRY PLIST Parm list

 C PARM JOBD 10 Job descrp

 C PARM JOBDL 10 Jobd library

 C*

 C* Move the two parameters passed into LFNAM.

 C*

 C JOBD CAT JOBDL LFNAM 20 Qlfd name

 C*

 C* Error code parameter is set to 16.

 C*

 C Z-ADD16 QUSBNB Bytes provid

 C*

 C* Instead of specifying ’QWCRJOBD’, I could have used the

 C* constant QWDBGB that was defined in the QWDRJOBD include.

 C* Call the API

 C*

 C CALL ’QWDRJOBD’ Parm list

 C PARM QWDBH Receiver Var.

 C PARM RCVLEN Length RCVVAR

 C PARM FORMAT Format Name

 C PARM LFNAM Qual. Job Desc

 C PARM QUSBN Error Code

 C* If no bytes available, API was successful; print HOLD value

APIs 149

C QUSBNC IFEQ 0

 C EXCPTGOOD

 C ENDIF

 C* If some bytes available, API failed; print error message ID

 C QUSBNC IFGT 0

 C EXCPTBAD

 C ENDIF

 C* End of program

 C SETON LR

 C RETRN

 C*

 C* End of MAINLINE

 C**

 O*

 OQPRINT E 106 GOOD

 O ’HOLD value - ’

 O QWDBHN

 OQPRINT E 106 BAD

 O ’Failed. Error ID - ’

 O QUSBND

The following data structures are used:

Error-code data structure

 This defines the two binary fields used and the message ID that is returned for error conditions.

Retrieve job description data structure

 This defines format JOBD0100, a 390-byte data structure with the hold field in positions 77-86.

Dummy data structure

 This contains a field used for the length of the receiver variable. The field is defined as binary

and is in the first 4 bytes. The dummy data structure, as shown at 3, also contains the format

field.

 This data structure is used because RPG only allows binary variables to be defined in the context

of a data structure.

The program retrieves the parameter list that is passed and initializes the fields to be passed to the API.

The API is called and places information into the receiver-variable data structure if information is found.

The API places the information in the error-code data structure if an error occurred and if enough space

was provided to receive the information.

The program prints one of two different lines depending on whether any errors were found:

HOLD value - *NO (1)

Failed. Error ID - CPF9801 (2)

See the following for the same example in different languages:

v COBOL and ILE COBOL

v ILE C

v ILE RPG
 Related reference

 “Example in OPM RPG: Retrieving the HOLD parameter (exception message)” on page 124

This example expects errors to be sent as escape messages.

 “Example in OPM RPG: Retrieving the HOLD parameter (error code structure)” on page 136

This sample program shows exceptions being returned in the error code parameter.

 “Example in ILE COBOL: Accessing the HOLD attribute” on page 151

This example shows how to print messages to spool files.

150 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

“Example in ILE C: Accessing the HOLD attribute” on page 153

This example shows how to print messages to spool files.

 “Example in ILE RPG: Accessing the HOLD attribute” on page 155

This program retrieves the HOLD value from a job description and then prints the value. It expects

errors to be returned via the error code parameter.

Example in ILE COBOL: Accessing the HOLD attribute

This example shows how to print messages to spool files.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Refer to Example in OPM RPG: Accessing the HOLD attribute for the original example. The following

example also works for OPM COBOL.

 IDENTIFICATION DIVISION.

 *

 *Program Name: JOBDAPI

 *

 *Programming Language: ILE COBOL

 *

 *Description: This example shows how to print messages

 * to spool files.

 *

 *Header Files Included: QUSEC - Error Code Parameter

 * QWDRJOBD - Retrieve Job Description API

 *

 *

 PROGRAM-ID. JOBDAPI.

 *

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 *

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 *

 SELECT LISTING ASSIGN TO PRINTER-QPRINT

 ORGANIZATION IS SEQUENTIAL.

 *

 DATA DIVISION.

 FILE SECTION.

 *

 FD LISTING RECORD CONTAINS 132 CHARACTERS

 LABEL RECORDS ARE STANDARD

 DATA RECORD IS LIST-LINE.

 01 LIST-LINE PIC X(132).

 *

 WORKING-STORAGE SECTION.

 *

 * Error Code parameter include. As this sample program

 * uses COPY to include the error code structure, only the first

 * 16 bytes of the error code structure are available. If the

 * application program needs to access the variable length

 * exception data for the error, the developer should physically

 * copy the QSYSINC include and modify the copied include to

 * define additional storage for the exception data.

 *

 COPY QUSEC OF QSYSINC-QLBLSRC.

 *

 * Retrieve Job Description API Include

APIs 151

*

 COPY QWDRJOBD OF QSYSINC-QLBLSRC.

 *

 * Command String Data Structure

 *

 01 HOLD-VALUE.

 05 TEXT1 PIC X(13) VALUE ’HOLD value - ’.

 05 HOLD PIC X(10).

 *

 * Error Message Text

 *

 01 MESSAGE-TEXT.

 05 MSG1 PIC X(19) VALUE ’Failed. Error ID - ’.

 05 MSGID PIC X(7).

 *

 01 RECEIVER-LENGTH PIC S9(9) COMP-4.

 01 FORMAT-NAME PIC X(8) VALUE ’JOBD0100’.

 01 QCMDEXC PIC X(10) VALUE ’QCMDEXC’.

 *

 * Job Description and Library Name Structure

 *

 01 JOBD-AND-LIB-NAME.

 05 JOB-DESC PIC X(10).

 05 JOB-DESC-LIB PIC X(10).

 *

 LINKAGE SECTION.

 *

 * Two Parameters are being passed into this program.

 *

 01 JOBD PIC X(10).

 01 JOBDL PIC X(10).

 *

 PROCEDURE DIVISION USING JOBD, JOBDL.

 MAIN-LINE.

 *

 * Beginning of Mainline

 *

 * Move the two parameters passed into JOB-DESC and JOB-DESC-LIB.

 *

 MOVE JOBD TO JOB-DESC.

 MOVE JOBDL TO JOB-DESC-LIB.

 *

 * Error Code Parameter is set to 16.

 *

 MOVE 16 TO BYTES-PROVIDED.

 *

 * Receiver Length Set to 390.

 *

 MOVE 390 TO RECEIVER-LENGTH.

 *

 * Call the QWDRJOBD API.

 *

 CALL QWDRJOBD USING QWD-JOBD0100, RECEIVER-LENGTH,

 FORMAT-NAME, JOBD-AND-LIB-NAME, QUS-EC.

 *

 * If no bytes available, API was successful; print HOLD value

 *

 IF BYTES-AVAILABLE OF QUS-EC = 0 PERFORM GOOD.

 *

 * If some bytes available, API failed; print Error message ID

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0 PERFORM BAD.

 *

 STOP RUN.

 *

 * End of Mainline

152 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

*

 *

 * Subroutine to perform if no errors were encountered.

 *

 GOOD.

 OPEN OUTPUT LISTING.

 MOVE HOLD-JOB-QUEUE TO HOLD.

 WRITE LIST-LINE FROM HOLD-VALUE.

 *

 * Subroutine to perform if an error was returned in error code.

 *

 BAD.

 OPEN OUTPUT LISTING.

 MOVE EXCEPTION-ID TO MSGID.

 WRITE LIST-LINE FROM MESSAGE-TEXT.

 STOP RUN.

 Related reference

 “Example in OPM RPG: Accessing the HOLD attribute” on page 148

The following program prints out the name of the job description or prints an error if the API could

not find the job description name specified.

Example in ILE C: Accessing the HOLD attribute

This example shows how to print messages to spool files.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Refer to Example in OPM RPG: Accessing the HOLD attribute for the original example.

/***/

/***/

/* */

/*Program Name: JOBDAPI */

/* */

/*Programming Language: ILE C */

/* */

/*Description: This example shows how to print messages */

/* to spool files. */

/* */

/*Header Files Included: STDIO - Standard Input/Output */

/* STRING - String Functions */

/* QUSEC - Error Code Parameter */

/* QWDRJOBD - Retrieve Job Description API */

/* QLIEPT - Entry Point Table */

/* */

/***/

/***/

#include <stdio.h>

#include <string.h>

#include <qusec.h> /* Error Code Parameter Include for the APIs */

#include <qwdrjobd.h> /* Retrieve Job Description API Include */

#include <qliept.h> /* Entry Point Table Include */

/***/

/* Error Code Structure */

/* */

/* This shows how the user can define the variable length portion of */

/* error code for the exception data. */

/* */

/***/

typedef struct {

 Qus_EC_t ec_fields;

APIs 153

char Exception_Data[100];

 } error_code_t;

main(int argc, char *argv[])

{

 error_code_t error_code;

 char qual_job_desc[20];

 char *qual_job_ptr = qual_job_desc;

 char rec_var[390];

 char hold_value[10];

 char message_id[7];

 char command_string[25];

 char message_string[29];

 FILE *stream;

 memset(hold_value, ’ ’, 10);

 /***/

 /* Make sure we received the correct number of parameters. The argc */

 /* parameter will contain the number of parameters that was passed */

 /* to this program. This number also includes the program itself, */

 /* so we need to evaluate argc-1. */

 /***/

 if (((argc - 1) < 2) || ((argc - 1 > 2)))

 /***/

 /* We did not receive all of the required parameters so exit the */

 /* program. */

 /***/

 {

 exit(1);

 }

 /***/

 /* Move the two parameter passed into qual_job_desc. */

 /***/

 memcpy(qual_job_ptr, argv[1], 10);

 qual_job_ptr += 10;

 memcpy(qual_job_ptr, argv[2], 10);

 /***/

 /* Set the error code parameter to 16. */

 /***/

 error_code.ec_fields.Bytes_Provided = 16;

 /***/

 /* Open QPRINT file so that data can be written to it. If the file */

 /* cannot be opened, print a message and exit. */

 /***/

 if((stream = fopen("QPRINT", "wb")) == NULL)

 {

 printf("File could not be opened\n");

 exit(1);

 }

 /***/

 /* Call the QWDRJOBD API. */

 /***/

 QWDRJOBD(rec_var, /* Receiver Variable */

 390, /* Receiver Length */

 "JOBD0100", /* Format Name */

 qual_job_desc, /* Qualified Job Description */

 &error_code); /* Error Code */

 /***/

 /* If an error was returned, print the error message to the QPRINT */

 /* spool file. */

154 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/***/

 if(error_code.ec_fields.Bytes_Available > 0)

 {

 memcpy(message_id, error_code.ec_fields.Exception_Id, 7);

 sprintf(message_string,

 "Failed. Error ID - %.7s",

 message_id);

 fprintf(stream, message_string);

 }

 /***/

 /* Let’s tell everyone what the hold value was for this job. */

 /* The result will be printed in the QPRINT spool file. */

 /***/

 else

 {

 memcpy(hold_value, ((Qwd_JOBD0100_t *)rec_var)->Hold_Job_Queue, 10);

 sprintf(command_string,

 "HOLD value - %.10s",

 hold_value);

 fprintf(stream, command_string);

 }

 fclose(stream);

} /* main */

 Related reference

 “Example in OPM RPG: Accessing the HOLD attribute” on page 148

The following program prints out the name of the job description or prints an error if the API could

not find the job description name specified.

Example in ILE RPG: Accessing the HOLD attribute

This program retrieves the HOLD value from a job description and then prints the value. It expects errors

to be returned via the error code parameter.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Refer to Example in OPM RPG: Accessing the HOLD attribute for the original example.

 F***

 F***

 F*

 F* Program Name: JOBDAPI

 F*

 F* Programming Language: ILE RPG

 F*

 F* Description: This program retrieves the HOLD value from

 F* a job description and then prints the value.

 F* It expects errors to be returned via the

 F* error code parameter.

 F*

 F* Header Files Included: QUSEC - Error Code Parameter

 F* QWDRJOBD - Retrieve Job Description API

 F*

 F***

 F***

 F*

 FQPRINT O F 132 PRINTER OFLIND(*INOF)

 D*

 D* Error Code parameter include

 D*

 D/COPY QSYSINC/QRPGLESRC,QUSEC

 D*

 D* Retrieve Job Description API Include

 D*

 D/COPY QSYSINC/QRPGLESRC,QWDRJOBD

APIs 155

D*

 D* Miscellaneous data structure

 D*

 DRCVLEN S 9B 0 INZ(%SIZE(QWDD0100))

 DFORMAT S 8 INZ(’JOBD0100’)

 C*

 C* Beginning of mainline

 C*

 C* Two parameters are being passed into this program

 C*

 C *ENTRY PLIST

 C PARM JOBD 10

 C PARM JOBD_LIB 10

 C*

 C* Move the two parameters passed into LFNAM

 C*

 C JOBD CAT JOBD_LIB LFNAM 20

 C*

 C* Error Code Bytes Provided is set to 16

 C*

 C EVAL QUSBPRV = %SIZE(QUSEC)

 C*

 C* Call the API.

 C*

 C CALL QWDRJOBD

 C PARM QWDD0100

 C PARM RCVLEN

 C PARM FORMAT

 C PARM LFNAM

 C PARM QUSEC

 C*

 C* If no bytes available, API was successful; print HOLD value

 C*

 C IF QUSBAVL = 0

 C EXCEPT GOOD

 C ELSE

 C*

 C* If some bytes available, API failed; print Error message ID

 C*

 C IF QUSBAVL > 0

 C EXCEPT BAD

 C END

 C END

 C*

 C* End of program

 C*

 C EVAL *INLR = ’1’

 C RETURN

 C*

 C* End of MAINLINE

 C***

 O*

 OQPRINT E GOOD 1 6

 O ’HOLD value - ’

 O QWDHJQ

 OQPRINT E BAD 1 6

 O ’Failed. Error ID - ’

 O QUSEI

 Related reference

 “Example in OPM RPG: Accessing the HOLD attribute” on page 148

The following program prints out the name of the job description or prints an error if the API could

not find the job description name specified.

156 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Example in OPM RPG: Accessing a field value (initial library list)

This sample program shows the correct way of using the offset in a user space in RPG.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

In this section, the JOBDAPI program accesses a variable-length array. The variable-length array is the

initial library list for the job description.

The discussion of the initial library list field in the job description format, JOBD0100 Format, indicates

that the initial library list field is 11 bytes per entry, where each entry is a library name followed by a

blank. Depending on how many libraries are named for the initial library list, the actual amount of space

used varies (by multiples of 11).

The format does not have an entry in the Offset columns for initial library list. It may begin in offset 390,

but you should not rely on this. For example, if a new field is added to the job description format, it will

probably be placed at offset 390, and the initial library list information will be shifted.

To access the initial library list field, use the following two fields found in the format:

v Offset to the initial library list field, as shown at 1 in the program.

v Number of libraries in the initial library list field, as shown at 2.

If you use these field values in the format instead of hard coding an offset and a number of libraries,

your program can work on any future release of a business computing system, even if more job

description attributes are defined in the format. This is an important upward compatibility approach that

you will want to use whenever you code for a list of entries.

The following RPG code sends a message for each library found in the initial library list field. Exceptions

are handled by the RPG program. Although a library name cannot exceed 10 bytes, each entry is 11 bytes

long.

 I***

 I***

 I*

 I*Program Name: JOBDAPI

 I*

 I*Language: OPM RPG

 I*

 I*Descriptive Name: Get Job Description

 I*

 I*Description: This sample program shows the correct

 I* way of using the offset in a user space in RPG.

 I*

 I*Header Files Included: QUSEC - Error Code Parameter

 I* (Copied into Program)

 I* QWDRJOBD - Retrieve Job Description API

 I* (Copied into Program)

 I*

 I***

 I***

 I*

 I* Error Code Parameter Include for the APIs

 I*

 I* The following QUSEC include is copied into this program

 I* so that the variable-length field can be defined as

 I* fixed length.

 I*

 I*

 I*** START HEADER FILE SPECIFICATIONS ****************************

 I*

 I*Header File Name: H/QUSEC

 I*

APIs 157

I*Descriptive Name: Error Code Parameter.

 I*

 I*5763-SS1 (C) Copyright IBM Corp. 1994,1994

 I*All rights reserved.

 I*US Government Users Restricted Rights -

 I*Use, duplication or disclosure restricted

 I*by GSA ADP Schedule Contract with IBM Corp.

 I*

 I*Licensed Materials-Property of IBM

 I*

 I*

 I*Description: Include header file for the error code parameter.

 I*

 I*Header Files Included: None.

 I*

 I*Macros List: None.

 I*

 I*Structure List: Qus_EC_t

 I*

 I*Function Prototype List: None.

 I*

 I*Change Activity:

 I*

 I*CFD List:

 I*

 I*FLAG REASON LEVEL DATE PGMR CHANGE DESCRIPTION

 I*---- ------------ ----- ------ --------- ----------------------

 I*$A0= D2862000 3D10 931201 DPOHLSON: New Include

 I*

 I*End CFD List.

 I*

 I*Additional notes about the Change Activity

 I*End Change Activity.

 I*** END HEADER FILE SPECIFICATIONS ******************************

 I***

 I*Record structure for Error Code Parameter

 I**** ***

 I*NOTE: The following type definition defines only the fixed

 I* portion of the format. Varying-length field exception

 I* data is not defined here.

 I***

 IQUSBN DS

 I* Qus EC

 I B 1 40QUSBNB

 I* Bytes Provided

 I B 5 80QUSBNC

 I* Bytes Available

 I 9 15 QUSBND

 I* Exception Id

 I 16 16 QUSBNF

 I* Reserved

 I* Varying length, had to define len

 I 17 100 QUSBNG

 I*

 I* Retrieve Job Description API Include

 I*

 I* The following QWDRJOBD include is copied into this program

 I* so that the variable-length field can be defined as fixed

 I* length.

 I*

 I*

 I*** START HEADER FILE SPECIFICATIONS ****************************

 I*

 I*Header File Name: H/QWDRJOBD

 I*

 I*Descriptive Name: Retrieve Job Description Information API

 I*

158 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

I*5763-SS1 (C) Copyright IBM Corp. 1994,1994

 I*All rights reserved.

 I*US Government Users Restricted Rights -

 I*Use, duplication or disclosure restricted

 I*by GSA ADP Schedule Contract with IBM Corp.

 I*

 I*Licensed Materials-Property of IBM

 I*

 I*

 I*Description: The Retrieve Job Description Information API

 I* retrieves information from a job description

 I* object and places it into a single variable in the

 I* calling program.

 I*

 I*Header Files Included: None.

 I*

 I*Macros List: None.

 I*

 I*Structure List: Qwd_JOBD0100_t

 I*

 I*Function Prototype List: QWDRJOBD

 I*

 I*Change Activity:

 I*

 I*CFD List:

 I*

 I*FLAG REASON LEVEL DATE PGMR CHANGE DESCRIPTION

 I*---- ------------ ----- ------ --------- ----------------------

 I*$A0= D2862000 3D10 940424 ROCH: New Include

 I*

 I*End CFD List.

 I*

 I*Additional notes about the Change Activity

 I*End Change Activity.

 I*** END HEADER FILE SPECIFICATIONS ******************************

 I***

 I*Prototype for QWDRJOBD API

 I***

 I ’QWDRJOBD’ C QWDBGB

 I***

 I*Type Definition for the JOBD0100 format.

 I**** ***

 I*NOTE: The following type definition defines only the fixed

 I* portion of the format. Any varying-length fields have

 I* to be defined by the user.

 I***

 IQWDBH DS 5000

 I* Qwd JOBD0100

 I B 1 40QWDBHB

 I* Bytes Returned

 I B 5 80QWDBHC

 I* Bytes Available

 I 9 18 QWDBHD

 I* Job Description Name

 I 19 28 QWDBHF

 I* Job Description Lib Name

 I 29 38 QWDBHG

 I* User Name

 I 39 46 QWDBHH

 I* Job Date

 I 47 54 QWDBHJ

 I* Job Switches

 I 55 64 QWDBHK

 I* Job Queue Name

 I 65 74 QWDBHL

 I* Job Queue Lib Name

 I 75 76 QWDBHM

APIs 159

I* Job Queue Priority

 I 77 86 QWDBHN

 I* Hold Job Queue

 I 87 96 QWDBHP

 I* Output Queue Name

 I 97 106 QWDBHQ

 I* Output Queue Lib Name

 I 107 108 QWDBHR

 I* Output Queue Priority

 I 109 118 QWDBHS

 I* Printer Device Name

 I 119 148 QWDBHT

 I* Print Text

 I B 149 1520QWDBHV

 I* Syntax Check Severity

 I B 153 1560QWDBHW

 I* End Severity

 I B 157 1600QWDBHX

 I* Message Log Severity

 I 161 161 QWDBHY

 I* Message Log Level

 I 162 171 QWDBHZ

 I* Message Log Text

 I 172 181 QWDBH0

 I* Log CL Programs

 I 182 191 QWDBH1

 I* Inquiry Message Reply

 I 192 204 QWDBH2

 I* Device Recovery Action

 I 205 214 QWDBH3

 I* Time Slice End Pool

 I 215 229 QWDBH4

 I* Accounting Code

 I 230 309 QWDBH5

 I* Routing Data

 I 310 359 QWDBH6

 I* Text Description

 I 360 360 QWDBH7

 I* Reserved

 I B 361 3640QWDBH8 (1)

 I* Offset Initial Lib List

 I B 365 3680QWDBH9 (2)

 I* Number Libs In Lib list

 I B 369 3720QWDBJB

 I* Offset Request Data

 I B 373 3760QWDBJC

 I* Length Request Data

 I B 377 3800QWDBJH

 I* Job Message Queue Max Size

 I 381 390 QWDBJJ

 I* Job Message Queue Full Actio

 I* 391 391 QWDBJD

 I*

 I* Varying length

 I* 392 402 QWDBJF

 I*

 I* Varying length

 I* 403 403 QWDBJG

 I*

 I*

 I* Command String Data Structure

 I*

 ICMDSTR DS

 I I ’SNDMSG MSG(’’LIBRARY- 1 22 CMD1

 I ’ - ’

 I 23 32 LIB

 I I ’’’) TOUSR(QPGMR)’ 33 47 CMD2

160 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

I*

 I* Miscellaneous Data Structure

 I*

 I DS

 I I 5000 B 1 40RCVLEN

 I I 0 B 5 80X

 I I ’JOBD0100’ 9 16 FORMAT

 C*

 C* Beginning of Mainline

 C*

 C* Two parameters are being passed into this program.

 C*

 C *ENTRY PLIST

 C PARM JOBD 10

 C PARM JOBDL 10

 C*

 C* Move the two parameters passed into LFNAM.

 C*

 C JOBD CAT JOBDL LFNAM 20

 C*

 C* Error code Parameter is set to 100

 C*

 C Z-ADD100 QUSBNB

 C*

 C* Instead of specifying ’QWCRJOBD’, I could have used the

 C* constant QWDBGB that was defined in the QWDRJOBD include.

 C*

 C CALL ’QWDRJOBD’

 C PARM QWDBH Receiver Var.

 C PARM RCVLEN Length RCVVAR

 C PARM FORMAT Format Name

 C PARM LFNAM Qual. Job Desc

 C PARM QUSBN Error Code

 C* See if any errors were returned in the error code parameter.

 C EXSR ERRCOD

 C*

 C N01 Z-ADD47 LENSTR 155

 C*

 C N01 QWDBH8 ADD 1 X

 C N01 1 DO QWDBH9

 C 10 SUBSTQWDBH:X LIB

 C*

 C* Let’s tell everyone what the library value is.

 C*

 C CALL ’QCMDEXC’

 C PARM CMDSTR

 C PARM LENSTR

 C ADD 11 X

 C X IFGE RCVLEN

 C LEAVE

 C ENDIF

 C ENDDO

 C*

 C SETON LR

 C RETRN

 C*

 C* End of MAINLINE

 C*

 C*

 C* Subroutine to handle errors returned in the error code

 C* parameter.

 C*

 C ERRCOD BEGSR

 C QUSBNC IFGT 0

 C SETON 01 Error on API Call

 C*

APIs 161

C* Process errors returned from the API.

 C*

 C END

 C ENDSR

Note: It is important to access the count and to compare for the exact number of libraries to be

processed. If you do not check for the exact number of libraries, you may begin to access

information in the format for the next set of information (in this example, it may be the request

data value).

The output for this program example is as follows:

+--+

| |

| Display Messages |

| |

| System: GENSYS90 |

| Queue : QPGMR Program : *DSPMSG |

| Library . . . : QUSRSYS Library . . . : |

| Severity . . . : 00 Delivery . . . : *HOLD |

| Type reply (if required), press Enter. |

| LIBRARY - SMITH |

| From . . . : SMITH 07/23/94 12:29:38 |

| LIBRARY - QTEMP |

| From . . . : SMITH 07/23/94 12:29:38 |

| LIBRARY - QGPL |

| From . . . : SMITH 07/23/94 12:29:38 |

| LIBRARY - QBLDCPF |

| From . . . : SMITH 07/23/94 12:29:38 |

| LIBRARY - UTIL |

| From . . . : SMITH 07/23/94 12:29:38 |

| LIBRARY - OPENTEST |

+--+

The handling of the initial library list field is typical of what you will find in many APIs.

See the following for the same example in different languages:

v COBOL and ILE COBOL

v ILE C

v ILE RPG
 Related concepts

 “API description” on page 49

For most APIs, the API description information has similar section headings.

 “Extracting a field from the format” on page 53

The format section describes where the field that you want is located within the receiver variable.
 Related reference

 JOBD0100 Format

 “Example in ILE COBOL: Accessing a field value (initial library list)” on page 163

This example shows how to access a field value returned from a retrieve API.

 “Example in ILE C: Accessing a field value (initial library list)” on page 166

This example shows how to access a field value returned from a retrieve API.

 “Example in ILE RPG: Accessing a field value (initial library list)” on page 169

This program retrieves the library list from a job description. It expects errors to be returned via the

error code parameter.

162 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Example in ILE COBOL: Accessing a field value (initial library list)

This example shows how to access a field value returned from a retrieve API.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Refer to Example in OPM RPG: Accessing a field value (initial library list) for the original example. The

following program also works for OPM COBOL.

 IDENTIFICATION DIVISION.

 *

 *Program Name: JOBDAPI

 *

 *Programming Language: COBOL

 *

 *Description: This example shows how to access a

 * field value returned from a retrieve

 * API.

 *

 *Header Files Included: QUSEC - Error Code Parameter

 * QWDRJOBD - Retrieve Job Description API

 *

 *

 PROGRAM-ID. JOBDAPI.

 *

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 *

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 *

 * Error Code parameter include. As this sample program

 * uses COPY to include the error code structure, only the first

 * 16 bytes of the error code structure are available. If the

 * application program needs to access the variable length

 * exception data for the error, the developer should physically

 * copy the QSYSINC include and modify the copied include to

 * define additional storage for the exception data.

 *

 COPY QUSEC OF QSYSINC-QLBLSRC.

 *

 * Retrieve Job Description API Include

 *

 * The header file for the QWDRJOBD API was included in this

 * program so that the varying length portion of the structure

 * can be defined as a fixed portion.

 *

 *** START HEADER FILE SPECIFICATIONS ****************************

 *

 *Header File Name: H/QWDRJOBD

 *

 *Descriptive Name: Retrieve Job Description Information API

 *

 *5763-SS1 (C) Copyright IBM Corp. 1994,1994

 *All rights reserved.

 *US Government Users Restricted Rights -

 *Use, duplication or disclosure restricted

 *by GSA ADP Schedule Contract with IBM Corp.

 *

 *Licensed Materials-Property of IBM

 *

APIs 163

*

 *Description: The Retrieve Job Description Information API

 * retrieves information from a job description

 * object and places it into a single variable in the

 * calling program.

 *

 *Header Files Included: None.

 *

 *Macros List: None.

 *

 *Structure List: Qwd_JOBD0100_t

 *

 *Function Prototype List: QWDRJOBD

 *

 *Change Activity:

 *

 *CFD List:

 *

 *FLAG REASON LEVEL DATE PGMR CHANGE DESCRIPTION

 *---- ------------ ----- ------ --------- ----------------------

 *$A0= D2862000 3D10 940424 ROCH: New Include

 *

 *End CFD List.

 *

 *Additional notes about the Change Activity

 *End Change Activity.

 *

 *** END HEADER FILE SPECIFICATIONS ******************************

 *Prototype for QWDRJOBD API

 77 QWDRJOBD PIC X(00010)

 VALUE "QWDRJOBD".

 *Type Definition for the JOBD0100 format.

 **** ***

 *NOTE: The following type definition defines only the fixed

 * portion of the format. Any varying length field will

 * have to be defined by the user.

 01 RECEIVER-VARIABLE PIC X(05000).

 01 QWD-JOBD0100 REDEFINES RECEIVER-VARIABLE.

 05 BYTES-RETURNED PIC S9(00009) BINARY.

 05 BYTES-AVAILABLE PIC S9(00009) BINARY.

 05 JOB-DESCRIPTION-NAME PIC X(00010).

 05 JOB-DESCRIPTION-LIB-NAME PIC X(00010).

 05 USER-NAME PIC X(00010).

 05 JOB-DATE PIC X(00008).

 05 JOB-SWITCHES PIC X(00008).

 05 JOB-QUEUE-NAME PIC X(00010).

 05 JOB-QUEUE-LIB-NAME PIC X(00010).

 05 JOB-QUEUE-PRIORITY PIC X(00002).

 05 HOLD-JOB-QUEUE PIC X(00010).

 05 OUTPUT-QUEUE-NAME PIC X(00010).

 05 OUTPUT-QUEUE-LIB-NAME PIC X(00010).

 05 OUTPUT-QUEUE-PRIORITY PIC X(00002).

 05 PRINTER-DEVICE-NAME PIC X(00010).

 05 PRINT-TEXT PIC X(00030).

 05 SYNTAX-CHECK-SEVERITY PIC S9(00009) BINARY.

 05 END-SEVERITY PIC S9(00009) BINARY.

 05 MESSAGE-LOG-SEVERITY PIC S9(00009) BINARY.

 05 MESSAGE-LOG-LEVEL PIC X(00001).

 05 MESSAGE-LOG-TEXT PIC X(00010).

 05 LOG-CL-PROGRAMS PIC X(00010).

 05 INQUIRY-MESSAGE-REPLY PIC X(00010).

 05 DEVICE-RECOVERY-ACTION PIC X(00013).

 05 TIME-SLICE-END-POOL PIC X(00010).

164 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

05 ACCOUNTING-CODE PIC X(00015).

 05 ROUTING-DATA PIC X(00080).

 05 TEXT-DESCRIPTION PIC X(00050).

 05 RESERVED PIC X(00001).

 05 OFFSET-INITIAL-LIB-LIST PIC S9(00009) BINARY. (1)

 05 NUMBER-LIBS-IN-LIB-LIST PIC S9(00009) BINARY. (2)

 05 OFFSET-REQUEST-DATA PIC S9(00009) BINARY.

 05 LENGTH-REQUEST-DATA PIC S9(00009) BINARY.

 05 JOB-MESSAGE-QUEUE-MAX-SIZE PIC S9(00009) BINARY.

 05 JOB-MESSAGE-QUEUE-FULL-ACTION PIC X(00010).

 * 05 RESERVED2 PIC X(00001).

 *

 * Varying length

 * 05 INITIAL-LIB-LIST PIC X(00011).

 *

 *

 * Varying length

 * 05 REQUEST-DATA PIC X(00001).

 *

 * Varying length

 *

 * Command String Data Structure

 *

 01 COMMAND-STRING.

 05 TEXT1 PIC X(22) VALUE ’SNDMSG MSG(’’LIBRARY- ’.

 05 LIB PIC X(10).

 05 TEXT2 PIC X(15) VALUE ’’’) TOUSR(QPGMR)’.

 *

 01 COMMAND-LENGTH PIC S9(10)V99999 COMP-3.

 01 RECEIVER-LENGTH PIC S9(9) COMP-4.

 01 FORMAT-NAME PIC X(8) VALUE ’JOBD0100’.

 01 QCMDEXC PIC X(10) VALUE ’QCMDEXC’.

 01 X PIC S9(9) BINARY.

 *

 * Job Description and Library Name Structure

 *

 01 JOBD-AND-LIB-NAME.

 05 JOB-DESC PIC X(10).

 05 JOB-DESC-LIB PIC X(10).

 *

 LINKAGE SECTION.

 *

 * Two Parameters are being passed into this program.

 *

 01 JOBD PIC X(10).

 01 JOBDL PIC X(10).

 *

 PROCEDURE DIVISION USING JOBD, JOBDL.

 MAIN-LINE.

 *

 * Beginning of Mainline

 *

 * Move the two parameters passed into JOB-DESC and JOB-DESC-LIB.

 *

 MOVE JOBD TO JOB-DESC.

 MOVE JOBDL TO JOB-DESC-LIB.

 *

 * Error Code Parameter is set to 100.

 *

 MOVE 100 TO BYTES-PROVIDED.

 *

 * Receiver Length Set to 5000.

 *

 MOVE 5000 TO RECEIVER-LENGTH.

 *

 * Call the QWDRJOBD API.

 *

APIs 165

CALL QWDRJOBD USING RECEIVER-VARIABLE, RECEIVER-LENGTH,

 FORMAT-NAME, JOBD-AND-LIB-NAME, QUS-EC.

 *

 * See if any errors were returned in the error code parameter.

 *

 PERFORM ERRCOD.

 *

 * Add one to the Initial library list offset because COBOL is a

 * Base 1 language.

 *

 MOVE OFFSET-INITIAL-LIB-LIST TO X.

 ADD 1 TO X.

 MOVE 47 TO COMMAND-LENGTH.

 *

 * Let’s tell everyone what the library value was for this job.

 *

 PERFORM NUMBER-LIBS-IN-LIB-LIST TIMES

 MOVE RECEIVER-VARIABLE(X:10) TO LIB,

 CALL QCMDEXC USING COMMAND-STRING, COMMAND-LENGTH,

 ADD 11 TO X,

 PERFORM RECLEN,

 END-PERFORM.

 *

 STOP RUN.

 *

 * End of Mainline

 *

 *

 * Subroutine to handle errors returned in the error code

 * parameter.

 *

 ERRCOD.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 *

 * Process errors returned from the API.

 *

 STOP RUN.

 *

 * Subroutine to check to see if there is enough room in the

 * receiver variable for the next library in the list.

 *

 RECLEN.

 *

 IF (X + 10) >= RECEIVER-LENGTH

 STOP RUN.

 Related reference

 “Example in OPM RPG: Accessing a field value (initial library list)” on page 157

This sample program shows the correct way of using the offset in a user space in RPG.

Example in ILE C: Accessing a field value (initial library list)

This example shows how to access a field value returned from a retrieve API.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Refer to Example in OPM RPG: Accessing a field value (initial library list) for the original example.

/***/

/***/

/* */

/*Program Name: JOBDAPI */

/* */

/*Programming Language: ILE C */

/* */

166 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/*Description: This example shows how to access a field */

/* value returned from a retrieve API. */

/* */

/*Header Files Included: STDIO - Standard Input/Output */

/* STRING - String Functions */

/* QUSEC - Error Code Parameter */

/* QWDRJOBD - Retrieve Job Description API */

/* QLIEPT - Entry Point Table */

/* */

/***/

/***/

#include <stdio.h>

#include <string.h>

#include <qusec.h> /* Error Code Parameter Include for the APIs */

#include <qwdrjobd.h> /* Retrieve Job Description API Include */

#include <qliept.h> /* Entry Point Table Include */

/***/

/* Error Code Structure */

/* */

/* This shows how the user can define the variable-length portion of */

/* error code for the exception data. */

/* */

/***/

typedef struct {

 Qus_EC_t ec_fields;

 char Exception_Data[100];

 } error_code_t;

/***/

/* JOBD0100 Structure */

/* */

/* This shows how the user can define the variable-length portion of */

/* the JOBD0100 format. */

/* */

/***/

typedef struct {

 Qwd_JOBD0100_t data;

 char Lib_Data[5000]; (1) (2)

 } JOBD0100;

main(int argc, char *argv[])

{

 error_code_t error_code;

 char library[10];

 char qual_job_desc[20];

 char *qual_job_ptr = qual_job_desc;

 char rec_var[1000];

 char *rec_ptr = rec_var;

 char hold_value[10];

 char message_id[7];

 char command_string[49];

 int i;

 int num_libs;

 int offset;

 int rec_len = 5000;

 memset(hold_value, ’ ’, 10);

 /***/

 /* Make sure we received the correct number of parameters. The argc */

 /* parameter will contain the number of parameters that was passed */

 /* to this program. This number also includes the program itself, */

 /* so we need to evaluate argc-1. */

 /***/

APIs 167

if (((argc - 1) < 2) || ((argc - 1 > 2)))

 /***/

 /* We did not receive all of the required parameters so exit the */

 /* program. */

 /***/

 {

 exit(1);

 }

 /***/

 /* Move the two parameter passed into qual_job_desc. */

 /***/

 memcpy(qual_job_ptr, argv[1], 10);

 qual_job_ptr += 10;

 memcpy(qual_job_ptr, argv[2], 10);

 /***/

 /* Set the error code parameter to 16. */

 /***/

 error_code.ec_fields.Bytes_Provided = 16;

 /***/

 /* Call the QWDRJOBD API. */

 /***/

 QWDRJOBD(rec_var, /* Receiver Variable */

 rec_len, /* Receiver Length */

 "JOBD0100", /* Format Name */

 qual_job_desc, /* Qualified Job Description */

 &error_code); /* Error Code */

 /***/

 /* If an error was returned, send an error message. */

 /***/

 if(error_code.ec_fields.Bytes_Available > 0)

 {

 /* In this example, nothing was done for the error condition. */

 }

 /***/

 /* Let’s tell everyone what the library value was for this job. */

 /***/

 else

 {

 num_libs = ((JOBD0100 *)rec_var)->data.Number_Libs_In_Lib_list;

 offset = ((JOBD0100 *)rec_var)->data.Offset_Initial_Lib_List;

 /***/

 /* Advance receiver variable pointer to the location where the */

 /* library list begins. */

 /***/

 rec_ptr += offset;

 for(i=0; i<num_libs; i++)

 {

 memcpy(library, rec_ptr, 10);

 sprintf(command_string,

 "SNDMSG MSG(’LIBRARY %.10s’) TOUSR(QPGMR)",

 library);

 system(command_string);

 rec_ptr += 11;

 if((offset + 10) >= rec_len)

 break;

 offset += 11;

 }

168 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

}

} /* main */

 Related reference

 “Example in OPM RPG: Accessing a field value (initial library list)” on page 157

This sample program shows the correct way of using the offset in a user space in RPG.

Example in ILE RPG: Accessing a field value (initial library list)

This program retrieves the library list from a job description. It expects errors to be returned via the error

code parameter.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Refer to Example in OPM RPG: Accessing a field value (initial library list) for the original example.

 D***

 D***

 D*

 D* Program Name: JOBDAPI

 D*

 D* Programming Language: ILE RPG

 D*

 D* Description: This program retrieves the library list from

 D* a job description. It expects errors to be

 D* returned via the error code parameter.

 D*

 D* Header Files Included: QUSEC - Error Code Parameter

 D*

 D* Header Files Modified: QWDRJOBD - Retrieve Job Description API

 D*

 D***

 D***

 D*

 D* Error Code parameter include

 D*

 D/COPY QSYSINC/QRPGLESRC,QUSEC

 D*

 D* The following QWDRJOBD include from QSYSINC is copied into

 D* this program so that it can be declared as 1000 bytes in

 D* size. This size should accommodate the variable length Library

 D* List array.

 D*

 D*** START HEADER FILE SPECIFICATIONS ****************************

 D*

 D*Header File Name: H/QWDRJOBD

 D*

 D*Descriptive Name: Retrieve Job Description Information API

 D*

 D*5763-SS1 (C) Copyright IBM Corp. 1994,1994

 D*All rights reserved.

 D*US Government Users Restricted Rights -

 D*Use, duplication or disclosure restricted

 D*by GSA ADP Schedule Contract with IBM Corp.

 D*

 D*Licensed Materials-Property of IBM

 D*

 D*

 D*Description: The Retrieve Job Description Information API

 D* retrieves information from a job description

 D* object and places it into a single variable in the

 D* calling program.

 D*

 D*Header Files Included: None.

 D*

APIs 169

D*Macros List: None.

 D*

 D*Structure List: Qwd_JOBD0100_t

 D*

 D*Function Prototype List: QWDRJOBD

 D*

 D*Change Activity:

 D*

 D*CFD List:

 D*

 D*FLAG REASON LEVEL DATE PGMR CHANGE DESCRIPTION

 D*---- ------------ ----- ------ --------- ----------------------

 D*$A0= D2862000 3D10 940424 ROCH: New Include

 D*

 D*End CFD List.

 D*

 D*Additional notes about the Change Activity

 D*End Change Activity.

 D*** END HEADER FILE SPECIFICATIONS ******************************

 D***

 D*Prototype for QWDRJOBD API

 D***

 D QWDRJOBD C ’QWDRJOBD’

 D***

 D*Type Definition for the JOBD0100 format.

 D**** ***

 D*NOTE: The following type definition defines only the fixed

 D* portion of the format. Any varying length field will

 D* have to be defined by the user.

 D***

 DQWDD0100 DS 5000

 D* Qwd JOBD0100

 D QWDBRTN 1 4B 0

 D* Bytes Returned

 D QWDBAVL 5 8B 0

 D* Bytes Available

 D QWDJDN 9 18

 D* Job Description Name

 D QWDJDLN 19 28

 D* Job Description Lib Name

 D QWDUN 29 38

 D* User Name

 D QWDJD 39 46

 D* Job Date

 D QWDJS 47 54

 D* Job Switches

 D QWDJQN00 55 64

 D* Job Queue Name

 D QWDJQLN00 65 74

 D* Job Queue Lib Name

 D QWDJQP 75 76

 D* Job Queue Priority

 D QWDHJQ 77 86

 D* Hold Job Queue

 D QWDOQN 87 96

 D* Output Queue Name

 D QWDOQLN 97 106

 D* Output Queue Lib Name

 D QWDOQP 107 108

 D* Output Queue Priority

 D QWDPDN 109 118

 D* Printer Device Name

 D QWDPT 119 148

 D* Print Text

 D QWDSCS 149 152B 0

 D* Syntax Check Severity

 D QWDES 153 156B 0

170 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

D* End Severity

 D QWDMLS 157 160B 0

 D* Message Log Severity

 D QWDMLL 161 161

 D* Message Log Level

 D QWDMLT 162 171

 D* Message Log Text

 D QWDLCLP 172 181

 D* Log CL Programs

 D QWDIMR 182 191

 D* Inquiry Message Reply

 D QWDDRA 192 204

 D* Device Recovery Action

 D QWDTSEP 205 214

 D* Time Slice End Pool

 D QWDAC 215 229

 D* Accounting Code

 D QWDRD 230 309

 D* Routing Data

 D QWDTD 310 359

 D* Text Description

 D QWDERVED00 360 360

 D* Reserved

 D QWDOILL 361 364B 0 (1)

 D* Offset Initial Lib List

 D QWDNLILL 365 368B 0 (2)

 D* Number Libs In Lib list

 D QWDORD 369 372B 0

 D* Offset Request Data

 D QWDLRD 373 376B 0

 D* Length Request Data

 D QWDJMQMS 377 380B 0

 D* Job Message Queue Max Size

 D QWDJMQFA 381 390

 D* Job Msg Queue Full Action

 D*QWDRSV2 391 391

 D*

 D* Varying length

 D*QWDILL 392 402 DIM(00001)

 D*

 D* Varying length

 D*QWDRD00 403 403

 D*

 D* Varying length

 D*

 D* Command string data structure

 D*

 DCMD_STRING DS

 D 22 INZ(’SNDMSG MSG(’’LIBRARY - ’)

 D LIBRARY 10

 D 15 INZ(’’’) TOUSR(QPGMR)’)

 D*

 D* Miscellaneous data structure

 D*

 DRCVLEN S 9B 0 INZ(%SIZE(QWDD0100))

 DFORMAT S 8 INZ(’JOBD0100’)

 DLENSTR S 15 5 INZ(%SIZE(CMD_STRING))

 C*

 C* Beginning of mainline

 C*

 C* Two parameters are being passed into this program

 C*

 C *ENTRY PLIST

 C PARM JOBD 10

 C PARM JOBD_LIB 10

 C*

 C* Move the two parameters passed into LFNAM

APIs 171

C*

 C JOBD CAT JOBD_LIB LFNAM 20

 C*

 C* Error Code Bytes Provided is set to 16

 C*

 C EVAL QUSBPRV = %SIZE(QUSEC)

 C*

 C* Call the API.

 C*

 C CALL QWDRJOBD

 C PARM QWDD0100

 C PARM RCVLEN

 C PARM FORMAT

 C PARM LFNAM

 C PARM QUSEC

 C*

 C* Test for an error on the API call

 C*

 C IF QUSBAVL > 0

 C*

 C* If there was an error, exit to ERROR subroutine

 C*

 C EXSR ERROR

 C ELSE

 C*

 C* Else, add 1 to the Initial library list offset because RPG

 C* is a Base 1 language

 C*

 C QWDOILL ADD 1 X 5 0

 C DO QWDNLILL

 C EVAL LIBRARY = %SUBST(QWDD0100:X:10)

 C*

 C* Let’s tell everyone what the library value is

 C*

 C CALL ’QCMDEXC’

 C PARM CMD_STRING

 C PARM LENSTR

 C ADD 11 X

 C IF (X + 10) > RCVLEN

 C LEAVE

 C ENDIF

 C ENDDO

 C ENDIF

 C*

 C EVAL *INLR = ’1’

 C RETURN

 C*

 C* End of MAINLINE

 C*

 C* Subroutine to handle errors returned in the error code parameter

 C*

 C ERROR BEGSR

 C*

 C* Process errors returned from the API. As this sample program

 C* used /COPY to include the error code structure, only the first

 C* 16 bytes of the error code structure are available. If the

 C* application program needed to access the variable length

 C* exception data for the error, the developer should physically

 C* copy the QSYSINC include and modify the copied include to

 C* define additional storage for the exception data.

 C*

 C ENDSR

 Related reference

 “Example in OPM RPG: Accessing a field value (initial library list)” on page 157

This sample program shows the correct way of using the offset in a user space in RPG.

172 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Example in OPM RPG: Using keys with List Spooled Files API

This example shows the steps necessary to process keyed output from an API.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

This section introduces a new program named LSTSPL. Program LSTSPL uses the List Spooled Files

(QUSLSPL) API to determine the spooled file name, date created, and number of pages for all spooled

files created by the current user of the LSTSPL program. Unlike the earlier JOBDAPI program examples,

where format JOBD0100 of the Retrieve Job Description (QWDRJOBD) API returned dozens of fields

while we were only interested in the HOLD field, the QUSLSPL API provides a keyed interface that

allows LSTSPL to request that only the relevant fields (spooled file name, date created, and number of

pages) be returned. In addition to providing a keyed interface, QUSLSPL also differs from QWDRJOBD in

that the QUSLSPL API retrieves a list of all spooled files into a User Space (*USRSPC) while QWDRJOBD

retrieves information about one specific job description into a program variable.

In the following program example, all the pieces have been put together with an OPM RPG program that

accesses specific information related to spooled files. A report listing this information is created. The

program example does not handle API-related errors. Any errors that are received are returned as

exception messages, as shown at 1.

 F***

 F*

 F* Program Name: LSTSPL

 F*

 F* Program Language: OPM RPG

 F*

 F* Descriptive Name: List Spooled Files for Current User

 F*

 F* Description: This example shows the steps necessary

 F* to process keyed output from an API.

 F*

 F* Header Files Included: QUSEC - Error Code Parameter

 F* QUSGEN - User Space Generic Header

 F* QUSLSPL - List Spooled Files

 F*

 F* APIs Used: QUSLSPL - List Spooled Files

 F* QUSCRTUS - Create User Space

 F* QUSRTVUS - Retrieve User Space

 F*

 F***

 FQSYSPRT O F 132 OF PRINTER

 I*

 I* Copy User Space Generic Header

 I*

 I/COPY QSYSINC/QRPGSRC,QUSGEN (11)

 I*

 I* Copy API Error Code parameter

 I*

 I/COPY QSYSINC/QRPGSRC,QUSEC

 I*

 I* Copy List Spooled Files API include

 I*

 I/COPY QSYSINC/QRPGSRC,QUSLSPL

 I*

 I* Data structure to hold space name

 I*

 ISPCNAM DS

 I I ’SPCNAME ’ 1 10 SPC

 I I ’QTEMP ’ 11 20 LIB

 I*

 I* Data structure to hold requested key values

 I*

 IKEYARA DS (7)

 I I 201 B 1 40KEY1

APIs 173

I I 216 B 5 80KEY2

 I I 211 B 9 120KEY3 (8)

 I*

 I* Receiver variable for QUSRTVUS

 I*

 IRECVR DS 1000

 I*

 I* Other assorted variables

 I*

 I DS

 I B 1 40SIZ

 I B 5 80START

 I B 9 120LENDTA

 I B 13 160KEY#

 I B 17 200PAGES#

 I 17 20 PAGESA

 I I X’00’ 21 21 INTVAL

 C*

 C* Initialize Error Code structure to accept exceptions

 C*

 C Z-ADD0 QUSBNB (1)

 C*

 C* Create the User Space to hold the QUSLSPL API results

 C*

 C CALL ’QUSCRTUS’ (2)

 C PARM SPCNAM

 C PARM ’quslspl’ EXTATR 10

 C PARM 2000 SIZ

 C PARM INTVAL

 C PARM ’*ALL’ PUBAUT 10

 C PARM TXTDSC 50

 C PARM ’*YES’ REPLAC 10

 C PARM QUSBN

 C*

 C* Call QUSLSPL to get all spooled files for *CURRENT user

 C*

 C CALL ’QUSLSPL’ (3)

 C PARM SPCNAM

 C PARM ’SPLF0200’FORMAT 8 (4)

 C PARM ’*CURRENT’USRNAM 10

 C PARM ’*ALL’ OUTQ 20

 C PARM ’*ALL’ FRMTYP 10

 C PARM ’*ALL’ USRDTA 10

 C PARM QUSBN

 C PARM JOBNAM 26

 C PARM KEYARA (5)

 C PARM 3 KEY# (6)

 C*

 C* Retrieve information concerning the User Space and its contents

 C*

 C CALL ’QUSRTVUS’ (9)

 C PARM SPCNAM

 C PARM 1 START Start Rtv at 1

 C PARM 192 LENDTA for length =192

 C PARM QUSBP (10)

 C PARM QUSBN

 C*

 C* Check User Space status for good information

 C*

 C QUSBPD IFEQ ’0100’ (12) Header Fmt

 C QUSBPJ IFEQ ’C’ (14) Complete

 C QUSBPJ OREQ ’P’ or Partial

 C*

 C* Check to see if any entries were put into User Space

 C*

 C QUSBPS IFGT 0 (16)

 C*

174 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C* Keep count of how many list entries we have processed

 C*

 C Z-ADD0 COUNT 90 (17)

 C*

 C* Adjust Offset value to Position value

 C*

 C QUSBPQ ADD 1 START (18)

 C*

 C* Retrieve the lesser of allocated storage or available data

 C*

 C QUSBPT IFLT 1000 (19)

 C Z-ADDQUSBPT LENDTA

 C ELSE

 C Z-ADD1000 LENDTA

 C ENDIF

 C*

 C* Process all entries returned

 C*

 C COUNT DOWLTQUSBPS (20)

 C*

 C* Retrieve spooled file information

 C*

 C CALL ’QUSRTVUS’ (21)

 C PARM SPCNAM

 C PARM START

 C PARM LENDTA

 C PARM RECVR

 C PARM QUSBN

 C*

 C* Loop through returned fields

 C*

 C 4 SUBSTRECVR QUSFV (22)

 C Z-ADD5 X 40

 C DO QUSFVB (23)

 C*

 C* Get header information

 C*

 C 16 SUBSTRECVR:X QUSKR (24)

 C*

 C* Set Y to location of actual data associated with key

 C*

 C X ADD 16 Y 40

 C*

 C* Process the data based on key type

 C*

 C QUSKRC CASEQ201 FILNAM (25)

 C QUSKRC CASEQ211 PAGES

 C QUSKRC CASEQ216 AGE

 C CAS ERROR

 C END

 C*

 C* Adjust X to address next keyed record returned

 C*

 C ADD QUSKRB X

 C ENDDO

 C*

 C* Output information on spooled file

 C*

 C EXCPTPRTLIN (26)

 C*

 C* Adjust START to address next entry

 C*

 C ADD 1 COUNT (27)

 C ADD QUSBPT START

 C ENDDO

 C ENDIF

 C ELSE (15)

APIs 175

C EXCPTLSTERR

 C ENDIF

 C ELSE (13)

 C EXCPTHDRERR

 C ENDIF

 C MOVE ’1’ *INLR (28)

 C RETRN

 C*

 C* Various subroutines

 C*

 C***

 C FILNAM BEGSR

 C*

 C* Extract spooled file name for report

 C*

 C MOVE *BLANKS PRTFIL 10

 C QUSKRG SUBSTRECVR:Y PRTFIL

 C ENDSR

 C***

 C PAGES BEGSR

 C*

 C* Extract number of pages for report

 C*

 C QUSKRG SUBSTRECVR:Y PAGESA

 C ENDSR

 C***

 C AGE BEGSR

 C*

 C* Extract age of spooled file for report

 C*

 C MOVE *BLANKS OPNDAT 7

 C QUSKRG SUBSTRECVR:Y OPNDAT

 C ENDSR

 C***

 C ERROR BEGSR

 C*

 C* If unknown key value, then display the value and end

 C*

 C DSPLY QUSKRC

 C MOVE ’1’ *INLR

 C RETRN

 C ENDSR

 O*

 OQSYSPRT E PRTLIN

 O PRTFIL 10

 O PAGES# 25

 O OPNDAT 40

 OQSYSPRT E LSTERR

 O 22 ’List data not valid ’

 OQSYSPRT E HDRERR

 O 22 ’Unknown Generic Header’

List APIs do not automatically create the user space (*USRSPC) to receive the list. You must first create

one using the Create User Space (QUSCRTUS) API (2). Similar to CL create commands, the QUSCRTUS

API has several parameters that identify the name of the object, the public authority, the object

description text, and so forth.

After creating the user space, you can call the QUSLSPL API to return spooled file information into the

user space (3). The QUSLSPL API supports two formats: SPLF0100, which returns a fixed set of

information about each selected spooled file, and SPLF0200, which returns only user-selected fields.

LSTSPL uses SPLF0200 (4) and passes to the QUSLSPL API a list of keys to identify the selected fields (5)

and the number of keys (6). Because OPM RPG does not support an array (list) of binary values, LSTSPL

defines the key array (KEYARA) as a data structure comprised of contiguous binary(4) fields (7). The

fields are initialized to 201, 216, and 211, which correspond to the keys named spooled file name, date file

176 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

was opened, and total pages, respectively (8). Note that while the user space was created with an initial

size of 2000 bytes (2), most List APIs implicitly extend the user space (up to a maximum of 16MB) in

order to return all available list entries. The reverse, truncation when the user space is too large, is not

performed by list APIs.

Having generated the list, you can now process the user space data.

List APIs (like QUSLSPL) generally provide a generic list header at the beginning of the user space,

which provides information such as the API that created the list, the number of entries (spooled files for

this example) in the list, the size of each entry, and so on. See User spaces for further information. To

access the generic list header, use the Retrieve User Space (QUSRTVUS) API (9). Program LSTSPL

retrieves the generic list header into the data structure QUSBP (10), which is defined in the QUSGEN

QSYSINC /COPY (include) file (11). Note that languages, such as ILE RPG, COBOL, and C, which

support pointers, can avoid this call to QUSRTVUS (and the resulting movement of data) by using the

Retrieve Pointer to User Space (QUSPTRUS) API. See Examples: List Object API for examples.

Program LSTSPL now checks that the format of the generic list header is the one expected (12), and if

not, prints an error line (13). Having verified the header format, LSTSPL now checks the information

status of the list (14) (and if it is not accurate, prints an error line (15)) and that at least one list entry is

available (16).

Having determined that accurate list entries are available, LSTSPL does the following:

v Initializes the COUNT variable to keep track of how many entries have been processed (17)

v Adds one to the base 0 offset (to the first entry in the list) as the QUSRTVUS API assumes base 1

positional values (18)

v Determines how much data is associated with each entry (19) (which is the lesser of either the amount

of storage you allocated to receive a list entry, or the size of a list entry)

v Falls into a DO loop to process all of the available list entries (20)

Within this loop, LSTSPL retrieves each list entry (21), extracts the number of fields returned (22), and

enters an inner DO loop to process all of the available list entry fields (23).

Within this inner loop, the program extracts the field information (24) and processes the field data based

on the key field (25).

When all fields for a given list entry have been processed, LSTSPL generates a print line (26) and

proceeds to the next list entry (27).

When all the list entries have been processed, LSTSPL ends (28).

See the following for the same example in different languages:

v COBOL and ILE COBOL

v ILE C

v ILE RPG
 Related concepts

 “Receiver variables” on page 75

A receiver variable is a program variable that is used as an output field to contain information that is

returned from an API.

 “List APIs overview” on page 78

List APIs return a list unique to a given API. The section discusses the characteristics of a list API and

provides information that you should be aware of when you use list APIs.
 Related reference

APIs 177

“User spaces” on page 70

List APIs require a user space for returning information. A user space is an object consisting of a

collection of bytes that can be used for storing any user-defined information.

 “Example in ILE COBOL: Using keys with List Spooled Files API”

This example shows the steps necessary to process keyed output from an API.

 “Example in ILE C: Using keys with List Spooled Files API” on page 182

This example shows the steps necessary to process keyed output from an API

 “Example in ILE RPG: Using keys with List Spooled Files API” on page 185

This example shows the steps necessary to process keyed output from an API.

Example in ILE COBOL: Using keys with List Spooled Files API

This example shows the steps necessary to process keyed output from an API.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Refer to Example in OPM RPG: Using keys with List Spooled Files API for the original example. The

following program also works for OPM COBOL.

 IDENTIFICATION DIVISION.

 *

 * Program: List Spooled Files for Current User

 *

 * Language: ILE COBOL

 *

 * Description: This example shows the steps necessary to

 * process keyed output from an API.

 *

 * APIs Used: QUSLSPL - List Spooled Files

 * QUSCRTUS - Create User Space

 * QUSPTRUS - Retrieve Pointer to User Space

 *

 *

 PROGRAM-ID. LSTSPL.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT LISTING ASSIGN TO PRINTER-QPRINT

 ORGANIZATION IS SEQUENTIAL.

 DATA DIVISION.

 FILE SECTION.

 FD LISTING RECORD CONTAINS 132 CHARACTERS

 LABEL RECORDS ARE STANDARD

 DATA RECORD IS LIST-LINE.

 01 LIST-LINE PIC X(132).

 *

 WORKING-STORAGE SECTION.

 *

 * Error Code parameter include. As this sample program

 * uses COPY to include the error code structure, only the first

 * 16 bytes of the error code structure are available. If the

 * application program needs to access the variable length

 * exception data for the error, the developer should physically

 * copy the QSYSINC include and modify the copied include to

 * define additional storage for the exception data.

 *

 COPY QUSEC OF QSYSINC-QLBLSRC.

 *

178 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

* Listing text

 *

 01 PRTLIN.

 05 PRTFIL PIC X(10).

 05 FILLER PIC X(05).

 05 PAGES PIC S9(09).

 05 FILLER PIC X(05).

 05 OPNDAT PIC X(07).

 01 LSTERR.

 05 TEXT1 PIC X(22) VALUE "List data not valid".

 01 HDRERR.

 05 TEXT2 PIC X(22) VALUE "Unknown Generic Header".

 *

 01 MISC.

 05 SPC-NAME PIC X(20) VALUE "SPCNAME QTEMP ".

 05 SPC-SIZE PIC S9(09) VALUE 2000 BINARY. (2)

 05 SPC-INIT PIC X(01) VALUE X"00".

 05 SPCPTR POINTER.

 05 SPC-TYPE PIC X(10) VALUE "*USRSPC".

 05 EXT-ATTR PIC X(10) VALUE "QUSLSPL ". (3)

 05 SPC-AUT PIC X(10) VALUE "*ALL".

 05 SPC-TEXT PIC X(50).

 05 SPC-REPLAC PIC X(10) VALUE "*YES".

 05 SPC-DOMAIN PIC X(10) VALUE "*USER".

 05 LST-FORMAT-NAME PIC X(08) VALUE "SPLF0200". (4)

 05 USR-PRF PIC X(10) VALUE "*CURRENT ".

 05 OUTQ PIC X(20) VALUE "*ALL".

 05 FORMTYP PIC X(10) VALUE "*ALL".

 05 USRDTA PIC X(10) VALUE "*ALL".

 05 JOBNAM PIC X(26).

 01 KEYS. (7)

 05 KEY1 PIC S9(09) BINARY VALUE 201. (8)

 05 KEY2 PIC S9(09) BINARY VALUE 216.

 05 KEY3 PIC S9(09) BINARY VALUE 211.

 01 NUMBER-OF-KEYS PIC S9(09) BINARY VALUE 3.

 01 MISC2.

 05 PAGESA PIC X(04).

 05 PAGESN REDEFINES PAGESA

 PIC S9(09) BINARY.

 *

 LINKAGE SECTION.

 *

 * String to map User Space offsets into

 *

 01 STRING-SPACE PIC X(32000).

 *

 * User Space Generic Header include. These includes will be

 * mapped over a User Space.

 *

 COPY QUSGEN OF QSYSINC-QLBLSRC. (11)

 *

 * List Spool Files API include. These includes will be

 * mapped over a User Space. The include is copied into the

 * source so that we can define the variable length portion

 * of QUS-LSPL-KEY-INFO.

 *

 01 QUS-LSPL-KEY-INFO.

 05 LEN-FIELD-INFO-RETD PIC S9(00009) BINARY.

 05 KEY-FIELD-FOR-FIELD-RETD PIC S9(00009) BINARY.

 05 TYPE-OF-DATA PIC X(00001).

 05 RESERV3 PIC X(00003).

 05 DATA-LENGTH PIC S9(00009) BINARY.

 05 DATA-FIELD PIC X(00100).

 *

 * Varying length

 * 05 RESERVED PIC X(00001).

 *

APIs 179

* Varying length

 01 QUS-SPLF0200.

 05 NUM-FIELDS-RETD PIC S9(00009) BINARY.

 05 KEY-INFO.

 09 LEN-FIELD-INFO-RETD PIC S9(00009) BINARY.

 09 KEY-FIELD-FOR-FIELD-RETD PIC S9(00009) BINARY.

 09 TYPE-OF-DATA PIC X(00001).

 09 RESERV3 PIC X(00003).

 09 DATA-LENGTH PIC S9(00009) BINARY.

 09 DATA-FIELD PIC X(00001).

 09 RESERVED PIC X(00001).

 *

 * Varying length

 *

 *

 * Beginning of mainline

 *

 PROCEDURE DIVISION.

 MAIN-LINE.

 *

 * Open LISTING file

 *

 OPEN OUTPUT LISTING.

 *

 * Set Error Code structure to use exceptions

 *

 MOVE 0 TO BYTES-PROVIDED OF QUS-EC. (1)

 *

 * Create a User Space for the List generated by QUSLSPL

 *

 CALL "QUSCRTUS" USING SPC-NAME, EXT-ATTR, SPC-SIZE, (2)

 SPC-INIT, SPC-AUT, SPC-TEXT,

 SPC-REPLAC, QUS-EC, SPC-DOMAIN

 *

 * Call QUSLSPL to get all spooled files for *CURRENT user

 *

 CALL "QUSLSPL" USING SPC-NAME, LST-FORMAT-NAME, USR-PRF, (3) (4)

 OUTQ, FORMTYP, USRDTA, QUS-EC,

 JOBNAM, KEYS, NUMBER-OF-KEYS. (5) (6)

 *

 * Get a resolved pointer to the User Space for performance

 *

 CALL "QUSPTRUS" USING SPC-NAME, SPCPTR, QUS-EC. (9)

 *

 * If valid information was returned

 *

 SET ADDRESS OF QUS-GENERIC-HEADER-0100 TO SPCPTR.

 IF STRUCTURE-RELEASE-LEVEL OF QUS-GENERIC-HEADER-0100 (12)

 NOT EQUAL "0100" WRITE LIST-LINE FROM HDRERR, (13)

 STOP RUN.

 IF (INFORMATION-STATUS OF QUS-GENERIC-HEADER-0100 = "C" (14)

 OR INFORMATION-STATUS OF QUS-GENERIC-HEADER-0100 = "P")

 AND NUMBER-LIST-ENTRIES OF QUS-GENERIC-HEADER-0100 > 0 (16)

 *

 * address current list entry

 *

 SET ADDRESS OF STRING-SPACE TO SPCPTR,

 SET ADDRESS OF QUS-SPLF0200 TO

 ADDRESS OF STRING-SPACE((OFFSET-LIST-DATA

 OF QUS-GENERIC-HEADER-0100 + 1):1), (18)

 *

 * and process all of the entries

 *

180 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

PERFORM PROCES

 NUMBER-LIST-ENTRIES OF QUS-GENERIC-HEADER-0100 TIMES, (20)

 ELSE

 WRITE LIST-LINE FROM LSTERR. (15)

 STOP RUN. (28)

 PROCES.

 *

 * address the first variable length record for this entry

 *

 SET ADDRESS OF QUS-LSPL-KEY-INFO TO ADDRESS OF

 QUS-SPLF0200(5:).

 *

 * process all variable length records associated with this entry

 *

 PERFORM PROCES2 NUM-FIELDS-RETD TIMES. (22) (23)

 WRITE LIST-LINE FROM PRTLIN. (26)

 *

 * after each entry, increment to the next entry

 *

 SET ADDRESS OF STRING-SPACE TO ADDRESS OF QUS-SPLF0200. (27)

 SET ADDRESS OF QUS-SPLF0200 TO ADDRESS OF STRING-SPACE

 ((SIZE-EACH-ENTRY OF QUS-GENERIC-HEADER-0100 + 1):1).

 *

 * Process each variable length record based on key

 *

 PROCES2.

 *

 * extract spooled file name for report

 *

 IF KEY-FIELD-FOR-FIELD-RETD OF QUS-LSPL-KEY-INFO = 201 (24) (25)

 MOVE SPACES TO PRTFIL,

 MOVE DATA-FIELD OF QUS-LSPL-KEY-INFO(

 1:DATA-LENGTH OF QUS-LSPL-KEY-INFO)

 TO PRTFIL.

 *

 * extract number of pages for report

 *

 IF KEY-FIELD-FOR-FIELD-RETD OF QUS-LSPL-KEY-INFO = 211 (24) (25)

 MOVE DATA-FIELD OF QUS-LSPL-KEY-INFO(

 1:DATA-LENGTH OF QUS-LSPL-KEY-INFO)

 TO PAGESA,

 MOVE PAGESN TO PAGES.

 *

 * extract age of spooled file for report

 *

 IF KEY-FIELD-FOR-FIELD-RETD OF QUS-LSPL-KEY-INFO = 216 (24) (25)

 MOVE SPACES TO OPNDAT,

 MOVE DATA-FIELD OF QUS-LSPL-KEY-INFO(

 1:DATA-LENGTH OF QUS-LSPL-KEY-INFO)

 TO OPNDAT.

 *

 * address next variable length entry

 *

 SET ADDRESS OF STRING-SPACE TO ADDRESS OF QUS-LSPL-KEY-INFO.

 SET ADDRESS OF QUS-LSPL-KEY-INFO TO ADDRESS OF

 STRING-SPACE(

 LEN-FIELD-INFO-RETD OF QUS-LSPL-KEY-INFO + 1:1).

 Related reference

 “Example in OPM RPG: Using keys with List Spooled Files API” on page 173

This example shows the steps necessary to process keyed output from an API.

APIs 181

Example in ILE C: Using keys with List Spooled Files API

This example shows the steps necessary to process keyed output from an API

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Refer to Example in OPM RPG: Using keys with List Spooled Files API for the original example.

/**/

/* */

/* Program: List Spooled Files for Current User */

/* */

/* Language: ILE C */

/* */

/* Description: This example shows the steps necessary to */

/* process keyed output from an API */

/* */

/* APIs Used: QUSLSPL - List Spooled Files */

/* QUSCRTUS - Create User Space */

/* QUSPTRUS - Retrieve Pointer to User Space */

/* */

/**/

#include <stdio.h>

#include <string.h>

#include <quslspl.h> /* QUSLSPL API header */

#include <quscrtus.h> /* QUSCRTUS API header */

#include <qusptrus.h> /* QUSPTRUS API header */

#include <qusgen.h> /* Format Structures for User Space (11) */

#include <qusec.h> /* Error Code parameter include for APIs */

#include <qliept.h> /* Entry Point Table include for APIs */

/**/

/* Global variables */

/**/

char spc_name[20] = "SPCNAME QTEMP ";

int spc_size = 2000;

char spc_init = 0x00;

char *spcptr, *lstptr, *lstptr2;

int pages;

struct keys { int key1; (7)

 int key2;

 int key3;} keys = {201, 211, 216}; (8)

int number_of_keys = 3;

char ext_attr[10] = "QUSLSPL ";

char spc_aut[10] = "*ALL ";

char spc_text[50] = " ";

char spc_replac[10] = "*YES ";

char spc_domain[10] = "*USER ";

char format[8] = "SPLF0200"; (4)

char usr_prf[10] = "*CURRENT ";

char outq[20] = "*ALL ";

char formtyp[10] = "*ALL ";

char usrdta[10] = "*ALL ";

char jobnam[26] = " ";

char prtfil[10];

char opndat[7];

typedef struct {

 Qus_LSPL_Key_Info_t Key_Info;

 char Data_Field[100];

 } var_record_t;

Qus_EC_t error_code;

int i, j;

char prtlin[100];

FILE *record;

main()

182 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

{

 /***/

 /* Open print file for report */

 /***/

 if((record = fopen("QPRINT", "wb, lrecl=132, type=record")) == NULL)

 { printf("File QPRINT could not be opened\n");

 exit();

 }

 /***/

 /* Set Error Code structure to use exceptions */

 /***/

 error_code.Bytes_Provided = 0; (1)

 /***/

 /* Create a User Space for the List generated by QUSLSPL */

 /***/

 QUSCRTUS(spc_name, /* User space name and library (2) */

 ext_attr, /* Extended attribute */

 spc_size, /* Initial space size */

 &spc_init, /* Initialize value for space */

 spc_aut, /* Public authorization */

 spc_text, /* Text description */

 spc_replac, /* Replace option */

 error_code, /* Error code structure */

 spc_domain); /* Domain of space */

 /***/

 /* Call QUSLSPL to get all spooled files for *CURRENT user */

 /***/

 QUSLSPL(spc_name, /* User space name and library (3) */

 format, /* API format (4) */

 usr_prf, /* User profile */

 outq, /* Output Queue */

 formtyp, /* Form type */

 usrdta, /* User data */

 error_code, /* Error code structure */

 jobnam, /* Job name */

 keys, /* Keys to return (5) */

 number_of_keys); /* Number of keys (6) */

 /***/

 /* Get a resolved pointer to the User Space */

 /***/

 QUSPTRUS(spc_name, /* User space name and library (9) */

 &spcptr, /* Space pointer */

 error_code); /* Error code structure */

 /***/

 /* If valid information returned */

 /***/

 if(memcmp\

 (((Qus_Generic_Header_0100_t *)spcptr)->Structure_Release_Level, (12)

 "0100", 4) != 0) { printf("Unknown Generic Header"); (13)

 exit();

 }

 if((((Qus_Generic_Header_0100_t *)spcptr)->Information_Status==’C’)\ (14)

 || (((Qus_Generic_Header_0100_t *)spcptr)->Information_Status\

 == ’P’))

 {

 if(((Qus_Generic_Header_0100_t *)spcptr)->Number_List_Entries\ (16)

APIs 183

> 0)

 /***/

 /* address current list entry */

 /***/

 {

 lstptr = spcptr + (((Qus_Generic_Header_0100_t *)spcptr)\

 ->Offset_List_Data);

 /***/

 /* process all the entries */

 /***/

 for(i = 0; i < (((Qus_Generic_Header_0100_t *)spcptr)\ (20)

 ->Number_List_Entries); i++)

 {

 /***/

 /* set lstptr2 to first variable length record for this entry */

 /***/

 lstptr2 = lstptr + 4;

 /***/

 /* process all the variable length records for this entry */

 /***/

 for(j = 0; j < (((Qus_SPLF0200_t *)lstptr)\ (22) (23)

 ->Num_Fields_Retd); j++)

 {

 /***/

 /* extract spooled file name for report */

 /***/

 if((((Qus_LSPL_Key_Info_t *)lstptr2)\ (24) (25)

 ->Key_Field_for_Field_Retd) == 201)

 { memcpy(prtfil, " ", 10);

 memcpy(prtfil, (((var_record_t *)\

 lstptr2)->Data_Field),

 (((Qus_LSPL_Key_Info_t *)lstptr2)\

 ->Data_Length));

 }

 /***/

 /* extract number of pages for report */

 /***/

 if((((Qus_LSPL_Key_Info_t *)lstptr2)\ (24) (25)

 ->Key_Field_for_Field_Retd) == 211)

 { memcpy(&pages, (((var_record_t *)\

 lstptr2)->Data_Field),

 (((Qus_LSPL_Key_Info_t *)lstptr2)\

 ->Data_Length));

 }

 /***/

 /* extract age of spooled file for report */

 /***/

 if((((Qus_LSPL_Key_Info_t *)lstptr2)\ (24) (25)

 ->Key_Field_for_Field_Retd) == 216)

 { memcpy(opndat, " ", 7);

 memcpy(opndat, (((var_record_t *)\

 lstptr2)->Data_Field),

 (((Qus_LSPL_Key_Info_t *)lstptr2)\

184 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

->Data_Length));

 }

 /***/

 /* bump lstptr2 to next variable length record */

 /***/

 lstptr2 = lstptr2 +

 (((Qus_LSPL_Key_Info_t *)lstptr2)\

 ->Len_Field_Info_Retd);

 }

 /***/

 /* print collected information */

 /***/

 sprintf(prtlin, "%.10s %.10d %.7s", (26)

 prtfil, pages, opndat);

 fwrite(prtlin, 1, 100, record);

 /***/

 /* bump lstptr to next list entry */

 /***/

 lstptr += (((Qus_Generic_Header_0100_t *)spcptr)\ (27)

 ->Size_Each_Entry);

 }

 /***/

 /* exit at end of list */

 /***/

 fclose(record);

 exit();

 }

 }

 else

 { printf("List data not valid"); (15)

 exit();

 }

} (28)

 Related reference

 “Example in OPM RPG: Using keys with List Spooled Files API” on page 173

This example shows the steps necessary to process keyed output from an API.

Example in ILE RPG: Using keys with List Spooled Files API

This example shows the steps necessary to process keyed output from an API.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Refer to Example in OPM RPG: Using keys with List Spooled Files API for the original example.

 F***

 F***

 F*

 F* Program: List Spooled Files for Current User

 F*

 F* Language: ILE RPG

 F*

 F* Description: This example shows the steps necessary to

 F* process keyed output from an API.

 F*

 F* APIs Used: QUSLSPL - List Spooled Files

 F* QUSCRTUS - Create User Space

 F* QUSPTRUS - Retrieve Pointer to User Space

APIs 185

F*

 F***

 F***

 F*

 FQPRINT O F 132 PRINTER OFLIND(*INOF)

 D*

 D* Error Code parameter include

 D*

 D/COPY QSYSINC/QRPGLESRC,QUSEC (11)

 D*

 DSPC_NAME S 20 INZ(’SPCNAME QTEMP ’)

 DSPC_SIZE S 9B 0 INZ(2000) (2)

 DSPC_INIT S 1 INZ(X’00’)

 DLSTPTR S *

 DLSTPTR2 S *

 DSPCPTR S *

 DARR S 1 BASED(LSTPTR) DIM(32767)

 D DS

 DPAGES# 1 4B 0

 DPAGESA 1 4

 DKEYS DS (7)

 D 9B 0 INZ(201) (8)

 D 9B 0 INZ(216)

 D 9B 0 INZ(211)

 DKEY# S 9B 0 INZ(3)

 D***

 D*

 D* The following QUSGEN include from QSYSINC is copied into (11)

 D* this program so that it can be declared as BASED on SPCPTR

 D*

 D***

 DQUSH0100 DS BASED(SPCPTR)

 D* Qus Generic Header 0100

 D QUSUA 1 64

 D* User Area

 D QUSSGH 65 68B 0

 D* Size Generic Header

 D QUSSRL 69 72

 D* Structure Release Level

 D QUSFN 73 80

 D* Format Name

 D QUSAU 81 90

 D* API Used

 D QUSDTC 91 103

 D* Date Time Created

 D QUSIS 104 104

 D* Information Status

 D QUSSUS 105 108B 0

 D* Size User Space

 D QUSOIP 109 112B 0

 D* Offset Input Parameter

 D QUSSIP 113 116B 0

 D* Size Input Parameter

 D QUSOHS 117 120B 0

 D* Offset Header Section

 D QUSSHS 121 124B 0

 D* Size Header Section

 D QUSOLD 125 128B 0

 D* Offset List Data

 D QUSSLD 129 132B 0

 D* Size List Data

 D QUSNBRLE 133 136B 0

 D* Number List Entries

 D QUSSEE 137 140B 0

 D* Size Each Entry

 D QUSSIDLE 141 144B 0

 D* CCSID List Ent

186 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

D QUSCID 145 146

 D* Country ID

 D QUSLID 147 149

 D* Language ID

 D QUSSLI 150 150

 D* Subset List Indicator

 D QUSERVED00 151 192

 D* Reserved

 D***

 D*

 D* The following QUSLSPL include from QSYSINC is copied into

 D* this program so that it can be declared as BASED

 D*

 D***

 D**

 D*Prototype for calling List Spooled File API QUSLSPL

 D**

 D QUSLSPL C ’QUSLSPL’

 D**

 D*Type definition for the SPLF0200 format.

 D*******

 D*NOTE: The following type definition only defines the fixed

 D* portion of the format. Any varying length field will

 D* have to be defined by the user.

 D**

 DQUSSPLKI DS 100 BASED(LSTPTR2)

 D* Qus LSPL Key Info

 D QUSLFIR02 1 4B 0

 D* Len Field Info Retd

 D QUSKFFFR00 5 8B 0

 D* Key Field for Field Retd

 D QUSTOD02 9 9

 D* Type of Data

 D QUSR300 10 12

 D* Reserv3

 D QUSDL02 13 16B 0

 D* Data Length

 D*QUSDATA08 17 17

 D*

 D* Varying length

 D*QUSERVED34 18 18

 D*

 D* Varying length

 DQUSF0200 DS BASED(LSTPTR)

 D* Qus SPLF0200

 D QUSNBRFR00 1 4B 0

 D* Num Fields Retd

 D*QUSKI00 18

 D* QUSLFIR03 5 8B 0

 D* QUSKFFFR01 9 12B 0

 D* QUSTOD03 13 13

 D* QUSR301 14 16

 D* QUSDL03 17 20B 0

 D* QUSDATA09 21 21

 D* QUSERVED35 22 22

 D*

 D* Varying length

 C*

 C* Start of mainline

 C*

 C*

 C* Set Error Code structure to use exceptions

 C*

 C Z-ADD 0 QUSBPRV (1)

 C*

 C* Create a User Space for the List generated by QUSLSPL

 C*

APIs 187

C CALL ’QUSCRTUS’ (2)

 C PARM SPC_NAME

 C PARM ’QUSLSPL ’ EXT_ATTR 10

 C PARM SPC_SIZE

 C PARM SPC_INIT

 C PARM ’*ALL’ SPC_AUT 10

 C PARM *BLANKS SPC_TEXT 50

 C PARM ’*YES’ SPC_REPLAC 10

 C PARM QUSEC

 C PARM ’*USER’ SPC_DOMAIN 10

 C*

 C* Call QUSLSPL to get all spooled files for *CURRENT user

 C*

 C CALL ’QUSLSPL’ (3)

 C PARM SPC_NAME

 C PARM ’SPLF0200’ FORMAT 8 (4)

 C PARM ’*CURRENT’ USR_PRF 10

 C PARM ’*ALL’ OUTQ 20

 C PARM ’*ALL’ FORMTYP 10

 C PARM ’*ALL’ USRDTA 10

 C PARM QUSEC

 C PARM JOBNAM 26

 C PARM KEYS (5)

 C PARM KEY# (6)

 C*

 C* Get a resolved pointer to the User Space for performance

 C*

 C CALL ’QUSPTRUS’ (9)

 C PARM SPC_NAME

 C PARM SPCPTR

 C PARM QUSEC

 C*

 C* If valid information was returned

 C*

 C QUSSRL IFEQ ’0100’ (12)

 C QUSIS IFEQ ’C’ (14)

 C QUSIS OREQ ’P’

 C*

 C* and list entries were found

 C*

 C QUSNBRLE IFGT 0 (16)

 C*

 C* set LSTPTR to the first byte of the User Space

 C*

 C EVAL LSTPTR = SPCPTR

 C*

 C* increment LSTPTR to the first List entry

 C*

 C EVAL LSTPTR = %ADDR(ARR(QUSOLD + 1)) (18)

 C*

 C* and process all of the entries

 C*

 C DO QUSNBRLE (20)

 C*

 C* set LSTPTR2 to the first variable length record for this entry

 C*

 C Z-ADD 5 X 9 0

 C EVAL LSTPTR2 = %ADDR(ARR(X)) (22)

 C DO QUSNBRFR00 (23)

 C*

 C* process the data based on key type

 C*

 C QUSKFFFR00 CASEQ 201 FILNAM (24)

 C QUSKFFFR00 CASEQ 211 PAGES

 C QUSKFFFR00 CASEQ 216 AGE

 C CAS ERROR

 C END

188 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C*

 C* increment LSTPTR2 to next variable length record

 C*

 C ADD QUSLFIR02 X

 C EVAL LSTPTR2 = %ADDR(ARR(X))

 C END

 C EXCEPT PRTLIN (26)

 C*

 C* after each entry, increment LSTPTR to the next entry

 C*

 C EVAL LSTPTR = %ADDR(ARR(QUSSEE + 1)) (27)

 C END

 C END

 C ELSE

 C EXCEPT LSTERR (15)

 C END

 C ELSE

 C EXCEPT HDRERR (13)

 C END

 C*

 C* Exit the program

 C*

 C EVAL *INLR = ’1’ (28)

 C RETURN

 C***

 C FILNAM BEGSR

 C*

 C* extract spooled file name for report

 C*

 C MOVE *BLANKS PRTFIL 10

 C EVAL PRTFIL = %SUBST(QUSSPLKI:17:QUSDL02) (25)

 C ENDSR

 C***

 C PAGES BEGSR

 C*

 C* extract number of pages for report

 C*

 C EVAL PAGESA = %SUBST(QUSSPLKI:17:QUSDL02) (25)

 C ENDSR

 C***

 C AGE BEGSR

 C*

 C* extract age of spooled file for report

 C*

 C MOVE *BLANKS OPNDAT 7

 C EVAL OPNDAT = %SUBST(QUSSPLKI:17:QUSDL02) (25)

 C ENDSR

 C***

 C ERROR BEGSR

 C QUSKFFFR00 DSPLY

 C EVAL *INLR = ’1’

 C RETURN

 C ENDSR

 C***

 OQPRINT E PRTLIN 1

 O PRTFIL 10

 O PAGES# 25

 O OPNDAT 40

 OQPRINT E LSTERR 1

 O 22 ’List data not valid’

 OQPRINT E HDRERR 1

 O 22 ’Unknown Generic Header’

 Related reference

 “Example in OPM RPG: Using keys with List Spooled Files API” on page 173

This example shows the steps necessary to process keyed output from an API.

APIs 189

Scenario: Integrated Language Environment (ILE) APIs

The example APIs in this section represent two general functions of APIs--change and retrieve.

For a detailed description of how to use the API, use information in API information format.

The following examples illustrate the use of ILE APIs. The examples use the registration facility APIs. The

registration facility APIs provide a means for storing and retrieving information about exit points and exit

programs. An exit point is a specific point in a system function or program where control may be passed

to one or more exit programs. An exit program is a program to which control is passed from an exit point.

The examples show how to manipulate exit points and exit programs, how to retrieve information about

exit points and exit programs that are stored with the registration facility, and how to call an exit

program.

Several of the registration facility APIs manipulate the information that the registration facility repository

contains. One API is provided for retrieving information from the repository.

Note: These descriptions and the programs that support them are in RPG. You can, however, view the

same programs in different languages.

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

 Related concepts

 “APIs for the Integrated Language Environment” on page 11
The Integrated Language Environment (ILE) model is a set of tools and associated system support

designed to enhance program development on a system.

 “API information format” on page 48
API names contain verbs that are similar to the i5/OS licensed program: change, create, remove, and

retrieve.
 Related reference

 Generic header files using ILE APIs

 Example: Keyed interface using ILE APIs

 Error handling using ILE APIs

 Examples: Receiver variables using ILE APIs

190 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

|
|
|
|
|

|
|

|

|
|

|

|
|
|

Example in ILE C: Register exit point and add exit program

This program registers an exit point with the registration facility. After the successful completion of the

registration of the exit point, an exit program is added to the exit point.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
/**/

/* PROGRAM: Register an Exit Point */

/* Add an Exit Program */

/* */

/* LANGUAGE: ILE C */

/* */

/* DESCRIPTION: This program registers an exit point with the */

/* registration facility. After the successful */

/* completion of the registration of the exit point, */

/* an exit program is added to the exit point. */

/* */

/* APIs USED: QusRegisterExitPoint - Register Exit Point */

/* QusAddExitProgram - Add Exit Program */

/* */

/**/

/* NOTE: This example uses APIs that are shipped with *EXCLUDE */

/* authority. The user needs *USE authority to the service */

/* program QUSRGFA1 to use these APIs. */

/**/

/**/

/* Includes */

/**/

#include <stdio.h>

#include <signal.h>

#include <string.h>

#include <stdlib.h>

#include <qusrgfa1.h>

#include <qusec.h>

#include <qliept.h>

/**/

/* Structures */

/**/

typedef struct { /* Error code */

 Qus_EC_t ec_fields;

 char exception_data[100];

} error_code_struct;

typedef struct { /* Exit point control keys */

 int num_rec;

 Qus_Vlen_Rec_4_t max_pgms_rec;

 int max_pgms;

 Qus_Vlen_Rec_4_t descrip_rec;

 char text_desc[50];

} rgpt_controls;

typedef struct { /* Exit program attribute keys*/

 int num_rec;

 Qus_Vlen_Rec_4_t replace_rec;

 char replace;

 char Reserved[3];

 Qus_Vlen_Rec_4_t CCSID_rec;

 int CCSID;

} addep_attributes;

/**/

/* */

/* main */

/* */

APIs 191

/**/

int main()

{

 int ccsid,

 pgm_num,

 num_of_attrs,

 epgm_num,

 len_epgm_data,

 add_epgm_num,

 *ccsid_ptr,

 *pgm_num_ptr;

 error_code_struct error_code;

 rgpt_controls control_keys;

 addep_attributes attrib_keys;

 /**/

 /* Register the exit point with the registration facility. If the */

 /* registration of the exit point is successful, add an exit */

 /* program to the exit point. */

 /**/

 /**/

 /* Initialize the error code parameter. To signal exceptions to */

 /* this program by the API, you need to set the bytes provided */

 /* field of the error code to zero. Because this program has */

 /* exceptions sent back through the error code parameter, it sets */

 /* the bytes provided field to the number of bytes that it gives */

 /* the API for the parameter. */

 /**/

 error_code.ec_fields.Bytes_Provided=sizeof(error_code_struct);

 /**/

 /* Set the exit point controls. Each control field is passed to */

 /* the API using a variable length record. Each record must */

 /* start on a 4-byte boundary. */

 /**/

 /**/

 /* Set the total number of controls that are being specified on */

 /* the call. This program lets the API take the default for the */

 /* controls that are not specified. */

 /**/

 control_keys.num_rec=2;

 /**/

 /* Set the values for the two controls that are specified: */

 /* Maximum number of exit programs = 10 */

 /* Exit point text description = "EXIT POINT EXAMPLE" */

 /**/

 control_keys.max_pgms_rec.Length_Vlen_Record=16;

 control_keys.max_pgms_rec.Control_Key=3;

 control_keys.max_pgms_rec.Length_Data=4;

 control_keys.max_pgms=10;

 control_keys.descrip_rec.Length_Vlen_Record=62;

 control_keys.descrip_rec.Control_Key=8;

 control_keys.descrip_rec.Length_Data=50;

 memcpy(control_keys.text_desc,

 "EXIT POINT EXAMPLE ",50);

 /**/

 /* Call the API to register the exit point. */

 /**/

 QusRegisterExitPoint("EXAMPLE_EXIT_POINT ",

 "EXMP0100",

 &control_keys,

192 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

&error_code);

 /**/

 /* If an exception occurs, the API returns the exception in the */

 /* error code parameter. The bytes available field is set to */

 /* zero if no exception occurs and nonzero if an exception does */

 /* occur. */

 /**/

 if (error_code.ec_fields.Bytes_Available != 0)

 {

 printf("ATTEMPT TO REGISTER EXIT POINT FAILED WITH EXCEPTION: %.7s",

 error_code.ec_fields.Exception_Id);

 exit(1);

 }

 /**/

 /* If the call to register an exit point is successful, add */

 /* an exit program to the exit point. */

 /**/

 /**/

 /* Set the total number of exit program attributes that are being */

 /* specified on the call. This program lets the API take the */

 /* default for the attributes that are not specified. Each */

 /* attribute record must be 4-byte aligned. */

 /**/

 attrib_keys.num_rec=2;

 /**/

 /* Set the values for the two attributes that are being */

 /* specified: */

 /* Replace exit program = 1 */

 /* Exit program data CCSID = 37 */

 /**/

 attrib_keys.replace_rec.Length_Vlen_Record=16;

 attrib_keys.replace_rec.Control_Key=4;

 attrib_keys.replace_rec.Length_Data=1;

 attrib_keys.replace=’1’;

 attrib_keys.CCSID_rec.Length_Vlen_Record=16;

 attrib_keys.CCSID_rec.Control_Key=3;

 attrib_keys.CCSID_rec.Length_Data=4;

 attrib_keys.CCSID=37;

 /**/

 /* Call the API to add the exit program. */

 /**/

 QusAddExitProgram("EXAMPLE_EXIT_POINT ",

 "EXMP0100",

 1,

 "EXAMPLEPGMEXAMPLELIB",

 "EXAMPLE EXIT PROGRAM DATA",

 25,

 &attrib_keys,

 &error_code);

 /**/

 /* If an exception occurs, the API returns the exception in the */

 /* error code parameter. The bytes available field is set to */

 /* zero if no exception occurs and nonzero if an exception does */

 /* occur. */

 /**/

 if (error_code.ec_fields.Bytes_Available != 0)

 {

 printf("ATTEMPT TO ADD AN EXIT PROGRAM FAILED WITH EXCEPTION: %.7s",

 error_code.ec_fields.Exception_Id);

 exit(1);

APIs 193

}

} /* End program */

Example in OPM COBOL: Register exit point and add exit program

This program registers an exit point with the registration facility. After the successful completion of the

registration of the exit point, an exit program is added to the exit point.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 IDENTIFICATION DIVISION.

 *

 * Program: Register an Exit Point

 * Add an Exit Program

 *

 * Language: OPM COBOL

 *

 * Description: This program registers an exit point with the

 * registration facility. After the successful

 * completion of the registration of the exit point,

 * an exit program is added to the exit point.

 *

 * APIs Used: QUSRGPT - Register Exit Point

 * QUSADDEP - Add Exit Program

 *

 *

 PROGRAM-ID. REGFAC1.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT LISTING ASSIGN TO PRINTER-QPRINT

 ORGANIZATION IS SEQUENTIAL.

 DATA DIVISION.

 FILE SECTION.

 FD LISTING RECORD CONTAINS 132 CHARACTERS

 LABEL RECORDS ARE STANDARD

 DATA RECORD IS LIST-LINE.

 01 LIST-LINE PIC X(132).

 WORKING-STORAGE SECTION.

 *

 * Keyed Variable Length Record includes

 *

 COPY QUS OF QSYSINC-QLBLSRC.

 *

 * Error Code parameter include. As this sample program

 * uses COPY to include the error code structure, only the first

 * 16 bytes of the error code structure are available. If the

 * application program needs to access the variable length

 * exception data for the error, the developer should physically

 * copy the QSYSINC include and modify the copied include to

 * define additional storage for the exception data.

 *

 COPY QUSEC OF QSYSINC-QLBLSRC.

 *

 * Error message text

 *

 01 BAD-REG.

 05 TEXT1 PIC X(39)

 VALUE "Attempt to register exit point failed: ".

194 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

05 EXCEPTION-ID PIC X(07).

 01 BAD-ADD.

 05 TEXT1 PIC X(36)

 VALUE "Attempt to add exit program failed: ".

 05 EXCEPTION-ID PIC X(07).

 *

 * Miscellaneous elements

 *

 01 VARREC.

 05 NBR-RECORDS PIC S9(09) BINARY.

 05 VAR-RECORDS PIC X(1000).

 01 MISC.

 05 VAR-OFFSET PIC S9(09) VALUE 1.

 05 BINARY-NUMBER PIC S9(09) BINARY.

 05 BINARY-CHAR REDEFINES BINARY-NUMBER PIC X(04).

 05 X PIC S9(09) BINARY.

 05 EXIT-POINT-NAME PIC X(20) VALUE "EXAMPLE_EXIT_POINT".

 05 EXIT-PGM PIC X(20) VALUE "EXAMPLEPGMEXAMPLELIB".

 05 EXIT-PGM-NBR PIC S9(09) VALUE 1 BINARY.

 05 EXIT-PGM-DATA PIC X(25)

 VALUE "EXAMPLE EXIT PROGRAM DATA".

 05 FORMAT-NAME PIC X(08) VALUE "EXMP0100".

 *

 * Beginning of mainline

 *

 PROCEDURE DIVISION.

 MAIN-LINE.

 *

 * Register the exit point with the registration facility. If the

 * registration of the exit point is successful, add an exit

 * program to the exit point.

 *

 * Initialize the error code parameter. To signal exceptions to

 * this program by the API, you need to set the bytes provided

 * field of the error code to zero. Because this program has

 * exceptions sent back through the error code parameter, it sets

 * the bytes provided field to the number of bytes it gives the

 * API for the parameter.

 *

 MOVE 16 TO BYTES-PROVIDED.

 *

 * Set the exit point controls. Each control field is passed to

 * the API using a variable length record. Each record must

 * start on a 4-byte boundary.

 *

 * Set the total number of controls that are being specified on

 * the call. This program lets the API take the default for the

 * controls that are not specified.

 *

 MOVE 2 TO NBR-RECORDS.

 *

 * Set the values for the two controls that are specified:

 * Maximum number of exit programs = 10

 * Exit point description = ’EXIT POINT EXAMPLE’

 *

 MOVE 3 TO CONTROL-KEY OF QUS-VLEN-REC-4.

 MOVE 4 TO LENGTH-DATA OF QUS-VLEN-REC-4.

 MOVE 10 TO BINARY-NUMBER.

 MOVE BINARY-CHAR TO VAR-RECORDS((VAR-OFFSET + 12):4).

 PERFORM CALCULATE-NEXT-OFFSET.

 MOVE 8 TO CONTROL-KEY OF QUS-VLEN-REC-4.

 MOVE 50 TO LENGTH-DATA OF QUS-VLEN-REC-4.

 MOVE "EXIT POINT EXAMPLE"

 TO VAR-RECORDS((VAR-OFFSET + 12):50).

 PERFORM CALCULATE-NEXT-OFFSET.

 C*

 C* Call the API to add the exit point.

APIs 195

C*

 CALL "QUSRGPT" USING EXIT-POINT-NAME OF MISC,

 FORMAT-NAME OF MISC,

 VARREC, QUS-EC.

 C*

 C* If an exception occurs, the API returns the exception in the

 C* error code parameter. The bytes available field is set to

 C* zero if no exception occurs and greater than zero if an

 C* exception does occur.

 C*

 IF BYTES-AVAILABLE OF QUS-EC > 0

 OPEN OUTPUT LISTING,

 MOVE EXCEPTION-ID OF QUS-EC

 TO EXCEPTION-ID OF BAD-REG,

 WRITE LIST-LINE FROM BAD-REG,

 STOP RUN.

 *

 * If the call to register an exit point is successful, add

 * an exit program to the exit point.

 *

 * Set the total number of exit program attributes that are being

 * specified on the call. This program lets the API take the

 * default for the attributes that are not specified. Each

 * attribute record must be 4-byte aligned.

 *

 MOVE 2 TO NBR-RECORDS.

 MOVE 1 TO VAR-OFFSET.

 *

 * Set the values for the two attributes that are being specified:

 * Replace exit program = 1

 * Exit program data CCSID = 37

 *

 MOVE 4 TO CONTROL-KEY OF QUS-VLEN-REC-4.

 MOVE 1 TO LENGTH-DATA OF QUS-VLEN-REC-4.

 MOVE 1 TO VAR-RECORDS((VAR-OFFSET + 12):1).

 PERFORM CALCULATE-NEXT-OFFSET.

 MOVE 3 TO CONTROL-KEY OF QUS-VLEN-REC-4.

 MOVE 4 TO LENGTH-DATA OF QUS-VLEN-REC-4.

 MOVE 37 TO BINARY-NUMBER.

 MOVE BINARY-CHAR TO VAR-RECORDS((VAR-OFFSET + 12):4).

 PERFORM CALCULATE-NEXT-OFFSET.

 *

 * Call the API to register the exit program.

 *

 CALL "QUSADDEP" USING EXIT-POINT-NAME OF MISC,

 FORMAT-NAME OF MISC,

 EXIT-PGM-NBR OF MISC,

 EXIT-PGM OF MISC,

 EXIT-PGM-DATA OF MISC,

 BY CONTENT LENGTH OF EXIT-PGM-DATA OF MISC,

 VARREC, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 OPEN OUTPUT LISTING,

 MOVE EXCEPTION-ID OF QUS-EC

 TO EXCEPTION-ID OF BAD-ADD,

 WRITE LIST-LINE FROM BAD-ADD,

 STOP RUN.

 *

 STOP RUN.

 *

 * End of MAINLINE

196 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

*

 *

 * Calculate 4-byte aligned offset for next variable length record

 *

 CALCULATE-NEXT-OFFSET.

 COMPUTE BINARY-NUMBER = LENGTH-DATA OF QUS-VLEN-REC-4 + 12.

 DIVIDE BINARY-NUMBER BY 4 GIVING BINARY-NUMBER REMAINDER X.

 IF X = 0 COMPUTE LENGTH-VLEN-RECORD OF QUS-VLEN-REC-4 =

 LENGTH-DATA OF QUS-VLEN-REC-4 + 12

 ELSE COMPUTE LENGTH-VLEN-RECORD OF QUS-VLEN-REC-4 =

 LENGTH-DATA OF QUS-VLEN-REC-4 + 12 +

 (4 - X).

 MOVE QUS-VLEN-REC-4 TO VAR-RECORDS(VAR-OFFSET:12).

 COMPUTE VAR-OFFSET = VAR-OFFSET + LENGTH-VLEN-RECORD OF

 QUS-VLEN-REC-4.

Example in ILE COBOL: Register exit point and add exit program

This program registers an exit point with the registration facility. After the successful completion of the

registration of the exit point, an exit program is added to the exit point.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 IDENTIFICATION DIVISION.

 *

 * Program: Register an Exit Point

 * Add an Exit Program

 *

 * Language: ILE COBOL

 *

 * Description: This program registers an exit point with the

 * registration facility. After the successful

 * completion of the registration of the exit point,

 * an exit program is added to the exit point.

 *

 * APIs Used: QusRegisterExitPoint - Register Exit Point

 * QusAddExitProgram - Add Exit Program

 *

 *

 PROGRAM-ID. REGFAC1.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT LISTING ASSIGN TO PRINTER-QPRINT

 ORGANIZATION IS SEQUENTIAL.

 DATA DIVISION.

 FILE SECTION.

 FD LISTING RECORD CONTAINS 132 CHARACTERS

 LABEL RECORDS ARE STANDARD

 DATA RECORD IS LIST-LINE.

 01 LIST-LINE PIC X(132).

 WORKING-STORAGE SECTION.

 *

 * Keyed Variable Length Record includes

 *

 COPY QUS OF QSYSINC-QLBLSRC.

 *

 * Error Code parameter include. As this sample program

 * uses COPY to include the error code structure, only the first

 * 16 bytes of the error code structure are available. If the

 * application program needs to access the variable length

APIs 197

* exception data for the error, the developer should physically

 * copy the QSYSINC include and modify the copied include to

 * define additional storage for the exception data.

 *

 COPY QUSEC OF QSYSINC-QLBLSRC.

 *

 * Error message text

 *

 01 BAD-REG.

 05 TEXT1 PIC X(39)

 VALUE "Attempt to register exit point failed: ".

 05 EXCEPTION-ID PIC X(07).

 01 BAD-ADD.

 05 TEXT1 PIC X(36)

 VALUE "Attempt to add exit program failed: ".

 05 EXCEPTION-ID PIC X(07).

 *

 * Miscellaneous elements

 *

 01 VARREC.

 05 NBR-RECORDS PIC S9(09) BINARY.

 05 VAR-RECORDS PIC X(1000).

 01 MISC.

 05 VAR-OFFSET PIC S9(09) VALUE 1.

 05 BINARY-NUMBER PIC S9(09) BINARY.

 05 BINARY-CHAR REDEFINES BINARY-NUMBER PIC X(04).

 05 X PIC S9(09) BINARY.

 05 EXIT-POINT-NAME PIC X(20) VALUE "EXAMPLE_EXIT_POINT".

 05 EXIT-PGM PIC X(20) VALUE "EXAMPLEPGMEXAMPLELIB".

 05 EXIT-PGM-NBR PIC S9(09) VALUE 1 BINARY.

 05 EXIT-PGM-DATA PIC X(25)

 VALUE "EXAMPLE EXIT PROGRAM DATA".

 05 FORMAT-NAME PIC X(08) VALUE "EXMP0100".

 *

 * Beginning of mainline

 *

 PROCEDURE DIVISION.

 MAIN-LINE.

 *

 * Register the exit point with the registration facility. If the

 * registration of the exit point is successful, add an exit

 * program to the exit point.

 *

 * Initialize the error code parameter. To signal exceptions to

 * this program by the API, you need to set the bytes provided

 * field of the error code to zero. Because this program has

 * exceptions sent back through the error code parameter, it sets

 * the bytes provided field to the number of bytes it gives the

 * API for the parameter.

 *

 MOVE 16 TO BYTES-PROVIDED.

 *

 * Set the exit point controls. Each control field is passed to

 * the API using a variable length record. Each record must

 * start on a 4-byte boundary.

 *

 * Set the total number of controls that are being specified on

 * the call. This program lets the API take the default for the

 * controls that are not specified.

 *

 MOVE 2 TO NBR-RECORDS.

 *

 * Set the values for the two controls that are specified:

 * Maximum number of exit programs = 10

 * Exit point description = ’EXIT POINT EXAMPLE’

 *

 MOVE 3 TO CONTROL-KEY OF QUS-VLEN-REC-4.

198 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

MOVE 4 TO LENGTH-DATA OF QUS-VLEN-REC-4.

 MOVE 10 TO BINARY-NUMBER.

 MOVE BINARY-CHAR TO VAR-RECORDS((VAR-OFFSET + 12):4).

 PERFORM CALCULATE-NEXT-OFFSET.

 MOVE 8 TO CONTROL-KEY OF QUS-VLEN-REC-4.

 MOVE 50 TO LENGTH-DATA OF QUS-VLEN-REC-4.

 MOVE "EXIT POINT EXAMPLE"

 TO VAR-RECORDS((VAR-OFFSET + 12):50).

 PERFORM CALCULATE-NEXT-OFFSET.

 *

 * Call the API to add the exit point.

 *

 CALL PROCEDURE "QusRegisterExitPoint" USING

 EXIT-POINT-NAME OF MISC,

 FORMAT-NAME OF MISC,

 VARREC, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 OPEN OUTPUT LISTING,

 MOVE EXCEPTION-ID OF QUS-EC

 TO EXCEPTION-ID OF BAD-REG,

 WRITE LIST-LINE FROM BAD-REG,

 STOP RUN.

 *

 * If the call to register an exit point is successful, add

 * an exit program to the exit point.

 *

 * Set the total number of exit program attributes that are being

 * specified on the call. This program lets the API take the

 * default for the attributes that are not specified. Each

 * attribute record must be 4-byte aligned.

 *

 MOVE 2 TO NBR-RECORDS.

 MOVE 1 TO VAR-OFFSET.

 *

 * Set the values for the two attributes that are being specified:

 * Replace exit program = 1

 * Exit program data CCSID = 37

 *

 MOVE 4 TO CONTROL-KEY OF QUS-VLEN-REC-4.

 MOVE 1 TO LENGTH-DATA OF QUS-VLEN-REC-4.

 MOVE 1 TO VAR-RECORDS((VAR-OFFSET + 12):1).

 PERFORM CALCULATE-NEXT-OFFSET.

 MOVE 3 TO CONTROL-KEY OF QUS-VLEN-REC-4.

 MOVE 4 TO LENGTH-DATA OF QUS-VLEN-REC-4.

 MOVE 37 TO BINARY-NUMBER.

 MOVE BINARY-CHAR TO VAR-RECORDS((VAR-OFFSET + 12):4).

 PERFORM CALCULATE-NEXT-OFFSET.

 *

 * Call the API to register the exit program.

 *

 CALL PROCEDURE "QusAddExitProgram" USING

 EXIT-POINT-NAME OF MISC,

 FORMAT-NAME OF MISC,

 EXIT-PGM-NBR OF MISC,

 EXIT-PGM OF MISC,

 EXIT-PGM-DATA OF MISC,

 BY CONTENT LENGTH OF EXIT-PGM-DATA OF MISC,

 VARREC, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

APIs 199

* zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 OPEN OUTPUT LISTING,

 MOVE EXCEPTION-ID OF QUS-EC

 TO EXCEPTION-ID OF BAD-ADD,

 WRITE LIST-LINE FROM BAD-ADD,

 STOP RUN.

 *

 STOP RUN.

 *

 * End of MAINLINE

 *

 *

 * Calculate 4-byte aligned offset for next variable length record

 *

 CALCULATE-NEXT-OFFSET.

 COMPUTE BINARY-NUMBER = LENGTH-DATA OF QUS-VLEN-REC-4 + 12.

 DIVIDE BINARY-NUMBER BY 4 GIVING BINARY-NUMBER REMAINDER X.

 IF X = 0 COMPUTE LENGTH-VLEN-RECORD OF QUS-VLEN-REC-4 =

 LENGTH-DATA OF QUS-VLEN-REC-4 + 12

 ELSE COMPUTE LENGTH-VLEN-RECORD OF QUS-VLEN-REC-4 =

 LENGTH-DATA OF QUS-VLEN-REC-4 + 12 +

 (4 - X).

 MOVE QUS-VLEN-REC-4 TO VAR-RECORDS(VAR-OFFSET:12).

 COMPUTE VAR-OFFSET = VAR-OFFSET + LENGTH-VLEN-RECORD OF

 QUS-VLEN-REC-4.

Example in OPM RPG: Register exit point and add exit program

This program registers an exit point with the registration facility. After the successful completion of the

registration of the exit point, an exit program is added to the exit point.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 F***

 F***

 F*

 F* Program: Register an Exit Point

 F* Add an Exit Program

 F*

 F* Language: OPM RPG

 F*

 F* Description: This program registers an exit point with the

 F* registration facility. After the successful

 F* completion of the registration of the exit point,

 F* an exit program is added to the exit point.

 F*

 F* APIs Used: QUSRGPT - Register Exit Point

 F* QUSADDEP - Add Exit Program

 F*

 F***

 F***

 F*

 FQPRINT O F 132 PRINTER UC

 E* COMPILE TIME ARRAY

 E REC 1000 1

 I*

 I* Keyed Variable Length Record includes

 I*

 I/COPY QSYSINC/QRPGSRC,QUS

 I*

 I* Error Code parameter include. As this sample program

 I* uses /COPY to include the error code structure, only the first

 I* 16 bytes of the error code structure are available. If the

 I* application program needs to access the variable length

 I* exception data for the error, the developer should physically

200 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

I* copy the QSYSINC include and modify the copied include to

 I* define additional storage for the exception data.

 I*

 I/COPY QSYSINC/QRPGSRC,QUSEC

 I*

 I* Miscellaneous data

 I*

 IVARREC DS 1008

 I B 1 40NBRREC

 I 51004 REC

 I I 1 B100510080VO

 I*

 IOVRLAY DS

 I B 1 40BINARY

 I 1 4 BINC

 I*

 I DS

 I I ’EXAMPLE_EXIT_POINT ’ 1 20 EPNTNM

 I I ’EXAMPLEPGMEXAMPLELIB’ 21 40 EPGM

 I I ’EXAMPLE EXIT PROGRAM- 41 65 EPGMDT

 I ’ DATA’

 I I ’EXAMPLE POINT EXAMPL- 66 115 EPTXT

 I ’E’

 I I 25 B 68 710EPGMSZ

 C*

 C* Beginning of mainline

 C*

 C* Register the exit point with the registration facility. If the

 C* registration of the exit point is successful, add an exit

 C* program to the exit point.

 C*

 C* Initialize the error code parameter. To signal exceptions to

 C* this program by the API, you need to set the bytes provided

 C* field of the error code to zero. Because this program has

 C* exceptions sent back through the error code parameter, it sets

 C* the bytes provided field to the number of bytes it gives the

 C* API for the parameter.

 C*

 C Z-ADD16 QUSBNB

 C*

 C* Set the exit point controls. Each control field is passed to

 C* the API using a variable length record. Each record must

 C* start on a 4-byte boundary.

 C*

 C* Set the total number of controls that are being specified on

 C* the call. This program lets the API take the default for the

 C* controls that are not specified.

 C*

 C Z-ADD2 NBRREC

 C*

 C* Set the values for the two controls that are specified:

 C* Maximum number of exit programs = 10

 C* Exit point description = ’EXIT POINT EXAMPLE’

 C*

 C Z-ADD3 QUSBCC

 C Z-ADD4 QUSBCD

 C Z-ADD10 BINARY

 C 12 ADD VO OF 50

 C MOVEABINC REC,OF

 C EXSR CALCVO

 C Z-ADD8 QUSBCC

 C Z-ADD50 QUSBCD

 C 12 ADD VO OF 50

 C MOVEAEPTXT REC,OF

 C EXSR CALCVO

 C*

 C* Call the API to register the exit point.

APIs 201

C*

 C CALL ’QUSRGPT’

 C PARM EPNTNM

 C PARM ’EXMP0100’FORMAT 8

 C PARM VARREC

 C PARM QUSBN

 C*

 C* If an exception occurs, the API returns the exception in the

 C* error code parameter. The bytes available field is set to

 C* zero if no exception occurs and greater than zero if an

 C* exception does occur.

 C*

 C QUSBNC IFGT 0

 C OPEN QPRINT

 C EXCPTERREPT

 C EXSR DONE

 C ENDIF

 C*

 C* If the call to register an exit point is successful, add

 C* an exit program to the exit point.

 C*

 C* Set the total number of exit program attributes that are being

 C* specified on the call. This program lets the API take the

 C* default for the attributes that are not specified. Each

 C* attribute record must be 4-byte aligned.

 C*

 C Z-ADD2 NBRREC

 C Z-ADD1 VO

 C*

 C* Set the values for the two attributes that are being specified:

 C* Replace exit program = 1

 C* Exit program data CCSID = 37

 C*

 C Z-ADD4 QUSBCC

 C Z-ADD1 QUSBCD

 C 12 ADD VO OF 50

 C MOVE ’1’ REC,OF

 C EXSR CALCVO

 C Z-ADD3 QUSBCC

 C Z-ADD4 QUSBCD

 C Z-ADD37 BINARY

 C 12 ADD VO OF 50

 C MOVEABINC REC,OF

 C EXSR CALCVO

 C*

 C* Call the API to add the exit program.

 C*

 C CALL ’QUSADDEP’

 C PARM EPNTNM

 C PARM ’EXMP0100’FORMAT

 C PARM 1 BINARY

 C PARM EPGM

 C PARM EPGMDT

 C PARM EPGMSZ

 C PARM VARREC

 C PARM QUSBN

 C*

 C* If an exception occurs, the API returns the exception in the

 C* error code parameter. The bytes available field is set to

 C* zero if no exception occurs and greater than zero if an

 C* exception does occur.

 C*

 C QUSBNC IFGT 0

 C OPEN QPRINT

 C EXCPTERRPGM

 C EXSR DONE

 C ENDIF

202 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C EXSR DONE

 C*

 C* End of MAINLINE

 C*

 C*

 C* Return to programs caller

 C DONE BEGSR

 C SETON LR

 C RETRN

 C ENDSR

 C*

 C* Calculate 4-byte aligned offset for next variable length record

 C*

 C CALCVO BEGSR

 C QUSBCD ADD 12 BINARY

 C DIV 4 BINARY

 C MVR BINARY

 C BINARY IFEQ 0

 C QUSBCD ADD 12 QUSBCB

 C ELSE

 C 4 SUB BINARY QUSBCB

 C ADD QUSBCD QUSBCB

 C ADD 12 QUSBCB

 C END

 C MOVEAQUSBC REC,VO

 C ADD QUSBCB VO

 C ENDSR

 O*

 OQPRINT E 106 ERREPT

 O ’Attempt to register exit’

 O ’ point failed: ’

 O QUSBND

 OQPRINT E 106 ERRPGM

 O ’Attempt to add an exit’

 O ’ program failed: ’

 O QUSBND

Example in ILE RPG: Register exit point and add exit program

This program registers an exit point with the registration facility. After the successful completion of the

registration of the exit point, an exit program is added to the exit point.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 F***

 F***

 F*

 F* Program: Register an Exit Point

 F* Add an Exit Program

 F*

 F* Language: ILE RPG

 F*

 F* Description: This program registers an exit point with the

 F* registration facility. After the successful

 F* completion of the registration of the exit point,

 F* an exit program is added to the exit point.

 F*

 F* APIs Used: QusRegisterExitPoint - Register Exit Point

 F* QusAddExitProgram - Add Exit Program

 F*

 F***

 F***

 F*

 FQPRINT O F 132 PRINTER OFLIND(*INOF) USROPN

 D*

 D* Keyed Variable Length Record includes

 D*

 D/COPY QSYSINC/QRPGLESRC,QUS

APIs 203

D*

 D* Error Code parameter include. As this sample program

 D* uses /COPY to include the error code structure, only the first

 D* 16 bytes of the error code structure are available. If the

 D* application program needs to access the variable length

 D* exception data for the error, the developer should physically

 D* copy the QSYSINC include and modify the copied include to

 D* define additional storage for the exception data.

 D*

 D/COPY QSYSINC/QRPGLESRC,QUSEC

 D*

 D***

 D*Prototype for calling Register Exit Point API.

 D***

 D QUSREP05 C ’QusRegisterExitPoint’

 D***

 D*Prototype for calling Add Exit Program API.

 D***

 D QUSAEPGM C ’QusAddExitProgram’

 D*

 D* Miscellaneous data

 D*

 DVARREC DS

 D NBR_RECS 9B 0

 D RECS 1000

 DV_OFFSET S 9 0 INZ(1)

 D*

 DOVERLAYS DS

 D BINARY 9B 0

 D BINARY_C 4 OVERLAY(BINARY)

 D*

 DEPNTNAME S 20 INZ(’EXAMPLE_EXIT_POINT’)

 DEPGM S 20 INZ(’EXAMPLEPGMEXAMPLELIB’)

 DEPGMDTA S 25 INZ(’EXAMPLE EXIT PROGRAM DATA’)

 DEPGMDTA_SZ S 9B 0 INZ(%SIZE(EPGMDTA))

 C*

 C* Beginning of mainline

 C*

 C* Register the exit point with the registration facility. If the

 C* registration of the exit point is successful, add an exit

 C* program to the exit point.

 C*

 C* Initialize the error code parameter. To signal exceptions to

 C* this program by the API, you need to set the bytes provided

 C* field of the error code to zero. Because this program has

 C* exceptions sent back through the error code parameter, it sets

 C* the bytes provided field to the number of bytes it gives the

 C* API for the parameter.

 C*

 C EVAL QUSBPRV = %SIZE(QUSEC)

 C*

 C* Set the exit point controls. Each control field is passed to

 C* the API using a variable length record. Each record must

 C* start on a 4-byte boundary.

 C*

 C* Set the total number of controls that are being specified on

 C* the call. This program lets the API take the default for the

 C* controls that are not specified.

 C*

 C EVAL NBR_RECS = 2

 C*

 C* Set the values for the two controls that are specified:

 C* Maximum number of exit programs = 10

 C* Exit point description = ’EXIT POINT EXAMPLE’

 C*

 C EVAL QUSCK = 3

 C EVAL QUSLD = 4

204 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C EVAL BINARY = 10

 C EVAL %SUBST(RECS:V_OFFSET+12) = BINARY_C

 C EXSR CALC_VOFF

 C EVAL QUSCK = 8

 C EVAL QUSLD = 50

 C EVAL %SUBST(RECS:V_OFFSET+12:50) = ’EXIT +

 C POINT EXAMPLE’

 C EXSR CALC_VOFF

 C*

 C* Call the API to register the exit point.

 C*

 C CALLB QUSREP05

 C PARM EPNTNAME

 C PARM ’EXMP0100’ FORMAT 8

 C PARM VARREC

 C PARM QUSEC

 C*

 C* If an exception occurs, the API returns the exception in the

 C* error code parameter. The bytes available field is set to

 C* zero if no exception occurs and greater than zero if an

 C* exception does occur.

 C*

 C IF QUSBAVL > 0

 C OPEN QPRINT

 C EXCEPT ERRAEPNT

 C EXSR DONE

 C ENDIF

 C*

 C* If the call to register an exit point is successful, add

 C* an exit program to the exit point.

 C*

 C* Set the total number of exit program attributes that are being

 C* specified on the call. This program lets the API take the

 C* default for the attributes that are not specified. Each

 C* attribute record must be 4-byte aligned.

 C*

 C EVAL NBR_RECS = 2

 C EVAL V_OFFSET = 1

 C*

 C* Set the values for the two attributes that are being specified:

 C* Replace exit program = 1

 C* Exit program data CCSID = 37

 C*

 C EVAL QUSCK = 4

 C EVAL QUSLD = 1

 C EVAL %SUBST(RECS:V_OFFSET+12) = ’1’

 C EXSR CALC_VOFF

 C EVAL QUSCK = 3

 C EVAL QUSLD = 4

 C EVAL BINARY = 37

 C EVAL %SUBST(RECS:V_OFFSET+12) = BINARY_C

 C EXSR CALC_VOFF

 C*

 C* Call the API to add the exit program.

 C*

 C CALLB QUSAEPGM

 C PARM EPNTNAME

 C PARM ’EXMP0100’ FORMAT

 C PARM 1 BINARY

 C PARM EPGM

 C PARM EPGMDTA

 C PARM EPGMDTA_SZ

 C PARM VARREC

 C PARM QUSEC

 C*

 C* If an exception occurs, the API returns the exception in the

 C* error code parameter. The bytes available field is set to

APIs 205

C* zero if no exception occurs and greater than zero if an

 C* exception does occur.

 C*

 C IF QUSBAVL > 0

 C OPEN QPRINT

 C EXCEPT ERRAEPGM

 C EXSR DONE

 C ENDIF

 C EXSR DONE

 C*

 C* End of MAINLINE

 C*

 C*

 C* Return to programs caller

 C DONE BEGSR

 C EVAL *INLR = ’1’

 C RETURN

 C ENDSR

 C*

 C* Calculate 4-byte aligned offset for next variable length record

 C*

 C CALC_VOFF BEGSR

 C EVAL BINARY = QUSLD + 12

 C DIV 4 BINARY

 C MVR BINARY

 C IF BINARY = 0

 C EVAL QUSLVR00 = (QUSLD + 12)

 C ELSE

 C EVAL QUSLVR00 = (QUSLD + 12 + (4 - BINARY))

 C END

 C EVAL %SUBST(RECS:V_OFFSET:12) = QUSVR4

 C EVAL V_OFFSET = V_OFFSET + QUSLVR00

 C ENDSR

 O*

 OQPRINT E ERRAEPNT 1 6

 O ’Attempt to register exit -

 O point failed: ’

 O QUSEI

 OQPRINT E ERRAEPGM 1 6

 O ’Attempt to add exit -

 O program failed: ’

 O QUSEI

Example in ILE C: Remove exit program and deregister exit point

This program removes an exit program and deregisters an exit point from the registration facility.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
/**/

/* PROGRAM: Remove an Exit Program */

/* Deregister an Exit Point */

/* */

/* LANGUAGE: ILE C */

/* */

/* DESCRIPTION: This program removes an exit program and */

/* deregisters an exit point from the registration */

/* facility. */

/* */

/* APIs USED: QusRemoveExitProgram - Remove Exit Program */

/* QusDeregisterExitPoint - Deregister Exit Point */

/* */

/**/

/* NOTE: This example uses APIs that are shipped with *EXCLUDE */

/* authority. The user needs *USE authority to the service */

/* program QUSRGFA1 to use these APIs. */

/**/

206 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/**/

/* Includes */

/**/

#include <stdio.h>

#include <signal.h>

#include <string.h>

#include <stdlib.h>

#include <qusrgfa1.h>

#include <qusec.h>

#include <qliept.h>

/**/

/* Structures */

/**/

typedef struct { /* Error code */

 Qus_EC_t ec_fields;

 char exception_data[100];

} error_code_struct;

/**/

/* */

/* main */

/* */

/**/

int main()

{

 int pgm_num=1;

 error_code_struct error_code;

 /**/

 /* Remove an exit program from the exit point and then deregister */

 /* the exit point. It is not necessary to remove exit programs */

 /* from an exit point before deregistering the exit point. It is */

 /* done here only for illustration purposes. */

 /**/

 /**/

 /* Initialize the error code parameter. To have exceptions */

 /* signaled to this program by the API, set the bytes provided */

 /* field of the code to zero. This program has exceptions sent */

 /* through the error code parameter; therefore, the bytes */

 /* provided field is set to the number of bytes that this program */

 /* gives the API for the parameter. */

 /**/

 error_code.ec_fields.Bytes_Provided=sizeof(error_code_struct);

 /**/

 /* Call the API to remove the exit program. */

 /**/

 QusRemoveExitProgram("EXAMPLE_EXIT_POINT ",

 "EXMP0100",

 pgm_num,

 &error_code);

 /**/

 /* If an exception occurs, the API returns the exception in the */

 /* error code parameter. The bytes available field is set to */

 /* zero if no exception occurs and nonzero if an exception does */

 /* occur. */

 /**/

 if (error_code.ec_fields.Bytes_Available != 0)

 {

 printf("ATTEMPT TO REMOVE EXIT PROGRAM FAILED WITH EXCEPTION: %.7s",

 error_code.ec_fields.Exception_Id);

 exit(1);

 }

APIs 207

/**/

 /* If the call to remove the exit program is successful, */

 /* deregister the exit point. */

 /**/

 /**/

 /* Call the API to add the exit program. */

 /**/

 QusDeregisterExitPoint("EXAMPLE_EXIT_POINT ",

 "EXMP0100",

 &error_code);

 /**/

 /* If an exception occurs, the API returns the exception in the */

 /* error code parameter. The bytes available field is set to */

 /* zero if no exception occurs and nonzero if an exception does */

 /* occur. */

 /**/

 if (error_code.ec_fields.Bytes_Available != 0)

 {

 printf("ATTEMPT TO DEREGISTER EXIT POINT FAILED WITH EXCEPTION: %.7s",

 error_code.ec_fields.Exception_Id);

 exit(1);

 }

} /* End program */

Example in OPM COBOL: Remove exit program and deregister exit point

This program removes an exit program and deregisters an exit point from the registration facility.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 IDENTIFICATION DIVISION.

 *

 * Program: Remove an Exit Program

 * Deregister an Exit Point

 *

 * Language: OPM COBOL

 *

 * Description: This program removes an exit program and

 * deregisters an exit point from the registration

 * facility.

 *

 * APIs Used: QUSRMVEP - Remove Exit Program

 * QUSDRGPT - Deregister Exit Point

 *

 *

 PROGRAM-ID. REGFAC1.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT LISTING ASSIGN TO PRINTER-QPRINT

 ORGANIZATION IS SEQUENTIAL.

 DATA DIVISION.

 FILE SECTION.

 FD LISTING RECORD CONTAINS 132 CHARACTERS

 LABEL RECORDS ARE STANDARD

 DATA RECORD IS LIST-LINE.

208 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

01 LIST-LINE PIC X(132).

 WORKING-STORAGE SECTION.

 *

 * Error Code parameter include. As this sample program

 * uses COPY to include the error code structure, only the first

 * 16 bytes of the error code structure are available. If the

 * application program needs to access the variable length

 * exception data for the error, the developer should physically

 * copy the QSYSINC include and modify the copied include to

 * define additional storage for the exception data.

 *

 COPY QUSEC OF QSYSINC-QLBLSRC.

 *

 * Error message text

 *

 01 BAD-EXIT-POINT.

 05 TEXT1 PIC X(41)

 VALUE "Attempt to deregister exit point failed: ".

 05 EXCEPTION-ID PIC X(07).

 01 BAD-EXIT-PGM.

 05 TEXT1 PIC X(39)

 VALUE "Attempt to remove exit program failed: ".

 05 EXCEPTION-ID PIC X(07).

 *

 * Miscellaneous elements

 *

 01 MISC.

 05 PGM-NBR PIC S9(09) VALUE 1 BINARY.

 05 EXIT-POINT-NAME PIC X(20) VALUE "EXAMPLE_EXIT_POINT".

 05 FORMAT-NAME PIC X(08) VALUE "EXMP0100".

 *

 * Beginning of mainline

 *

 PROCEDURE DIVISION.

 MAIN-LINE.

 *

 * Remove an exit program from the exit point and then deregister

 * the exit point. It is not necessary to remove exit programs

 * from an exit point before deregistering the exit point. It is

 * done here only for illustrative purposes.

 *

 * Initialize the error code parameter. To signal exceptions to

 * this program by the API, you need to set the bytes provided

 * field of the error code to zero. Because this program has

 * exceptions sent back through the error code parameter, it sets

 * the bytes provided field to the number of bytes it gives the

 * API for the parameter.

 *

 MOVE 16 TO BYTES-PROVIDED OF QUS-EC.

 *

 * Call the API to remove the exit program.

 *

 CALL "QUSRMVEP" USING EXIT-POINT-NAME, FORMAT-NAME,

 PGM-NBR, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 OPEN OUTPUT LISTING,

 MOVE EXCEPTION-ID OF QUS-EC

 TO EXCEPTION-ID OF BAD-EXIT-POINT,

 WRITE LIST-LINE FROM BAD-EXIT-POINT,

 STOP RUN.

 *

APIs 209

* If the call to remove the exit program is successful,

 * deregister the exit point.

 *

 * Call the API to deregister the exit point.

 *

 CALL "QUSDRGPT" USING EXIT-POINT-NAME, FORMAT-NAME, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 OPEN OUTPUT LISTING,

 MOVE EXCEPTION-ID OF QUS-EC

 TO EXCEPTION-ID OF BAD-EXIT-PGM,

 WRITE LIST-LINE FROM BAD-EXIT-PGM,

 STOP RUN.

 *

 STOP RUN.

 *

 * End of MAINLINE

 *

Example in ILE COBOL: Remove exit program and deregister exit point

This program removes an exit program and deregisters an exit point from the registration facility.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 IDENTIFICATION DIVISION.

 *

 * Program: Remove an Exit Program

 * Deregister an Exit Point

 *

 * Language: ILE COBOL

 *

 * Description: This program removes an exit program and

 * deregisters an exit point from the registration

 * facility.

 *

 * APIs Used: QusRemoveExitProgram - Remove Exit Program

 * QusDeregisterExitPoint - Deregister Exit Point

 *

 *

 PROGRAM-ID. REGFAC3.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT LISTING ASSIGN TO PRINTER-QPRINT

 ORGANIZATION IS SEQUENTIAL.

 DATA DIVISION.

 FILE SECTION.

 FD LISTING RECORD CONTAINS 132 CHARACTERS

 LABEL RECORDS ARE STANDARD

 DATA RECORD IS LIST-LINE.

 01 LIST-LINE PIC X(132).

 WORKING-STORAGE SECTION.

 *

 * Error Code parameter include. As this sample program

 * uses COPY to include the error code structure, only the first

210 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

* 16 bytes of the error code structure are available. If the

 * application program needs to access the variable length

 * exception data for the error, the developer should physically

 * copy the QSYSINC include and modify the copied include to

 * define additional storage for the exception data.

 *

 COPY QUSEC OF QSYSINC-QLBLSRC.

 *

 * Error message text

 *

 01 BAD-EXIT-POINT.

 05 TEXT1 PIC X(41)

 VALUE "Attempt to deregister exit point failed: ".

 05 EXCEPTION-ID PIC X(07).

 01 BAD-EXIT-PGM.

 05 TEXT1 PIC X(39)

 VALUE "Attempt to remove exit program failed: ".

 05 EXCEPTION-ID PIC X(07).

 *

 * Miscellaneous elements

 *

 01 MISC.

 05 PGM-NBR PIC S9(09) VALUE 1 BINARY.

 05 EXIT-POINT-NAME PIC X(20) VALUE "EXAMPLE_EXIT_POINT".

 05 FORMAT-NAME PIC X(08) VALUE "EXMP0100".

 *

 * Beginning of mainline

 *

 PROCEDURE DIVISION.

 MAIN-LINE.

 *

 * Remove an exit program from the exit point and then deregister

 * the exit point. It is not necessary to remove exit programs

 * from an exit point before deregistering the exit point. It is

 * done here only for illustrative purposes.

 *

 * Initialize the error code parameter. To signal exceptions to

 * this program by the API, you need to set the bytes provided

 * field of the error code to zero. Because this program has

 * exceptions sent back through the error code parameter, it sets

 * the bytes provided field to the number of bytes it gives the

 * API for the parameter.

 *

 MOVE 16 TO BYTES-PROVIDED OF QUS-EC.

 *

 * Call the API to remove the exit program.

 *

 CALL PROCEDURE "QusRemoveExitProgram" USING

 EXIT-POINT-NAME, FORMAT-NAME,

 PGM-NBR, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 OPEN OUTPUT LISTING,

 MOVE EXCEPTION-ID OF QUS-EC

 TO EXCEPTION-ID OF BAD-EXIT-POINT,

 WRITE LIST-LINE FROM BAD-EXIT-POINT,

 STOP RUN.

 *

 * If the call to remove the exit program is successful,

 * deregister the exit point.

 *

 * Call the API to deregister the exit point.

APIs 211

*

 CALL PROCEDURE "QusDeregisterExitPoint" USING

 EXIT-POINT-NAME, FORMAT-NAME, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 OPEN OUTPUT LISTING,

 MOVE EXCEPTION-ID OF QUS-EC

 TO EXCEPTION-ID OF BAD-EXIT-PGM,

 WRITE LIST-LINE FROM BAD-EXIT-PGM,

 STOP RUN.

 *

 STOP RUN.

 *

 * End of MAINLINE

 *

Example in OPM RPG: Remove exit program and deregister exit point

This program removes an exit program and deregisters an exit point from the registration facility.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 F***

 F***

 F*

 F* Program: Remove an Exit Program

 F* Deregister an Exit Point

 F*

 F* Language: OPM RPG

 F*

 F* Description: This program removes an exit program and

 F* deregisters an exit point from the registration

 F* facility.

 F*

 F* APIs Used: QUSRMVEP - Remove Exit Program

 F* QUSDRGPT - Deregister Exit Point

 F*

 F***

 F***

 F*

 FQPRINT O F 132 PRINTER UC

 I*

 I* Error Code parameter include. As this sample program

 I* uses /COPY to include the error code structure, only the first

 I* 16 bytes of the error code structure are available. If the

 I* application program needs to access the variable length

 I* exception data for the error, the developer should physically

 I* copy the QSYSINC include and modify the copied include to

 I* define additional storage for the exception data.

 I*

 I/COPY QSYSINC/QRPGSRC,QUSEC

 I*

 I*

 I* Miscellaneous data

 I*

 I DS

 I B 1 40PGMNBR

 I I ’EXAMPLE_EXIT_POINT ’ 5 24 EPNTNM

 C*

 C* Beginning of mainline

 C*

 C* Remove an exit program from the exit point and then deregister

 C* the exit point. It is not necessary to remove exit programs

212 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C* from an exit point before deregistering the exit point. It is

 C* done here only for illustrative purposes.

 C*

 C* Initialize the error code parameter. To signal exceptions to

 C* this program by the API, you need to set the bytes provided

 C* field of the error code to zero. Because this program has

 C* exceptions sent back through the error code parameter, it sets

 C* the bytes provided field to the number of bytes it gives the

 C* API for the parameter.

 C*

 C Z-ADD16 QUSBNB

 C*

 C* Call the API to remove the exit program.

 C*

 C CALL ’QUSRMVEP’

 C PARM EPNTNM

 C PARM ’EXMP0100’FORMAT 8

 C PARM 1 PGMNBR

 C PARM QUSBN

 C*

 C* If an exception occurs, the API returns the exception in the

 C* error code parameter. The bytes available field is set to

 C* zero if no exception occurs and greater than zero if an

 C* exception does occur.

 C*

 C QUSBNC IFGT 0

 C OPEN QPRINT

 C EXCPTERRPGM

 C EXSR DONE

 C ENDIF

 C*

 C* If the call to remove the exit program is successful,

 C* deregister the exit point.

 C*

 C* Call the API to deregister the exit point.

 C*

 C CALL ’QUSDRGPT’

 C PARM EPNTNM

 C PARM ’EXMP0100’FORMAT

 C PARM QUSBN

 C*

 C* If an exception occurs, the API returns the exception in the

 C* error code parameter. The bytes available field is set to

 C* zero if no exception occurs and greater than zero if an

 C* exception does occur.

 C*

 C QUSBNC IFGT 0

 C OPEN QPRINT

 C EXCPTERREPT

 C EXSR DONE

 C ENDIF

 C EXSR DONE

 C*

 C* End of MAINLINE

 C*

 C*

 C* Return to programs caller

 C DONE BEGSR

 C SETON LR

 C RETRN

 C ENDSR

 O*

 OQPRINT E 106 ERREPT

 O ’Attempt to deregister ’

 O ’exit point failed: ’

 O QUSBND

APIs 213

OQPRINT E 106 ERRPGM

 O ’Attempt to remove exit ’

 O ’program failed: ’

 O QUSBND

Example in ILE RPG: Remove exit program and deregister exit point

This program removes an exit program and deregisters an exit point from the registration facility.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 F***

 F***

 F*

 F* Program: Remove an Exit Program

 F* Deregister an Exit Point

 F*

 F* Language: ILE RPG

 F*

 F* Description: This program removes an exit program and

 F* deregisters an exit point from the registration

 F* facility.

 F*

 F* APIs Used: QusRemoveExitProgram - Remove Exit Program

 F* QusDeregisterExitPoint - Deregister Exit Point

 F*

 F***

 F***

 F*

 FQPRINT O F 132 PRINTER OFLIND(*INOF) USROPN

 D*

 D* Error Code parameter include. As this sample program

 D* uses /COPY to include the error code structure, only the first

 D* 16 bytes of the error code structure are available. If the

 D* application program needs to access the variable length

 D* exception data for the error, the developer should physically

 D* copy the QSYSINC include and modify the copied include to

 D* define additional storage for the exception data.

 D*

 D/COPY QSYSINC/QRPGLESRC,QUSEC

 D*

 D***

 D*Prototype for calling Deregister Exit Point API.

 D***

 D QUSDEP C ’QusDeregisterExitPoint’

 D***

 D*Prototype for calling Remove Exit Program API.

 D***

 D QUSREPGM C ’QusRemoveExitProgram’

 D*

 D* Miscellaneous data

 D*

 DPGM_NBR 9B 0

 DEPNTNAME S 20 INZ(’EXAMPLE_EXIT_POINT’)

 C*

 C* Beginning of mainline

 C*

 C* Remove an exit program from the exit point and then deregister

 C* the exit point. It is not necessary to remove exit programs

 C* from an exit point before deregistering the exit point. It is

 C* done here only for illustrative purposes.

 C*

 C* Initialize the error code parameter. To signal exceptions to

 C* this program by the API, you need to set the bytes provided

 C* field of the error code to zero. Because this program has

 C* exceptions sent back through the error code parameter, it sets

 C* the bytes provided field to the number of bytes it gives the

 C* API for the parameter.

214 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C*

 C EVAL QUSBPRV = %SIZE(QUSEC)

 C*

 C* Call the API to remove the exit program.

 C*

 C CALLB QUSREPGM

 C PARM EPNTNAME

 C PARM ’EXMP0100’ FORMAT 8

 C PARM 1 PGM_NBR

 C PARM QUSEC

 C*

 C* If an exception occurs, the API returns the exception in the

 C* error code parameter. The bytes available field is set to

 C* zero if no exception occurs and greater than zero if an

 C* exception does occur.

 C*

 C IF QUSBAVL > 0

 C OPEN QPRINT

 C EXCEPT ERRAEPGM

 C EXSR DONE

 C ENDIF

 C*

 C* If the call to remove the exit program is successful,

 C* deregister the exit point.

 C*

 C* Call the API to deregister the exit point.

 C*

 C CALLB QUSDEP

 C PARM EPNTNAME

 C PARM ’EXMP0100’ FORMAT

 C PARM QUSEC

 C*

 C* If an exception occurs, the API returns the exception in the

 C* error code parameter. The bytes available field is set to

 C* zero if no exception occurs and greater than zero if an

 C* exception does occur.

 C*

 C IF QUSBAVL > 0

 C OPEN QPRINT

 C EXCEPT ERRAEPNT

 C EXSR DONE

 C ENDIF

 C EXSR DONE

 C*

 C* End of MAINLINE

 C*

 C*

 C* Return to programs caller

 C DONE BEGSR

 C EVAL *INLR = ’1’

 C RETURN

 C ENDSR

 O*

 OQPRINT E ERRAEPNT 1 6

 O ’Attempt to deregister -

 O exit point failed: ’

 O QUSEI

 OQPRINT E ERRAEPGM 1 6

 O ’Attempt to remove exit -

 O program failed: ’

 O QUSEI

APIs 215

Example in ILE C: Retrieve exit point and exit program information

This program retrieves exit point and exit program information. After retrieving the exit point

information, the program resolves to each associated exit program and calls each exit program. The

Retrieve Exit Information API returns a continuation handle when it has more information to return than

what fits in the receiver variable.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
/**/

/* PROGRAM: Retrieve Exit Point and Exit Program Information */

/* */

/* LANGUAGE: ILE C */

/* */

/* DESCRIPTION: This program retrieves exit point and exit */

/* program information. After retrieving the */

/* exit point information, the program resolves to */

/* each associated exit program and calls each exit */

/* program. */

/* */

/* APIs USED: QusRetrieveExitInformation - Retrieve Exit */

/* Information */

/* */

/**/

/**/

/* Includes */

/**/

#include <stdio.h>

#include <signal.h>

#include <string.h>

#include <stdlib.h>

#include <except.h>

#include <qusrgfa2.h>

#include <qusec.h>

#include <qmhchgem.h>

#include <miptrnam.h>

#include <qliept.h>

/**/

/* Prototypes */

/**/

typedef void Pgm_OS(void *arg,...);

#pragma linkage(Pgm_OS,OS)

/**/

/* Structures */

/**/

typedef struct { /* Error code */

 Qus_EC_t ec_fields;

 char exception_data[100];

} error_code_struct;

/**/

/* FUNCTION NAME: RSLVSP_PGM_HDLR */

/* */

/* FUNCTION : This function handles all exceptions that */

/* may occur while resolving to the exit */

/* program. */

/* */

/* INPUT: Interrupt handler information */

/* */

/* OUTPUT: NONE */

/* */

/**/

void RSLVSP_PGM_HDLR(_INTRPT_Hndlr_Parms_T *errmsg)

216 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

{

 error_code_struct Error_Code;

 /**/

 /* Set the rsl_ok indicator to not valid. */

 /**/

 int *rsl_ok = (int *)(errmsg>Com_Area);

 *rsl_ok = 0;

 /**/

 /* Let message handler know that the program handled the message */

 /* and to remove it from the job log. */

 /**/

 Error_Code.ec_fields.Bytes_Provided=0;

 QMHCHGEM(&(errmsg>Target),

 0,

 (char *)&errmsg>Msg_Ref_Key,

 "*REMOVE ",

 "",

 0,

 &Error_Code);

}

/**/

/* FUNCTION NAME: Call_Exit_Program */

/* */

/* FUNCTION : This function calls the exit programs that */

/* were retrieved from the registration facility */

/* repository. */

/* */

/* INPUT: Information retrieved */

/* */

/* OUTPUT: NONE */

/* */

/**/

void Call_Exit_Program(char *rcv_var)

{

 int num_exit_pgms,

 i;

 char exit_pgm_name[10],

 exit_pgm_lib[10],

 info_for_exit_pgm[10],

 *rcv_ptr;

 volatile int rsl_ok;

 Pgm_OS *exit_pgm_ptr;

 /**/

 /* Save the number of exit programs returned and set the pointer */

 /* to point to the first exit program entry. */

 /**/

 rcv_ptr=rcv_var;

 num_exit_pgms=((Qus_EXTI0200_t *)rcv_ptr)>Number_Programs_Returned;

 rcv_ptr += ((Qus_EXTI0200_t *)rcv_ptr)>Offset_Program_Entry;

 rsl_ok=1;

 for (i=0; i<num_exit_pgms; i++)

 {

 memcpy(exit_pgm_name,

 ((Qus_EXTI0200_Entry_t *)rcv_ptr)>Program_Name,10);

 memcpy(exit_pgm_lib,

 ((Qus_EXTI0200_Entry_t *)rcv_ptr)>Program_Library,10);

 /**/

 /* Resolve to the exit program. If an error occurs on the */

 /* resolve operation to the library, the rsl_ok indicator is */

 /* set to failed in the RSL_PGM_HDLR exception handler. */

APIs 217

/* The rslvsp MI instruction signals all errors to this */

 /* program; therefore, enable the exception handler to capture */

 /* any errors that may occur. */

 /**/

 #pragma exception_handler (RSLVSP_PGM_HDLR,rsl_ok,0,_C2_MH_ESCAPE)

 exit_pgm_ptr=((Pgm_OS *)rslvsp(_Program,

 exit_pgm_name,

 exit_pgm_lib,

 _AUTH_POINTER));

 #pragma disable_handler

 /**/

 /* If the resolve operation is successful, call the exit */

 /* program. If not, move on to the next exit program. */

 /**/

 if (rsl_ok)

 {

 exit_pgm_ptr(info_for_exit_pgm);

 }

 /**/

 /* Set the receiver variable to point to the next exit program */

 /* that is returned. */

 /**/

 rsl_ok=1;

 rcv_ptr=rcv_var +

 ((Qus_EXTI0200_Entry_t *)rcv_ptr)>Offset_Next_Entry;

 }

}

/**/

/* */

/* main */

/* */

/**/

void main()

{

 int sel_criteria=0,

 len_rcv_variable=3500,

 exit_pgm_num=-1;

 char continuation_hdl[16],

 rcv_variable[3500],

 *rcv_ptr;

 error_code_struct error_code;

 /**/

 /* Retrieve the exit point information first. If the current */

 /* number of exit programs is not zero, retrieve the exit */

 /* programs. It is not necessary to call for the exit point */

 /* information to determine if the exit point has any exit */

 /* programs. It is done here for illustration purposes only. */

 /* You can make one call to the API for the exit program */

 /* information and check the number of exit program entries */

 /* returned field to see if there are any exit programs to call. */

 /**/

 /**/

 /* Initialize the error code to inform the API that all */

 /* exceptions should be returned through the error code parameter.*/

 /**/

 error_code.ec_fields.Bytes_Provided=sizeof(error_code_struct);

 /**/

 /* Blank out the continuation handle to let the API know that this*/

 /* is a first attempt at the retrieve operation. */

 /**/

218 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

memset(continuation_hdl,’ ’,16);

 /**/

 /* Call the API to retrieve the exit point information. */

 /**/

 QusRetrieveExitInformation(continuation_hdl,

 &rcv_variable,

 len_rcv_variable,

 "EXTI0100",

 "EXAMPLE_EXIT_POINT ",

 "EXMP0100",

 exit_pgm_num,

 &sel_criteria,

 &error_code);

 /**/

 /* If an exception occurs, the API returns the exception in the */

 /* error code parameter. The bytes available field is set to */

 /* zero if no exception occurs and nonzero if an exception does */

 /* occur. */

 /**/

 if (error_code.ec_fields.Bytes_Available != 0)

 {

 printf("ATTEMPT TO RETRIEVE INFORMATION FAILED WITH EXCEPTION: %.7s",

 error_code.ec_fields.Exception_Id);

 exit(1);

 }

 /**/

 /* If the call to retrieve exit point information is successful, */

 /* check to see if there are any exit programs to call. */

 /**/

 rcv_ptr=rcv_variable;

 rcv_ptr += ((Qus_EXTI0100_t *)rcv_ptr)->Offset_Exit_Point_Entry;

 if (((Qus_EXTI0100_Entry_t *)rcv_ptr)->Number_Exit_Programs != 0)

 {

 /***/

 /* Blank out the continuation handle to let the API know that */

 /* this is a first attempt at the retrieve operation. */

 /***/

 memset(continuation_hdl,’ ’,16);

 /***/

 /* Call the API to retrieve the exit program information. */

 /***/

 QusRetrieveExitInformation(continuation_hdl,

 &rcv_variable,

 len_rcv_variable,

 "EXTI0200",

 "EXAMPLE_EXIT_POINT ",

 "EXMP0100",

 exit_pgm_num,

 &sel_criteria,

 &error_code);

 /***/

 /* Verify that the call to the API is successful. */

 /***/

 if (error_code.ec_fields.Bytes_Available != 0)

 {

 printf("ATTEMPT TO RETRIEVE EXIT PROGRAMS FAILED WITH EXCEPTION:\

 %.7s", error_code.ec_fields.Exception_Id);

 exit(1);

 }

APIs 219

/***/

 /* If the call is successful, call the exit programs. */

 /***/

 Call_Exit_Program(rcv_variable);

 /***/

 /* If the continuation handle field in the receiver variable is */

 /* not set to blanks, the API has more information to return */

 /* than what could fit in the receiver variable. */

 /***/

 rcv_ptr=rcv_variable;

 while (memcmp(((Qus_EXTI0200_t *)rcv_ptr)->Continue_Handle,

 " ",16)!=0)

 {

 memcpy(continuation_hdl,

 ((Qus_EXTI0200_t *)rcv_ptr)>Continue_Handle,16);

 /***/

 /* Call the API to retrieve the exit program information. */

 /***/

 QusRetrieveExitInformation(continuation_hdl,

 &rcv_variable,

 len_rcv_variable,

 "EXTI0200",

 "EXAMPLE_EXIT_POINT ",

 "EXMP0100",

 exit_pgm_num,

 &sel_criteria,

 &error_code);

 /***/

 /* Verify that the call to the API is successful. */

 /***/

 if (error_code.ec_fields.Bytes_Available != 0)

 {

 printf("RETRIEVE EXIT PROGRAMS FAILED WITH EXCEPTION: %.7s",

 error_code.ec_fields.Exception_Id);

 exit(1);

 }

 /***/

 /* If the call is successful, call the exit programs. */

 /* The receiver variable offers enough room for a minimum of */

 /* one exit program entry because the receiver variable was */

 /* declared as 3500 bytes. Therefore, this example only */

 /* checks the number of exit programs returned field. If the */

 /* receiver variable were not large enough to hold at least */

 /* one entry, the bytes available field would need to be */

 /* checked as well as the number of exit programs returned */

 /* field. If the number of exit programs returned field is */

 /* set to zero and the bytes available field is greater than */

 /* the bytes returned field, the API had at least one exit */

 /* program entry to return but was unable to because the */

 /* receiver variable was too small. */

 /***/

 Call_Exit_Program(rcv_variable);

 } /* While continuation handle not set to blanks */

 } /* Number of exit programs not equal to zero */

} /* End program */

 Related tasks

 “Continuation handle” on page 77

Some APIs that return information offer a continuation handle.

220 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Example in OPM COBOL: Retrieve exit point and exit program information

This program retrieves exit point and exit program information. After retrieving the exit point

information, the program calls each exit program. The Retrieve Exit Information API returns a

continuation handle when it has more information to return than what fits in the receiver variable.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 IDENTIFICATION DIVISION.

 *

 * Program: Retrieve Exit Point and Exit Program Information

 *

 * Language: OPM COBOL

 *

 * Description: This program retrieves exit point and exit

 * program information. After retrieving the

 * exit point information, the program calls each

 * exit program.

 *

 * APIs Used: QUSCRTUS - Create User Space

 * QUSPTRUS - Retrieve Pointer to User Space

 * QUSRTVEI - Retrieve Exit Information

 *

 *

 PROGRAM-ID. REGFAC2.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT LISTING ASSIGN TO PRINTER-QPRINT

 ORGANIZATION IS SEQUENTIAL.

 DATA DIVISION.

 FILE SECTION.

 FD LISTING RECORD CONTAINS 132 CHARACTERS

 LABEL RECORDS ARE STANDARD

 DATA RECORD IS LIST-LINE.

 01 LIST-LINE PIC X(132).

 WORKING-STORAGE SECTION.

 *

 * Error Code parameter include. As this sample program

 * uses COPY to include the error code structure, only the first

 * 16 bytes of the error code structure are available. If the

 * application program needs to access the variable length

 * exception data for the error, the developer should physically

 * copy the QSYSINC include and modify the copied include to

 * define additional storage for the exception data.

 *

 COPY QUSEC OF QSYSINC-QLBLSRC.

 *

 * Error message text

 *

 01 BAD-EXIT-POINT.

 05 TEXT1 PIC X(40)

 VALUE "Attempt to retrieve information failed: ".

 05 EXCEPTION-ID PIC X(07).

 01 BAD-EXIT-PGM.

 05 TEXT1 PIC X(42)

 VALUE "Attempt to retrieve Exit Programs failed: ".

 05 EXCEPTION-ID PIC X(07).

 01 BAD-CREATE.

 05 TEXT1 PIC X(37)

APIs 221

VALUE "Allocation of RCVVAR storage failed: ".

 05 EXCEPTION-ID PIC X(07).

 *

 * Miscellaneous elements

 *

 01 MISC.

 05 EXIT-POINT-NAME PIC X(20) VALUE "EXAMPLE_EXIT_POINT".

 05 EXIT-PGM-NBR PIC S9(09) VALUE -1 BINARY.

 05 EXIT-PARAMETERS PIC X(10).

 05 FORMAT-NAME PIC X(08) VALUE "EXTI0100".

 05 FORMAT-NAME-1 PIC X(08) VALUE "EXTI0200".

 05 FORMAT-NAME-2 PIC X(08) VALUE "EXMP0100".

 05 NBR-OF-SELECT-CRITERIA PIC S9(09) VALUE 0 BINARY.

 05 CONTINUATION-HDL PIC X(16).

 05 BASE-POINTER POINTER.

 05 INFO-POINTER POINTER.

 05 SPACE-NAME PIC X(20) VALUE "RCVVAR QTEMP ".

 05 SPACE-ATTR PIC X(10).

 05 SPACE-SIZE PIC S9(09) VALUE 3500 BINARY.

 05 SPACE-VALUE PIC X(01) VALUE X"00".

 05 SPACE-AUTH PIC X(10) VALUE "*USE".

 05 SPACE-TEXT PIC X(50).

 05 SPACE-REPLACE PIC X(10) VALUE "*NO".

 05 SPACE-DOMAIN PIC X(10) VALUE "*USER".

 *

 LINKAGE SECTION.

 *

 * Variable to hold results of QUSRTVEI. The storage for this

 * variable will be allocated by way of a User Space.

 *

 01 RCVVAR PIC X(3500).

 *

 * Registration Facility API include. These includes will be

 * mapped over the RCVVAR (User Space) previously defined.

 *

 COPY QUSREG OF QSYSINC-QLBLSRC.

 *

 * Beginning of mainline

 *

 PROCEDURE DIVISION.

 MAIN-LINE.

 *

 * Retrieve the exit point information first. If the current

 * number of exit programs is not zero, retrieve the exit

 * programs. It is not necessary to call for the exit point

 * information to determine if the exit point has any exit

 * programs. It is done here for illustrative purposes only.

 * You can make one call to the API for the exit program

 * information and check the number of exit program entries

 * returned field to see if there are any exit programs to call.

 *

 * Initialize the error code to inform the API that all

 * exceptions should be returned through the error code parameter.

 *

 MOVE 16 TO BYTES-PROVIDED OF QUS-EC.

 *

 * Create a User Space for RCVVAR.

 *

 CALL "QUSCRTUS" USING SPACE-NAME, SPACE-ATTR, SPACE-SIZE,

 SPACE-VALUE, SPACE-AUTH, SPACE-TEXT,

 SPACE-REPLACE, QUS-EC, SPACE-DOMAIN.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

222 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

IF BYTES-AVAILABLE OF QUS-EC > 0

 IF EXCEPTION-ID OF QUS-EC = "CPF9870"

 CONTINUE

 ELSE

 OPEN OUTPUT LISTING,

 MOVE EXCEPTION-ID OF QUS-EC

 TO EXCEPTION-ID OF BAD-CREATE,

 WRITE LIST-LINE FROM BAD-CREATE,

 STOP RUN.

 *

 * Assign BASE-POINTER to address RCVVAR

 *

 CALL "QUSPTRUS" USING SPACE-NAME, BASE-POINTER, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 OPEN OUTPUT LISTING,

 MOVE EXCEPTION-ID OF QUS-EC

 TO EXCEPTION-ID OF BAD-CREATE,

 WRITE LIST-LINE FROM BAD-CREATE,

 STOP RUN.

 *

 SET ADDRESS OF RCVVAR TO BASE-POINTER.

 *

 * Blank out the continuation handle to let the API know that this

 * is a first attempt at the retrieve operation.

 *

 MOVE SPACES TO CONTINUATION-HDL.

 *

 * Call the API to retrieve the exit programs

 *

 CALL "QUSRTVEI" USING CONTINUATION-HDL, RCVVAR,

 BY CONTENT LENGTH OF RCVVAR,

 FORMAT-NAME OF MISC,

 EXIT-POINT-NAME OF MISC,

 FORMAT-NAME-2, EXIT-PGM-NBR,

 NBR-OF-SELECT-CRITERIA, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 OPEN OUTPUT LISTING,

 MOVE EXCEPTION-ID OF QUS-EC

 TO EXCEPTION-ID OF BAD-EXIT-POINT,

 WRITE LIST-LINE FROM BAD-EXIT-POINT,

 STOP RUN.

 *

 * If the call to retrieve exit point information is successful,

 * check to see if there are any exit programs to call.

 *

 SET ADDRESS OF QUS-EXTI0100 TO BASE-POINTER.

 SET ADDRESS OF QUS-EXTI0200 TO BASE-POINTER.

 *

 IF NUMBER-POINTS-RETURNED OF QUS-EXTI0100 > 0

 SET ADDRESS OF QUS-EXTI0100-ENTRY TO

 ADDRESS OF RCVVAR((OFFSET-EXIT-POINT-ENTRY OF

 QUS-EXTI0100 + 1):)

 ELSE STOP RUN.

 *

 IF NUMBER-EXIT-PROGRAMS OF QUS-EXTI0100-ENTRY > 0

APIs 223

*

 * There are some exit programs to call. Blank out the continuation

 * handle to let the API know that this is a first attempt at the

 * retrieve operation.

 *

 MOVE SPACES TO CONTINUATION-HDL,

 *

 * Call the exit programs

 *

 PERFORM CALL-EXIT-PROGRAMS,

 *

 * If the continuation handle field in the receiver variable is

 * not set to blanks, the API has more information to return than

 * what could fit in the receiver variable. Call the API for

 * more exit programs to call.

 *

 PERFORM UNTIL CONTINUE-HANDLE OF QUS-EXTI0200 = SPACES

 MOVE CONTINUE-HANDLE OF QUS-EXTI0200

 TO CONTINUATION-HDL,

 PERFORM CALL-EXIT-PROGRAMS,

 END-PERFORM.

 *

 STOP RUN.

 *

 * End of MAINLINE

 *

 *

 * Process exit programs in receiver variable

 *

 CALL-EXIT-PROGRAMS.

 *

 * Call the API to retrieve the exit program information

 *

 CALL "QUSRTVEI" USING CONTINUATION-HDL, RCVVAR,

 BY CONTENT LENGTH OF RCVVAR,

 FORMAT-NAME-1,

 EXIT-POINT-NAME OF MISC,

 FORMAT-NAME-2, EXIT-PGM-NBR,

 NBR-OF-SELECT-CRITERIA, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 OPEN OUTPUT LISTING,

 MOVE EXCEPTION-ID OF QUS-EC

 TO EXCEPTION-ID OF BAD-EXIT-PGM,

 WRITE LIST-LINE FROM BAD-EXIT-PGM,

 STOP RUN.

 *

 * If the call to retrieve exit program information is successful,

 * check to see if there are any exit programs to call.

 *

 * The receiver variable offers enough room for a minimum of one

 * exit program entry because the receiver variable was declared

 * as 3500 bytes. Therefore, this example only checks the

 * number of exit programs returned field. If the receiver

 * variable were not large enough to hold at least one entry,

 * the bytes available field would need to be checked as well as

 * the number of exit programs returned field. If the number of

 * exit programs returned field is set to zero and the bytes

 * available field is greater than the bytes returned field, the

 * API had at least one exit program entry to return but was

 * unable to because the receiver variable was too small.

 *

224 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

SET ADDRESS OF QUS-EXTI0200-ENTRY

 TO ADDRESS OF RCVVAR(OFFSET-PROGRAM-ENTRY

 OF QUS-EXTI0200 + 1:).

 PERFORM CALL-PGMS

 NUMBER-PROGRAMS-RETURNED OF QUS-EXTI0200 TIMES.

 *

 CALL-PGMS.

 *

 * Call the exit program while ignoring failures on the call

 *

 CALL PROGRAM-NAME OF QUS-EXTI0200-ENTRY USING

 EXIT-PARAMETERS

 ON EXCEPTION CONTINUE.

 *

 * Address the next exit program entry

 *

 SET ADDRESS OF QUS-EXTI0200-ENTRY

 TO ADDRESS OF RCVVAR(OFFSET-NEXT-ENTRY

 OF QUS-EXTI0200-ENTRY + 1:).

 Related tasks

 “Continuation handle” on page 77

Some APIs that return information offer a continuation handle.

Example in ILE COBOL: Retrieve exit point and exit program information

This program retrieves exit point and exit program information. After retrieving the exit point

information, the program calls each exit program. The Retrieve Exit Information API returns a

continuation handle when it has more information to return than what fits in the receiver variable.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 IDENTIFICATION DIVISION.

 *

 * Program: Retrieve Exit Point and Exit Program Information

 *

 * Language: ILE COBOL

 *

 * Description: This program retrieves exit point and exit

 * program information. After retrieving the

 * exit point information, the program calls each

 * exit program.

 *

 * APIs Used: QUSCRTUS - Create User Space

 * QUSPTRUS - Retrieve Pointer to User Space

 * QusRetrieveExitInformation - Retrieve Exit

 * Information

 *

 *

 PROGRAM-ID. REGFAC2.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT LISTING ASSIGN TO PRINTER-QPRINT

 ORGANIZATION IS SEQUENTIAL.

 DATA DIVISION.

 FILE SECTION.

 FD LISTING RECORD CONTAINS 132 CHARACTERS

 LABEL RECORDS ARE STANDARD

 DATA RECORD IS LIST-LINE.

APIs 225

01 LIST-LINE PIC X(132).

 WORKING-STORAGE SECTION.

 *

 * Error Code parameter include. As this sample program

 * uses COPY to include the error code structure, only the first

 * 16 bytes of the error code structure are available. If the

 * application program needs to access the variable length

 * exception data for the error, the developer should physically

 * copy the QSYSINC include and modify the copied include to

 * define additional storage for the exception data.

 *

 COPY QUSEC OF QSYSINC-QLBLSRC.

 *

 * Error message text

 *

 01 BAD-EXIT-POINT.

 05 TEXT1 PIC X(40)

 VALUE "Attempt to retrieve information failed: ".

 05 EXCEPTION-ID PIC X(07).

 01 BAD-EXIT-PGM.

 05 TEXT1 PIC X(42)

 VALUE "Attempt to retrieve Exit Programs failed: ".

 05 EXCEPTION-ID PIC X(07).

 01 BAD-CREATE.

 05 TEXT1 PIC X(37)

 VALUE "Allocation of RCVVAR storage failed: ".

 05 EXCEPTION-ID PIC X(07).

 *

 * Miscellaneous elements

 *

 01 MISC.

 05 EXIT-POINT-NAME PIC X(20) VALUE "EXAMPLE_EXIT_POINT".

 05 EXIT-PGM-NBR PIC S9(09) VALUE -1 BINARY.

 05 EXIT-PARAMETERS PIC X(10).

 05 FORMAT-NAME PIC X(08) VALUE "EXTI0100".

 05 FORMAT-NAME-1 PIC X(08) VALUE "EXTI0200".

 05 FORMAT-NAME-2 PIC X(08) VALUE "EXMP0100".

 05 NBR-OF-SELECT-CRITERIA PIC S9(09) VALUE 0 BINARY.

 05 CONTINUATION-HDL PIC X(16).

 05 BASE-POINTER POINTER.

 05 INFO-POINTER POINTER.

 05 SPACE-NAME PIC X(20) VALUE "RCVVAR QTEMP ".

 05 SPACE-ATTR PIC X(10).

 05 SPACE-SIZE PIC S9(09) VALUE 3500 BINARY.

 05 SPACE-VALUE PIC X(01) VALUE X"00".

 05 SPACE-AUTH PIC X(10) VALUE "*USE".

 05 SPACE-TEXT PIC X(50).

 05 SPACE-REPLACE PIC X(10) VALUE "*NO".

 05 SPACE-DOMAIN PIC X(10) VALUE "*USER".

 *

 LINKAGE SECTION.

 *

 * Variable to hold results of QusRetrieveExitInformation. The

 * storage for this variable will be allocated by way of a User

 * Space.

 *

 01 RCVVAR PIC X(3500).

 *

 * Registration Facility API include. These includes will be

 * mapped over the RCVVAR (User Space) previously defined.

 *

 COPY QUSREG OF QSYSINC-QLBLSRC.

 *

 * Beginning of mainline

 *

 PROCEDURE DIVISION.

 MAIN-LINE.

226 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

*

 * Retrieve the exit point information first. If the current

 * number of exit programs is not zero, retrieve the exit

 * programs. It is not necessary to call for the exit point

 * information to determine if the exit point has any exit

 * programs. It is done here for illustrative purposes only.

 * You can make one call to the API for the exit program

 * information and check the number of exit program entries

 * returned field to see if there are any exit programs to call.

 *

 * Initialize the error code to inform the API that all

 * exceptions should be returned through the error code parameter.

 *

 MOVE 16 TO BYTES-PROVIDED OF QUS-EC.

 *

 * Create a User Space for RCVVAR.

 *

 CALL "QUSCRTUS" USING SPACE-NAME, SPACE-ATTR, SPACE-SIZE,

 SPACE-VALUE, SPACE-AUTH, SPACE-TEXT,

 SPACE-REPLACE, QUS-EC, SPACE-DOMAIN.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 IF EXCEPTION-ID OF QUS-EC = "CPF9870"

 CONTINUE

 ELSE

 OPEN OUTPUT LISTING,

 MOVE EXCEPTION-ID OF QUS-EC

 TO EXCEPTION-ID OF BAD-CREATE,

 WRITE LIST-LINE FROM BAD-CREATE,

 STOP RUN.

 *

 * Assign BASE-POINTER to address RCVVAR

 *

 CALL "QUSPTRUS" USING SPACE-NAME, BASE-POINTER, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 OPEN OUTPUT LISTING,

 MOVE EXCEPTION-ID OF QUS-EC

 TO EXCEPTION-ID OF BAD-CREATE,

 WRITE LIST-LINE FROM BAD-CREATE,

 STOP RUN.

 *

 SET ADDRESS OF RCVVAR TO BASE-POINTER.

 *

 * Blank out the continuation handle to let the API know that this

 * is a first attempt at the retrieve operation.

 *

 MOVE SPACES TO CONTINUATION-HDL.

 *

 * Call the API to retrieve the exit programs

 *

 CALL PROCEDURE "QusRetrieveExitInformation" USING

 CONTINUATION-HDL,

 RCVVAR,

 BY CONTENT LENGTH OF RCVVAR,

 FORMAT-NAME OF MISC,

 EXIT-POINT-NAME OF MISC,

APIs 227

FORMAT-NAME-2, EXIT-PGM-NBR,

 NBR-OF-SELECT-CRITERIA, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 OPEN OUTPUT LISTING,

 MOVE EXCEPTION-ID OF QUS-EC

 TO EXCEPTION-ID OF BAD-EXIT-POINT,

 WRITE LIST-LINE FROM BAD-EXIT-POINT,

 STOP RUN.

 *

 * If the call to retrieve exit point information is successful,

 * check to see if there are any exit programs to call.

 *

 SET ADDRESS OF QUS-EXTI0100 TO BASE-POINTER.

 SET ADDRESS OF QUS-EXTI0200 TO BASE-POINTER.

 *

 IF NUMBER-POINTS-RETURNED OF QUS-EXTI0100 > 0

 SET ADDRESS OF QUS-EXTI0100-ENTRY TO

 ADDRESS OF RCVVAR((OFFSET-EXIT-POINT-ENTRY OF

 QUS-EXTI0100 + 1):)

 ELSE STOP RUN.

 *

 IF NUMBER-EXIT-PROGRAMS OF QUS-EXTI0100-ENTRY > 0

 *

 * There are some exit programs to call. Blank out the continuation

 * handle to let the API know that this is a first attempt at the

 * retrieve operation.

 *

 MOVE SPACES TO CONTINUATION-HDL,

 *

 * Call the exit programs

 *

 PERFORM CALL-EXIT-PROGRAMS,

 *

 * If the continuation handle field in the receiver variable is

 * not set to blanks, the API has more information to return than

 * what could fit in the receiver variable. Call the API for

 * more exit programs to call.

 *

 PERFORM UNTIL CONTINUE-HANDLE OF QUS-EXTI0200 = SPACES

 MOVE CONTINUE-HANDLE OF QUS-EXTI0200

 TO CONTINUATION-HDL,

 PERFORM CALL-EXIT-PROGRAMS,

 END-PERFORM.

 *

 STOP RUN.

 *

 * End of MAINLINE

 *

 *

 * Process exit programs in receiver variable

 *

 CALL-EXIT-PROGRAMS.

 *

 * Call the API to retrieve the exit program information

 *

 CALL PROCEDURE "QusRetrieveExitInformation" USING

 CONTINUATION-HDL, RCVVAR,

 BY CONTENT LENGTH OF RCVVAR,

 FORMAT-NAME-1,

 EXIT-POINT-NAME OF MISC,

 FORMAT-NAME-2, EXIT-PGM-NBR,

228 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

NBR-OF-SELECT-CRITERIA, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 OPEN OUTPUT LISTING,

 MOVE EXCEPTION-ID OF QUS-EC

 TO EXCEPTION-ID OF BAD-EXIT-PGM,

 WRITE LIST-LINE FROM BAD-EXIT-PGM,

 STOP RUN.

 *

 * If the call to retrieve exit program information is successful,

 * check to see if there are any exit programs to call.

 *

 * The receiver variable offers enough room for a minimum of one

 * exit program entry because the receiver variable was declared

 * as 3500 bytes. Therefore, this example only checks the

 * number of exit programs returned field. If the receiver

 * variable were not large enough to hold at least one entry,

 * the bytes available field would need to be checked as well as

 * the number of exit programs returned field. If the number of

 * exit programs returned field is set to zero and the bytes

 * available field is greater than the bytes returned field, the

 * API had at least one exit program entry to return but was

 * unable to because the receiver variable was too small.

 *

 SET ADDRESS OF QUS-EXTI0200-ENTRY

 TO ADDRESS OF RCVVAR(OFFSET-PROGRAM-ENTRY

 OF QUS-EXTI0200 + 1:).

 PERFORM CALL-PGMS

 NUMBER-PROGRAMS-RETURNED OF QUS-EXTI0200 TIMES.

 *

 CALL-PGMS.

 *

 * Call the exit program while ignoring failures on the call

 *

 CALL PROGRAM-NAME OF QUS-EXTI0200-ENTRY USING

 EXIT-PARAMETERS

 ON EXCEPTION CONTINUE.

 *

 * Address the next exit program entry

 *

 SET ADDRESS OF QUS-EXTI0200-ENTRY

 TO ADDRESS OF RCVVAR(OFFSET-NEXT-ENTRY

 OF QUS-EXTI0200-ENTRY + 1:).

 Related tasks

 “Continuation handle” on page 77

Some APIs that return information offer a continuation handle.

Example in OPM RPG: Retrieve exit point and exit program information

This program retrieves exit point and exit program information. After retrieving the exit point

information, the program calls each exit program. The Retrieve Exit Information API returns a

continuation handle when it has more information to return than what fits in the receiver variable.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 F***

 F***

 F*

 F* Program: Retrieve Exit Point and Exit Program Information

 F*

 F* Language: OPM RPG

APIs 229

F*

 F* Description: This program retrieves exit point and exit

 F* program information. After retrieving the

 F* exit point information, the program calls each

 F* exit program.

 F*

 F* APIs Used: QUSRTVEI - Retrieve Exit Information

 F*

 F***

 F***

 F*

 FQPRINT O F 132 PRINTER UC

 I*

 I* Error Code parameter include. As this sample program

 I* uses /COPY to include the error code structure, only the first

 I* 16 bytes of the error code structure are available. If the

 I* application program needs to access the variable length

 I* exception data for the error, the developer should physically

 I* copy the QSYSINC include and modify the copied include to

 I* define additional storage for the exception data.

 I*

 I/COPY QSYSINC/QRPGSRC,QUSEC

 I*

 I* Formats for the Retrieve Exit Information API.

 I*

 I/COPY QSYSINC/QRPGSRC,QUSREG

 I*

 I* Miscellaneous data

 I*

 I DS

 I I ’EXAMPLE_EXIT_POINT ’ 1 20 EPNTNM

 I I -1 B 21 240EPGMNB

 I I 3500 B 25 280RCVSZ

 I B 29 320X

 I B 33 360Y

 I 37 57 CALLPG

 IRCV DS 3500

 C*

 C* Beginning of mainline

 C*

 C* Retrieve the exit point information first. If the current

 C* number of exit programs is not zero, retrieve the exit

 C* programs. It is not necessary to call for the exit point

 C* information to determine if the exit point has any exit

 C* programs. It is done here for illustrative purposes only.

 C* You can make one call to the API for the exit program

 C* information and check the number of exit program entries

 C* returned field to see if there are any exit programs to call.

 C*

 C* Initialize the error code to inform the API that all

 C* exceptions should be returned through the error code parameter.

 C*

 C Z-ADD16 QUSBNB

 C*

 C* Blank out the continuation handle to let the API know that this

 C* is a first attempt at the retrieve operation.

 C*

 C MOVE *BLANKS CONTHD 16

 C*

 C* Call the API to retrieve the exit point information

 C*

 C CALL ’QUSRTVEI’

 C PARM CONTHD

 C PARM RCV

 C PARM RCVSZ

 C PARM ’EXTI0100’FORMAT 8

 C PARM EPNTNM

230 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C PARM ’EXMP0100’EPTFMT 8

 C PARM EPGMNB

 C PARM 0 QUSCCB

 C PARM QUSBN

 C*

 C* If an exception occurs, the API returns the exception in the

 C* error code parameter. The bytes available field is set to

 C* zero if no exception occurs and greater than zero if an

 C* exception does occur.

 C*

 C QUSBNC IFGT 0

 C OPEN QPRINT

 C EXCPTERREPT

 C EXSR DONE

 C ENDIF

 C*

 C* If the call to retrieve exit point information is successful,

 C* check to see if there are any exit programs to call.

 C*

 C 36 SUBSTRCV:1 QUSCG

 C QUSCGG IFGT 0

 C 1 ADD QUSCGF X

 C 201 SUBSTRCV:X QUSCF

 C QUSCFF IFGT 0

 C*

 C* There are some exit programs to call. Blank out the continuation

 C* handle to let the API know that this is a first attempt at the

 C* retrieve operation.

 C*

 C MOVE *BLANKS CONTHD

 C*

 C* Call the exit programs

 C*

 C EXSR CUSREI

 C*

 C* If the continuation handle field in the receiver variable is

 C* not set to blanks, the API has more information to return than

 C* what could fit in the receiver variable. Call the API for

 C* more exit programs to call.

 C*

 C QUSCGD DOWNE*BLANKS

 C MOVELQUSCGD CONTHD

 C EXSR CUSREI

 C ENDDO

 C ENDIF

 C ENDIF

 C EXSR DONE

 C*

 C* End of MAINLINE

 C*

 C* Process exit programs in receiver variable

 C*

 C CUSREI BEGSR

 C*

 C* Call the API to retrieve the exit program information

 C*

 C CALL ’QUSRTVEI’

 C PARM CONTHD

 C PARM RCV

 C PARM RCVSZ

 C PARM ’EXTI0200’FORMAT 8

 C PARM EPNTNM

 C PARM ’EXMP0100’EPTFMT 8

 C PARM EPGMNB

 C PARM 0 QUSCCB

 C PARM QUSBN

 C*

APIs 231

C* If an exception occurs, the API returns the exception in the

 C* error code parameter. The bytes available field is set to

 C* zero if no exception occurs and greater than zero if an

 C* exception does occur.

 C*

 C QUSBNC IFGT 0

 C OPEN QPRINT

 C EXCPTERRPGM

 C EXSR DONE

 C ENDIF

 C*

 C* If the call to retrieve exit program information is successful,

 C* check to see if there are any exit programs to call.

 C*

 C* The receiver variable offers enough room for a minimum of one

 C* exit program entry because the receiver variable was declared

 C* as 3500 bytes. Therefore, this example only checks the

 C* number of exit programs returned field. If the receiver

 C* variable were not large enough to hold at least one entry,

 C* the bytes available field would need to be checked as well as

 C* the number of exit programs returned field. If the number of

 C* exit programs returned field is set to zero and the bytes

 C* available field is greater than the bytes returned field, the

 C* API had at least one exit program entry to return but was

 C* unable to because the receiver variable was too small.

 C*

 C 36 SUBSTRCV:1 QUSCJ

 C 1 ADD QUSCJF Y

 C 72 SUBSTRCV:Y QUSCH

 C DO QUSCJG

 C*

 C* Get the exit program name and library

 C*

 C MOVE *BLANKS CALLPG

 C MOVELQUSCHL CALLPG

 C CALLPG CAT ’/’:0 CALLPG

 C CALLPG CAT QUSCHK:0 CALLPG

 C*

 C* Call the exit program while ignoring failures on the call

 C*

 C CALL CALLPG 01

 C PARM EXTPRM 10

 C*

 C* Set Y to point to the next exit program entry

 C*

 C 1 ADD QUSCHB Y

 C 72 SUBSTRCV:Y QUSCH

 C ENDDO

 C ENDSR

 C*

 C* Return to programs caller

 C DONE BEGSR

 C SETON LR

 C RETRN

 C ENDSR

 O*

 OQPRINT E 106 ERREPT

 O ’Attempt to retrieve infor’

 O ’mation failed: ’

 O QUSBND

 OQPRINT E 106 ERRPGM

 O ’Attempt to retrieve Exit’

 O ’ Programs failed: ’

 O QUSBND

 Related tasks

232 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

“Continuation handle” on page 77

Some APIs that return information offer a continuation handle.

Example in ILE RPG: Retrieve exit point and exit program information

This program retrieves exit point and exit program information. After retrieving the exit point

information, the program calls each, exit program. The Retrieve Exit Information API returns a

continuation handle when it has more information to return than what fits in the receiver variable.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 F***

 F***

 F*

 F* Program: Retrieve Exit Point and Exit Program Information

 F*

 F* Language: ILE RPG

 F*

 F* Description: This program retrieves exit point and exit

 F* program information. After retrieving the

 F* exit point information, the program calls each ,

 F* exit program.

 F*

 F* APIs Used: QusRetrieveExitInformation - Retrieve Exit

 F* Information

 F*

 F***

 F***

 F*

 FQPRINT O F 132 PRINTER OFLIND(*INOF) USROPN

 D*

 D* The following QUSREG include from QSYSINC is copied into

 D* this program so that the data structures can be declared as

 D* BASED.

 D*

 D*** START HEADER FILE SPECIFICATIONS ****************************

 D*

 D*Header File Name: H/QUSREG

 D*

 D*Descriptive Name: Standard Registration Structures.

 D*

 D*5763-SS1 (C) Copyright IBM Corp. 1994,1994

 D*All rights reserved.

 D*US Government Users Restricted Rights -

 D*Use, duplication or disclosure restricted

 D*by GSA ADP Schedule Contract with IBM Corp.

 D*

 D*Licensed Materials-Property of IBM

 D*

 D*

 D*Description: All of the structures that are used in the

 D* Registration facilities are kept here to avoid

 D* conflict due to repetition.

 D*

 D*Header Files Included: None.

 D*

 D*Macros List: None.

 D*

 D*Structure List: Qus_Prep_Exit_t

 D* Qus_Qmff_t

 D* Qus_Selcrtr_t

 D* Qus_Select_Entry_t

 D* Qus_Program_Data_t

 D* Qus_EXTI0100_t

 D* Qus_EXTI0100_Entry_t

 D* Qus_EXTI0200_t

 D* Qus_EXTI0200_Entry_t

APIs 233

D* Qus_EXTI0300_t

 D* Qus_EXTI0300_Entry_t

 D*

 D*Function Prototype List: none.

 D*

 D*Change Activity:

 D*

 D*CFD List:

 D*

 D*FLAG REASON LEVEL DATE PGMR CHANGE DESCRIPTION

 D*---- ------------ ----- ------ --------- ----------------------

 D*$A0= D2862000 3D10 940327 LUPA: New Include

 D*

 D*End CFD List.

 D*

 D*Additional notes about the Change Activity

 D*End Change Activity.

 D*** END HEADER FILE SPECIFICATIONS ******************************

 D***

 D*Format structure for the Preprocessing Exit Program Format for

 D*QusRegisterExitPoint API.

 D***

 DQUSPE DS

 D* Qus Prep Exit

 D QUSPPN 1 10

 D* Prep Prog Name

 D QUSPPLIB 11 20

 D* Prep Prog Library

 D QUSPPF 21 28

 D* Prep Prog Format

 D***

 D*Format structure for the Qualified Message File Format for the

 D*entire service program.

 D***

 DQUSQMFF DS

 D* Qus Qmff

 D QUSMFIL 1 10

 D* Message File

 D QUSMLIB 11 20

 D* Message Library

 D QUSMI 21 27

 D* Message Id

 D***

 D*Format structure for the Exit Program Selection Criteria of the

 D*QusRetrieveExitInformation API.

 D**** ***

 D*NOTE: This structure only defines fixed fields. Any varying

 D* length or repeating field will have to be defined by

 D* the user.

 D***

 DQUSSE DS

 D* Qus Select Entry

 D QUSSE00 1 4B 0

 D* Size Entry

 D QUSCO 5 8B 0

 D* Comp Operator

 D QUSSPD 9 12B 0

 D* Start Pgm Data

 D QUSLCD 13 16B 0

 D* Length Comp Data

 D*QUSCD 17 17

 D*

 D* Varying length

 DQUSS DS

 D* Qus Selcrtr

 D QUSNBRSC 1 4B 0

 D* Number Sel Criteria

234 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

D*QUSARRAY 17 DIM(00001)

 D* QUSSE01 9B 0 OVERLAY(QUSARRAY:00001)

 D* QUSCO00 9B 0 OVERLAY(QUSARRAY:00005)

 D* QUSSPD00 9B 0 OVERLAY(QUSARRAY:00009)

 D* QUSLCD00 9B 0 OVERLAY(QUSARRAY:00013)

 D* QUSCD00 1 OVERLAY(QUSARRAY:00017)

 D*

 D* Varying length

 D***

 D*Format Structure for the Program Data. This structure has

 D*set up to facilitate COBOL and RPG pointer basing.

 D***

 DQUSPGMD DS

 D* Qus Program Data

 D QUSDATA01 1 1

 D* Varying length

 D***

 D*Format structure for the EXTI0100 Format for the

 D*QusRetrieveExitInformation API.

 D**** ***

 D*NOTE: This structure only defines fixed fields. Any varying

 D* length or repeating field will have to be defined by

 D* the user.

 D***

 DQUS0100E DS BASED(INFSPCPTR)

 D* Qus EXTI0100 Entry

 D QUSEPN00 1 20

 D* Exit Point Name

 D QUSFN08 21 28

 D* Format Name

 D QUSMEP 29 32B 0

 D* Max Exit Programs

 D QUSNBREP 33 36B 0

 D* Number Exit Programs

 D QUSAD 37 37

 D* Allow Deregistration

 D QUSACC 38 38

 D* Allow Change Control

 D QUSREP 39 39

 D* Registered Exit Point

 D QUSPNAP 40 49

 D* Prep Name Add Pgm

 D QUSPLAP 50 59

 D* Prep Lib Add Pgm

 D QUSPFA 60 67

 D* Prep Format Add

 D QUSPNRP 68 77

 D* Prep Name Rmv Pgm

 D QUSPLRP 78 87

 D* Prep Lib Rmv Pgm

 D QUSPFR 88 95

 D* Prep Format Rmv

 D QUSPNRI 96 105

 D* Prep Name Rtv Info

 D QUSPLRI 106 115

 D* Prep Lib Rtv Info

 D QUSPFR00 116 123

 D* Prep Format Rtv

 D QUSDI 124 124

 D* Desc Indicator

 D QUSDMFIL 125 134

 D* Desc Msg File

 D QUSDMLIB 135 144

 D* Desc Msg Library

 D QUSDMI 145 151

 D* Desc Msg Id

 D QUSTD 152 201

APIs 235

D* Text Description

 D*QUSERVED03 202 202

 D*

 D* Varying length

 DQUSI0100 DS BASED(BASSPCPTR)

 D* Qus EXTI0100

 D QUSBRTN 1 4B 0

 D* Bytes Returned

 D QUSBAVL00 5 8B 0

 D* Bytes Available

 D QUSCH 9 24

 D* Continue Handle

 D QUSOEPE 25 28B 0

 D* Offset Exit Point Entry

 D QUSNBRPR 29 32B 0

 D* Number Points Returned

 D QUSLEPE 33 36B 0

 D* Length Exit Point Entry

 D*QUSERVED04 37 37

 D*

 D* Varying length

 D*QUSARRAY00 202 DIM(00001)

 D* QUSEPN01 20 OVERLAY(QUSARRAY00:00001)

 D* QUSFN09 8 OVERLAY(QUSARRAY00:00021)

 D* QUSMEP00 9B 0 OVERLAY(QUSARRAY00:00029)

 D* QUSNBREP00 9B 0 OVERLAY(QUSARRAY00:00033)

 D* QUSAD00 1 OVERLAY(QUSARRAY00:00037)

 D* QUSACC00 1 OVERLAY(QUSARRAY00:00038)

 D* QUSREP00 1 OVERLAY(QUSARRAY00:00039)

 D* QUSPNAP00 10 OVERLAY(QUSARRAY00:00040)

 D* QUSPLAP00 10 OVERLAY(QUSARRAY00:00050)

 D* QUSPFA00 8 OVERLAY(QUSARRAY00:00060)

 D* QUSPNRP00 10 OVERLAY(QUSARRAY00:00068)

 D* QUSPLRP00 10 OVERLAY(QUSARRAY00:00078)

 D* QUSPFR01 8 OVERLAY(QUSARRAY00:00088)

 D* QUSPNRI00 10 OVERLAY(QUSARRAY00:00096)

 D* QUSPLRI00 10 OVERLAY(QUSARRAY00:00106)

 D* QUSPFR02 8 OVERLAY(QUSARRAY00:00116)

 D* QUSDI00 1 OVERLAY(QUSARRAY00:00124)

 D* QUSDMFIL00 10 OVERLAY(QUSARRAY00:00125)

 D* QUSDMLIB00 10 OVERLAY(QUSARRAY00:00135)

 D* QUSDMI00 7 OVERLAY(QUSARRAY00:00145)

 D* QUSTD00 50 OVERLAY(QUSARRAY00:00152)

 D* QUSERVED05 1 OVERLAY(QUSARRAY00:00202)

 D*

 D* Varying length

 D***

 D*Format structure for the EXTI0200 Format for the

 D*QusRetrieveExitInformation API.

 D**** ***

 D*NOTE: This structure only defines fixed fields. Any varying

 D* length or repeating field will have to be defined by

 D* the user.

 D***

 DQUS0200E DS BASED(INFSPCPTR)

 D* Qus EXTI0200 Entry

 D QUSONE 1 4B 0

 D* Offset Next Entry

 D QUSEPN02 5 24

 D* Exit Point Name

 D QUSFN10 25 32

 D* Format Name

 D QUSREP01 33 33

 D* Registered Exit Pt

 D QUSCE 34 34

 D* Complete Entry

 D QUSERVED06 35 36

236 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

D* Reserved

 D QUSPGMN 37 40B 0

 D* Program Number

 D QUSPGMN00 41 50

 D* Program Name

 D QUSPGML 51 60

 D* Program Library

 D QUSDC 61 64B 0

 D* Data CCSID

 D QUSOED 65 68B 0

 D* Offset Exit Data

 D QUSLED 69 72B 0

 D* Length Exit Data

 D*QUSERVED06 73 73

 D*

 D* Varying length

 D*QUSPD 1

 D* QUSDATA02 74 74

 D*

 D* Varying length

 DQUSI0200 DS BASED(BASSPCPTR)

 D* Qus EXTI0200

 D QUSBRTN00 1 4B 0

 D* Bytes Returned

 D QUSBAVL01 5 8B 0

 D* Bytes Available

 D QUSCH00 9 24

 D* Continue Handle

 D QUSOPGME 25 28B 0

 D* Offset Program Entry

 D QUSNBRPR00 29 32B 0

 D* Number Programs Returned

 D QUSLPGME 33 36B 0

 D* Length Program Entry

 D*QUSERVED07 37 37

 D*

 D* Varying length

 D*QUSARRAY01 74 DIM(00001)

 D* QUSONE00 9B 0 OVERLAY(QUSARRAY01:00001)

 D* QUSEPN03 20 OVERLAY(QUSARRAY01:00005)

 D* QUSFN11 8 OVERLAY(QUSARRAY01:00025)

 D* QUSREP02 1 OVERLAY(QUSARRAY01:00033)

 D* QUSCE00 1 OVERLAY(QUSARRAY01:00034)

 D* QUSERVED08 2 OVERLAY(QUSARRAY01:00035)

 D* QUSPGMN01 9B 0 OVERLAY(QUSARRAY01:00037)

 D* QUSPGMN02 10 OVERLAY(QUSARRAY01:00041)

 D* QUSPGML00 10 OVERLAY(QUSARRAY01:00051)

 D* QUSDC00 9B 0 OVERLAY(QUSARRAY01:00061)

 D* QUSOED00 9B 0 OVERLAY(QUSARRAY01:00065)

 D* QUSLED00 9B 0 OVERLAY(QUSARRAY01:00069)

 D* QUSERVED08 1 OVERLAY(QUSARRAY01:00073)

 D* QUSPD00 1

 D* QUSDATA03 1 OVERLAY(QUSARRAY01:00001)

 D*

 D* Varying length

 D***

 D*Format structure for the EXTI0300 Format for the

 D*QusRetrieveExitInformation API.

 D**** ***

 D*NOTE: This structure only defines fixed fields. Any varying

 D* length or repeating field will have to be defined by

 D* the user.

 D***

 DQUS0300E DS

 D* Qus EXTI0300 Entry

 D QUSONE01 1 4B 0

 D* Offset Next Entry

APIs 237

D QUSEPN04 5 24

 D* Exit Point Name

 D QUSFN12 25 32

 D* Format Name

 D QUSREP03 33 33

 D* Registered Exit Point

 D QUSCE01 34 34

 D* Complete Entry

 D QUSERVED09 35 36

 D* Reserved

 D QUSPGMN03 37 40B 0

 D* Program Number

 D QUSPGMN04 41 50

 D* Program Name

 D QUSPGML01 51 60

 D* Program Library

 D QUSDI01 61 61

 D* Desc Indicator

 D QUSMFIL00 62 71

 D* Message File

 D QUSMFILL 72 81

 D* Message File Library

 D QUSMI00 82 88

 D* Message Id

 D QUSTD01 89 138

 D* Text Desc

 D QUSRSV201 139 140

 D* Reserved2

 D QUSDC01 141 144B 0

 D* Data CCSID

 D QUSOPD 145 148B 0

 D* Offset Pgm Data

 D QUSLPD 149 152B 0

 D* Length Pgm Data

 D*QUSERVED09 153 153

 D*

 D* Varying length

 D*QUSPD01 1

 D* QUSDATA04 154 154

 D*

 D* Varying length

 DQUSI0300 DS

 D* Qus EXTI0300

 D QUSBRTN01 1 4B 0

 D* Bytes Returned

 D QUSBAVL02 5 8B 0

 D* Bytes Available

 D QUSCH01 9 24

 D* Continue Handle

 D QUSOPGME00 25 28B 0

 D* Offset Program Entry

 D QUSNBRPR01 29 32B 0

 D* Number Programs Returned

 D QUSLPGME00 33 36B 0

 D* Length Program Entry

 D*QUSERVED10 37 37

 D*

 D* Varying length

 D*QUSARRAY02 154 DIM(00001)

 D* QUSONE02 9B 0 OVERLAY(QUSARRAY02:00001)

 D* QUSEPN05 20 OVERLAY(QUSARRAY02:00005)

 D* QUSFN13 8 OVERLAY(QUSARRAY02:00025)

 D* QUSREP04 1 OVERLAY(QUSARRAY02:00033)

 D* QUSCE02 1 OVERLAY(QUSARRAY02:00034)

 D* QUSERVED11 2 OVERLAY(QUSARRAY02:00035)

 D* QUSPGMN05 9B 0 OVERLAY(QUSARRAY02:00037)

 D* QUSPGMN06 10 OVERLAY(QUSARRAY02:00041)

238 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

D* QUSPGML02 10 OVERLAY(QUSARRAY02:00051)

 D* QUSDI02 1 OVERLAY(QUSARRAY02:00061)

 D* QUSMFIL01 10 OVERLAY(QUSARRAY02:00062)

 D* QUSMFILL00 10 OVERLAY(QUSARRAY02:00072)

 D* QUSMI01 7 OVERLAY(QUSARRAY02:00082)

 D* QUSTD02 50 OVERLAY(QUSARRAY02:00089)

 D* QUSRSV202 2 OVERLAY(QUSARRAY02:00139)

 D* QUSDC02 9B 0 OVERLAY(QUSARRAY02:00141)

 D* QUSOPD00 9B 0 OVERLAY(QUSARRAY02:00145)

 D* QUSLPD00 9B 0 OVERLAY(QUSARRAY02:00149)

 D* QUSERVED11 1 OVERLAY(QUSARRAY02:00153)

 D* QUSPD02 1

 D* QUSDATA05 1 OVERLAY(QUSARRAY02:00001)

 D*

 D* Varying length

 D*

 D* Error Code parameter include. As this sample program

 D* uses /COPY to include the error code structure, only the first

 D* 16 bytes of the error code structure are available. If the

 D* application program needs to access the variable length

 D* exception data for the error, the developer should physically

 D* copy the QSYSINC include and modify the copied include to

 D* define additional storage for the exception data.

 D*

 D/COPY QSYSINC/QRPGLESRC,QUSEC

 D*

 D***

 D*Prototype for calling Retrieve Exit Information

 D***

 D QUSREI C ’QusRetrieveExitInformation’

 D*

 D* Miscellaneous data

 D*

 DEPNTNAME S 20 INZ(’EXAMPLE_EXIT_POINT’)

 DEPGM_NBR S 9B 0 INZ(-1)

 DRCVVAR S 1 DIM(3500)

 DRCVVAR_SZ S 9B 0 INZ(%SIZE(RCVVAR:*ALL))

 DBASSPCPTR S *

 DINFSPCPTR S *

 DCALL_PGM S 21

 C*

 C* Beginning of mainline

 C*

 C* Retrieve the exit point information first. If the current

 C* number of exit programs is not zero, retrieve the exit

 C* programs. It is not necessary to call for the exit point

 C* information to determine if the exit point has any exit

 C* programs. It is done here for illustrative purposes only.

 C* You can make one call to the API for the exit program

 C* information and check the number of exit program entries

 C* returned field to see if there are any exit programs to call.

 C*

 C* Initialize the error code to inform the API that all

 C* exceptions should be returned through the error code parameter.

 C*

 C EVAL QUSBPRV = %SIZE(QUSEC)

 C*

 C* Blank out the continuation handle to let the API know that this

 C* is a first attempt at the retrieve operation.

 C*

 C MOVE *BLANKS CONTIN_HDL 16

 C*

 C* Call the API to retrieve the exit programs

 C*

 C CALLB QUSREI

 C PARM CONTIN_HDL

 C PARM RCVVAR

APIs 239

C PARM RCVVAR_SZ

 C PARM ’EXTI0100’ FORMAT 8

 C PARM EPNTNAME

 C PARM ’EXMP0100’ EPNT_FMT 8

 C PARM EPGM_NBR

 C PARM 0 QUSNBRSC

 C PARM QUSEC

 C*

 C* If an exception occurs, the API returns the exception in the

 C* error code parameter. The bytes available field is set to

 C* zero if no exception occurs and greater than zero if an

 C* exception does occur.

 C*

 C IF QUSBAVL > 0

 C OPEN QPRINT

 C EXCEPT ERRAEPNT

 C EXSR DONE

 C ENDIF

 C*

 C* If the call to retrieve exit point information is successful,

 C* check to see if there are any exit programs to call.

 C*

 C EVAL BASSPCPTR = %ADDR(RCVVAR)

 C IF QUSNBRPR > 0

 C EVAL INFSPCPTR = %ADDR(RCVVAR(QUSOEPE+1))

 C IF QUSNBREP > 0

 C*

 C* There are some exit programs to call. Blank out the continuation

 C* handle to let the API know that this is a first attempt at the

 C* retrieve operation.

 C*

 C EVAL CONTIN_HDL = *BLANKS

 C*

 C* Call the exit programs

 C*

 C EXSR CUSREI

 C*

 C* If the continuation handle field in the receiver variable is

 C* not set to blanks, the API has more information to return than

 C* what could fit in the receiver variable. Call the API for

 C* more exit programs to call.

 C*

 C DOW QUSCH00 <> *BLANKS

 C EVAL CONTIN_HDL = QUSCH00

 C EXSR CUSREI

 C ENDDO

 C ENDIF

 C ENDIF

 C EXSR DONE

 C*

 C* End of MAINLINE

 C*

 C* Process exit programs in receiver variable

 C*

 C CUSREI BEGSR

 C*

 C* Call the API to retrieve the exit program information

 C*

 C CALLB QUSREI

 C PARM CONTIN_HDL

 C PARM RCVVAR

 C PARM RCVVAR_SZ

 C PARM ’EXTI0200’ FORMAT 8

 C PARM EPNTNAME

 C PARM ’EXMP0100’ EPNT_FMT 8

 C PARM EPGM_NBR

 C PARM 0 QUSNBRSC

240 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C PARM QUSEC

 C*

 C* If an exception occurs, the API returns the exception in the

 C* error code parameter. The bytes available field is set to

 C* zero if no exception occurs and greater than zero if an

 C* exception does occur.

 C*

 C IF QUSBAVL > 0

 C OPEN QPRINT

 C EXCEPT ERRAEPGM

 C EXSR DONE

 C ENDIF

 C*

 C* If the call to retrieve exit program information is successful,

 C* check to see if there are any exit programs to call.

 C*

 C* The receiver variable offers enough room for a minimum of one

 C* exit program entry because the receiver variable was declared

 C* as 3500 bytes. Therefore, this example only checks the

 C* number of exit programs returned field. If the receiver

 C* variable were not large enough to hold at least one entry,

 C* the bytes available field would need to be checked as well as

 C* the number of exit programs returned field. If the number of

 C* exit programs returned field is set to zero and the bytes

 C* available field is greater than the bytes returned field, the

 C* API had at least one exit program entry to return but was

 C* unable to because the receiver variable was too small.

 C*

 C EVAL INFSPCPTR = %ADDR(RCVVAR(QUSOPGME+1))

 C DO QUSNBRPR00

 C*

 C* Get the exit program name and library

 C*

 C EVAL CALL_PGM = %TRIMR(QUSPGML) +

 C ’/’ + QUSPGMN00

 C*

 C* Call the exit program while ignoring failures on the call

 C*

 C CALL CALL_PGM 01

 C PARM EXIT_PARMS 10

 C*

 C* Set INFSPCPTR to point to the next exit program entry

 C*

 C EVAL INFSPCPTR = %ADDR(RCVVAR(QUSONE+1))

 C ENDDO

 C ENDSR

 C*

 C* Return to programs caller

 C DONE BEGSR

 C EVAL *INLR = ’1’

 C RETURN

 C ENDSR

 O*

 OQPRINT E ERRAEPNT 1 6

 O ’Attempt to retrieve infor-

 O mation failed: ’

 O QUSEI

 OQPRINT E ERRAEPGM 1 6

 O ’Attempt to retrieve Exit -

 O Programs failed: ’

 O QUSEI

 Related tasks

 “Continuation handle” on page 77

Some APIs that return information offer a continuation handle.

APIs 241

Performing tasks using APIs

This topic provides some examples of using APIs to perform different types of tasks.

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

 Related reference

 “Examples: APIs” on page 301

Contains example programs that use APIs and exit programs.

Examples: Packaging your own software products

You can define, create, distribute, and maintain your own product using APIs. These examples

demonstrate how you can use the APIs to package a product similar to the way IBM packages products.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Creating the example product:

The first example product being packaged is called ABC Product. The product is made up of one library,

ABC, with no options off of this product.

 ABC Product consists of the following objects:

 Table 2. ABC Software Packaging

Number Object Name Object Type Text Description

1 ABCPGMMRM1 *PGM MRM

1 preprocessing

program

2 ABCPGMMRM2 *PGM MRM postprocessing

program

3 ABCPGMMRI1 *PGM MRI

2 preprocessing

program

4 ABCPGMMRI2 *PGM MRI postprocessing

program

5 ABCPGM *PGM CPP

3 for ABC command

6 QCLSRC *FILE(SRCPF) Source physical file

7 ABCDSPF *FILE(DSPF) Display file

242 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

|
|
|
|
|

|
|

|

|
|

|

|
|
|

Table 2. ABC Software Packaging (continued)

Number Object Name Object Type Text Description

8 ABCPF *FILE(PF) Physical file

9 ABCMSG *MSGF Message file

10 ABC *CMD Command for ABC Product

11 ABCPNLGRP *PNLGRP Panels for ABC

12 ABC0050 *PRDDFN Product definition

13 ABC0029 *PRDLOD Product load for MRI

14 ABC0050 *PRDLOD Product load for MRM

15 ABC *LIB ABC Product

Notes:

1. Machine readable material

2. Machine readable information

3. Command processing program

To package a product, first you create all of the objects (numbers 1 through 11 and number 15 in the table

above) that will comprise your product. (“Example: CL program for creating objects and library for

packaging a product” on page 244 shows the code that creates the objects.) After your objects are created,

you do the steps listed in “Example in ILE COBOL: Program for packaging a product” on page 257.

The following figure is an overview of the steps required to create a product. An explanation is given in

the figure below of the numbers. The same numbers also appear in the code.

(1) Create a product definition with information about the licensed program, such as ID, version, and

release.

(2) Create a product load, which further defines each option of a licensed program, such as the

libraries, folders, and exit programs that comprise the product.

(3) Identify all objects associated with the product by changing the product ID, release level, product

option, and load ID in the object description by using the Change Object Description API.

Figure 1. Steps for creating a software product

APIs 243

(4) Package the product. Verify and store a list of all objects marked for this product in the product

load object.

(5) Use the Save Licensed Program (SAVLICPGM) command to save the product to tape.

Example: CL program for creating objects and library for packaging a product:

The following CL program creates objects 1 through 11 and 15.

 PGM

/* Delete library and start from scratch */

 DLTLIB ABC

/* MRM Objects */

 CRTLIB ABC

 CRTCLPGM ABC/ABCPGMMRM1 ABCDEV/QCLSRC +

 TEXT(’MRM Preprocessing Program’)

 CRTCLPGM ABC/ABCPGMMRM2 ABCDEV/QCLSRC +

 TEXT(’MRM Postprocessing Program’)

 CRTCLPGM ABC/ABCPGM ABCDEV/QCLSRC +

 TEXT(’CPP for ABC command’)

/* MRI Objects */

 CRTCLPGM ABC/ABCPGMMRI1 ABCDEV/QCLSRC +

 TEXT(’MRI Preprocessing Program’)

 CRTCLPGM ABC/ABCPGMMRI2 ABCDEV/QCLSRC +

 TEXT(’MRI Postprocessing Program’)

 CRTSRCPF ABC/QCLSRC TEXT(’Source Physical File for ABC Product’)

 CRTDSPF ABC/ABCDSPF ABCDEV/QDDSSRC +

 TEXT(’Display File for ABC Product’)

 CRTPF ABC/ABCPF ABCDEV/QDDSSRC +

 TEXT(’Physical File for ABC Product’)

 CRTMSGF ABC/ABCMSG TEXT(’Message File’)

 ADDMSGD ABC0001 ABC/ABCMSG MSG(’ABC Product’)

 CRTCMD ABC/ABC ABC/ABCPGM ABCDEV/QCMDSRC +

 TEXT(’Command for ABC Product’)

 CRTPNLGRP ABC/ABCPNLGRP ABCDEV/QPNLSRC +

 TEXT(’Panel for ABC Command’)

/* The next program creates the product definitions, product loads, */

/* and gives all the objects associated with the product the correct*/

/* product information. It packages the product, which enables */

/* you to use the SAVLICPGM, RSTLICPGM, and DLTLICPGM commands. */

 CRTRPGPGM ABCDEV/SFTWPRDEX ABCDEV/QRPGSRC

/* (1) (2) (3) (4) */

 CALL ABCDEV/SFTWPRDEX

ENDPGM

Example in OPM RPG: Program for packaging a product:

The following program creates objects 12 through 14.

 F***

 F***

 F*

 F*Program Name: SFTWPRDEX

 F*

 F*Language: OPM RPG

 F*

 F*Descriptive Name: Software Product Example

 F*

 F*Description: This example contains the steps necessary to

 F* package your product like IBM products.

 F*

 F*Header Files Included: QUSEC - Error Code Parameter

 F* (Copied into Program)

244 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

F* QSZCRTPD - Create Product Definition API

 F* QSZCRTPL - Create Product Load API

 F* QSZPKGPO - Package Product Option API

 F*

 F***

 F***

 FQPRINT O F 132 OF PRINTER

 E* COMPILE TIME ARRAY

 E OBJ 001 15 41

 I*

 I* Error Code Parameter Include for the APIs

 I*

 I* The following QUSEC include has been copied into this program

 I* so that the variable length field can be defined as a fixed

 I* length.

 I*** START HEADER FILE SPECIFICATIONS ****************************

 I*

 I*Header File Name: H/QUSEC

 I*

 I*Descriptive Name: Error Code Parameter.

 I*

 I*5763-SS1 (C) Copyright IBM Corp. 1994,1994

 I*All rights reserved.

 I*US Government Users Restricted Rights -

 I*Use, duplication or disclosure restricted

 I*by GSA ADP Schedule Contract with IBM Corp.

 I*

 I*Licensed Materials-Property of IBM

 I*

 I*

 I*Description: Include header file for the error code parameter.

 I*

 I*Header Files Included: None.

 I*

 I*Macros List: None.

 I*

 I*Structure List: Qus_EC_t

 I*

 I*Function Prototype List: None.

 I*

 I*Change Activity:

 I*

 I*CFD List:

 I*

 I*FLAG REASON LEVEL DATE PGMR CHANGE DESCRIPTION

 I*---- ------------ ----- ------ --------- ----------------------

 I*$A0= D2862000 3D10 931201 DPOHLSON: New Include

 I*

 I*End CFD List.

 I*

 I*Additional notes about the Change Activity

 I*End Change Activity.

 I*** END HEADER FILE SPECIFICATIONS ******************************

 I***

 I*Record structure for error code parameter

 I**** ***

 I*NOTE: The following type definition only defines the fixed

 I* portion of the format. Varying length field exception

 I* data will not be defined here.

 I***

 IQUSBN DS

 I* Qus EC

 I B 1 40QUSBNB

 I* Bytes Provided

 I B 5 80QUSBNC

 I* Bytes Available

 I 9 15 QUSBND

APIs 245

I* Exception Id

 I 16 16 QUSBNF

 I* Reserved

 I* 17 17 QUSBNG

 I*

 I* Varying length

 I 17 100 QUSBNG

 I*

 I* Create Product Definition API Include

 I*

 I/COPY QSYSINC/QRPGSRC,QSZCRTPD

 I*

 I* Create Product Load API Include

 I*

 I/COPY QSYSINC/QRPGSRC,QSZCRTPL

 I*

 I* Package Product Option API Include

 I*

 I/COPY QSYSINC/QRPGSRC,QSZPKGPO

 I*

 I*

 I DS

 I I 1 B 1 40NUMPOP

 I I 1 B 5 80NUMLAN

 I I ’ABC0050 ABC ’ 9 28 PDFN

 I I ’ABC Product’ 29 78 TEXTD

 I I ’5072535010 ’ 79 92 PHONE

 I I ’*NODYNNAM ’ 93 102 ALWDYN

 I I ’*USE ’ 103 112 PUBAUT

 I I ’ABCPGMMRM2’ 113 122 POSTM

 I I ’ABCPGMMRM1’ 123 132 PREM

 I I ’ABCPGMMRI2’ 133 142 POSTI

 I I ’ABCPGMMRI1’ 143 152 PREI

 I*

 I* Change Object Information Parameter

 ICOBJI DS 49

 I I 3 B 1 40NUMKEY

 I I 13 B 5 80KEY13

 I I 4 B 9 120LEN13

 I 13 16 PID13

 I I 12 B 17 200KEY12

 I I 4 B 21 240LEN12

 I 25 28 LID12

 I I 5 B 29 320KEY5

 I I 13 B 33 360LEN5

 I 37 49 LP5

 I*

 I* Object Data Structure - Breakdown of fields in Array OBJ

 IOBJDS DS

 I 1 10 NAME

 I 11 20 TYP

 I 21 24 PID

 I 25 28 LID

 I 29 41 LP

 I DS

 I B 1 40RCVLEN

 I I 0 B 5 80NUMBK

 I I 1 B 9 120NUMBL

 I I 0 B 13 160NUMBM

 C*

 C* Beginning of Mainline

 C*

 C* Create Product Definition Object - ABC0050

 C*

 C EXSR PRDDFN (1)

 C*

 C* Create Product Load Objects - ABC0050 (MRM) and ABC0029 (MRI)

246 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C*

 C EXSR PRDLOD (2)

 C*

 C* Change Object Description for all objects associated with

 C* the ABC Product.

 C*

 C EXSR COBJD (3)

 C*

 C* Package the ABC Product so that all the SAVLICPGM, RSTLIBPGM,

 C* and DLTLICPGM commands work with the product.

 C*

 C EXSR PKGPO (4)

 C*

 C* Complete; product is ready to ship.

 C*

 C SETON LR

 C RETRN

 C*

 C* End of MAINLINE

 C*

 C*

 C***

 C***

 C*

 C* Subroutine: PRDDFN

 C*

 C* Descriptive Name: Create product definitions.

 C*

 C* Description: This subroutine creates the product definition

 C* ABC0050 for the ABC Product.

 C*

 C***

 C***

 C*

 C PRDDFN BEGSR

 C* Setup for Product Definition

 C* Fill Product Definition Information Parameter

 C Z-ADD100 QUSBNB

 C MOVEL’0ABCABC’ QSZBCB Product ID

 C MOVEL’V3R1M0’ QSZBCC Release Level

 C MOVEL’ABCMSG’ QSZBCD Message File

 C MOVEL’*CURRENT’QSZBCF First Copyright

 C MOVEL’*CURRENT’QSZBCG Current Copyright

 C MOVEL’941201’ QSZBCH Release Date

 C MOVEL’*NO’ QSZBCJ Allow multiple rel.

 C MOVEL’*PHONE’ QSZBCK Registration ID Value

 C MOVELPHONE QSZBCL Registration ID Value

 C* Fill Product Load Parameter

 C MOVEL’0000’ QSZBDB Product Option Number

 C MOVEL’ABC0001’ QSZBDC Message ID

 C MOVELALWDYN QSZBDD Allow Dynamic Naming

 C MOVEL’5001’ QSZBDF Code Load ID

 C MOVEL*BLANKS QSZBDG Reserved

 C* Fill Language Load List Parameter

 C MOVEL’2924 ’QSZBFB Language Load ID

 C MOVEL’0000’ QSZBFC Product Option Number

 C MOVEL*BLANKS QSZBFD Reserved

 C*

 C* Create the Product Definition for the ABC Product

 C*

 C MOVEL’QSZCRTPD’API 10

 C CALL ’QSZCRTPD’

 C PARM PDFN Qual. Prod. Defn.

 C PARM QSZBC Prod. Defn. Info.

 C PARM QSZBD Prod. Option List

 C PARM NUMPOP # Prod. Options

 C PARM QSZBF Lang. Load List

APIs 247

C PARM NUMLAN # Lang. Load List

 C PARM TEXTD Text Description

 C PARM PUBAUT Public Authority

 C PARM QUSBN Error Code

 C* Check for errors returned in the error code parameter.

 C EXSR ERRCOD

 C ENDSR

 C*

 C***

 C***

 C*

 C* Subroutine: PRDLOD

 C*

 C* Descriptive Name: Create product loads.

 C*

 C* Description: This subroutine creates the product loads,

 C* ABC0050 and ABC0029, for the ABC Product.

 C*

 C***

 C***

 C*

 C PRDLOD BEGSR

 C*

 C* Setup for Product Load for MRM Objects

 C* Fill Product Load Information Parameter

 C MOVEL’0ABCABC’ QSZBHB Product ID

 C MOVEL’V3R1M0’ QSZBHC Release Level

 C MOVEL’0000’ QSZBHD Product Option

 C MOVEL’*CODE’ QSZBHF Product Load Type

 C MOVEL’*CODEDFT’QSZBHG Load ID

 C MOVEL’*PRDDFN’ QSZBHH Registration ID Type

 C MOVEL*BLANKS QSZBHJ Registration ID Value

 C MOVEL’*CURRENT’QSZBCK Min. Target Release

 C MOVEL*BLANKS QSZBCL Reserved

 C*

 C* Fill Principal Library Information Parameter

 C MOVEL’ABC’ QSZBJB Prin. Dev. Lib. Name

 C MOVEL’ABC’ QSZBJC Prin. Prim. Lib. Name

 C MOVELPOSTM QSZBJD Post-Exit Prog. Name

 C*

 C* Fill Preoperation Exit Programs Parameter

 C MOVELPREM QSZBLB Pre-Exit Prog. Name

 C MOVEL’ABC’ QSZBLC Dev. Lib. Name

 C*

 C* Fill Additional Library List Parameter

 C* None

 C*

 C* Fill Folder List Parameter

 C* None

 C*

 C* Create the product load for the ABC Product - MRM Objects

 C*

 C MOVEL’QSZCRTPL’API

 C CALL ’QSZCRTPL’

 C PARM ’ABC0050’ PRDIDN 10 Prod. ID Name

 C PARM QSZBH Prod. Defn. Info.

 C PARM *BLANKS SECLIB 10 Sec. Lang. Lib

 C PARM QSZBJ Principal Lib Info

 C PARM QSZBK Add. Library List

 C PARM 0 NUMBK # Add. Lib. List

 C PARM QSZBL Pre-Exit Programs

 C PARM 1 NUMBL # Pre-Exit Programs

 C PARM QSZBM Folder List

 C PARM 0 NUMBM # Folder List

 C PARM TEXTD Text Description

 C PARM ’*USE’ PUBAUT Public Authority

 C PARM QUSBN Error Code

248 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C* Check for errors returned in the error code parameter.

 C EXSR ERRCOD

 C*

 C* Setup for Product Load for MRI Objects

 C* Fill Product Load Information Parameter

 C MOVEL’*LNG ’ QSZBHF Product Load Type

 C MOVEL’2924 ’QSZBHG Load ID

 C*

 C* Fill Principal Library Information Parameter

 C MOVELPOSTI QSZBJD Post-Exit Prog. Name

 C*

 C* Fill Preoperation Exit Programs Parameter

 C MOVELPREI QSZBLB Pre-Exit Prog. Name

 C*

 C* Fill Additional Library List Parameter

 C* None

 C*

 C* Fill Folder List Parameter

 C* None

 C*

 C* Create the product load for the ABC Product - MRI Objects

 C*

 C MOVEL’QSZCRTPL’API

 C CALL ’QSZCRTPL’

 C PARM ’ABC0029’ PRDIDN 10 Prod. ID Name

 C PARM QSZBH Prod. Defn. Info.

 C PARM ’ABC2924 ’SECLIB Sec. Lang. Lib

 C PARM QSZBJ Principal Lib Info

 C PARM QSZBK Add. Library List

 C PARM 0 NUMBK # Add. Lib. List

 C PARM QSZBL Pre-Exit Programs

 C PARM 1 NUMBL # Pre-Exit Programs

 C PARM QSZBM Folder List

 C PARM 0 NUMBM # Folder List

 C PARM TEXTD Text Description

 C PARM ’*USE’ PUBAUT Public Authority

 C PARM QUSBN Error Code

 C* Check for errors returned in the error code parameter.

 C EXSR ERRCOD

 C ENDSR

 C*

 C***

 C***

 C*

 C* Subroutine: COBJD

 C*

 C* Descriptive Name: Change object descriptions for the

 C* ABC Product.

 C*

 C* Description: This subroutine changes the object

 C* descriptions for all objects that make up the

 C* ABC Product. Currently, 15 objects exist. They

 C* are listed at the end of this program.

 C*

 C***

 C***

 C*

 C COBJD BEGSR

 C*

 C* Need to associate all objects with the ABC Product

 C 1 DO 15 I 30

 C MOVE OBJ,I OBJDS

 C NAME CAT ’ABC’ QOBJNM 20

 C MOVELLP LP5

 C MOVELPID PID13

 C MOVELLID LID12

 C MOVELTYP TYPE 10

APIs 249

C MOVEL’QLICOBJD’API

 C CALL ’QLICOBJD’

 C PARM RTNLIB 10 Returned Lib. Name

 C PARM QOBJNM Qual. Object Name

 C PARM TYPE Object Type

 C PARM COBJI Chg’d Object Info.

 C PARM QUSBN Error Code

 C* Check for any errors returned in the error code parameter.

 C EXSR ERRCOD

 C ENDDO

 C ENDSR

 C*

 C***

 C***

 C*

 C* Subroutine: PKGPO

 C*

 C* Descriptive Name: Package software ABC Product.

 C*

 C* Description: This subroutine packages the ABC Product.

 C* It makes sure that all objects exist that are

 C* associated with the product.

 C*

 C***

 C***

 C*

 C PKGPO BEGSR

 C*

 C* Setup for packing the ABC Product.

 C* Fill Product Option Information Parameter

 C MOVEL’0000’ QSZBRB Product Option

 C MOVEL’0ABCABC’ QSZBRC Product ID

 C MOVEL’V3R1M0’ QSZBRD Release Level

 C MOVEL’*ALL ’QSZBRF Load ID

 C MOVEL*BLANKS QSZBRG Reserved

 C*

 C* Package the ABC Product.

 C*

 C*

 C MOVEL’QSZPKGPO’API

 C CALL ’QSZPKGPO’

 C PARM QSZBR Prod. Option Info.

 C PARM ’*YES’ REPKG 4 Repackage

 C PARM ’*NO ’ ALWCHG 5 Allow Object Change

 C PARM QUSBN Error Code

 C* Check for any errors returned in the error code parameter.

 C EXSR ERRCOD

 C ENDSR

 C*

 C***

 C***

 C*

 C* Subroutine: ERRCOD

 C*

 C* Descriptive Name: Process API errors.

 C*

 C* Description: This subroutine prints a line to a spooled

 C* file if any errors are returned in the error code

 C* parameter.

 C*

 C***

 C***

 C*

 C ERRCOD BEGSR

 C QUSBNC IFNE 0

 C*

 C* Process errors returned from the API.

250 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C*

 C EXCPTBADNWS

 C END

 C ENDSR

 OQPRINT E 106 BADNWS

 O ’Failed in API ’

 O API

 O ’with error ’

 O QUSBND

 O* The information below is for array OBJ.

 O*111 represents the object name.

 O*2222222222 represents the object type.

 O*3333 represents the product option ID.

 O*4444 represents the product option load ID.

 O*5555555555555 represents the licensed program.

 O*1112222222222333344445555555555555

**

ABCPGMMRM1*PGM 000050010ABCABCV3R1M0

ABCPGMMRM2*PGM 000050010ABCABCV3R1M0

ABCPGMMRI1*PGM 000029240ABCABCV3R1M0

ABCPGMMRI2*PGM 000029240ABCABCV3R1M0

ABCPGM *PGM 000050010ABCABCV3R1M0

QCLSRC *FILE 000029240ABCABCV3R1M0

ABCDSPF *FILE 000029240ABCABCV3R1M0

ABCPF *FILE 000029240ABCABCV3R1M0

ABCMSG *MSGF 000029240ABCABCV3R1M0

ABC *CMD 000029240ABCABCV3R1M0

ABCPNLGRP *PNLGRP 000029240ABCABCV3R1M0

ABC0050 *PRDDFN 000050010ABCABCV3R1M0

ABC0050 *PRDLOD 000050010ABCABCV3R1M0

ABC0029 *PRDLOD 000029240ABCABCV3R1M0

ABC *LIB 000050010ABCABCV3R1M0

Before you can build PTFs for the product, you need to save the product and install the product by using

the Save Licensed Program (SAVLICPGM) and Restore Licensed Program (RSTLICPGM) commands.

Once the product is built, you can do the following:

v Build PTFs for the product by using the following APIs:

– Create Program Temporary Fix (QPZCRTFX)

– Retrieve Program Temporary Fix Information (QPZRTVFX)

– Program Temporary Fix Exit Program
v Use save, restore, or delete license program (SAVLICPGM, RSTLICPGM, DLTLICPGM) commands on

it.

v Retrieve information about the product by using the Retrieve Product Information (QSZRTVPR) API.

v Check the product to verify the existence of libraries, folders, and objects that are part of the specified

product (Check Product Option (CHKPRDOPT) command).

Example in ILE C: Program for packaging a product:

This example shows you the steps necessary to package your product like IBM’s.

 /**/

/* Program Name: SFTWPRDEX */

/* */

/* Program Language: ILE C */

/* */

/* Description: This example shows you the steps necessary*/

/* to package your product like IBM’s. */

/* */

/* Header Files Included: <stdlib.h> */

/* <signal.h> */

/* <string.h> */

APIs 251

/* <stdio.h> */

/* <qszcrtpd.h> */

/* <qszcrtpl.h> */

/* <qszpkgpo.h> */

/* <qlicobjd.h> */

/* <qusec.h> */

/* <qliept.h> */

/* */

/* APIs Used: QSZCRTPD - Create Product Definition */

/* QSZCRTPL - Create Product Load */

/* QSZPKGPO - Package Product Option */

/* QLICOBJD - Change Object Description */

/**/

 #include <stdlib.h>

 #include <signal.h>

 #include <string.h>

 #include <stdio.h>

 #include <qszcrtpd.h>

 #include <qszcrtpl.h>

 #include <qszpkgpo.h>

 #include <qlicobjd.h>

 #include <qusec.h>

 #include <qliept.h>

/**/

/* Function: Create_Prod_Def_Obj */

/* Description: Create the product definition ABC0050 for product */

/* ABC. */

/**/

void Create_Prod_Def_Obj()

{

 Qsz_Prd_Inf_t prod_info; /* Product information */

 Qsz_Prd_Opt_t prod_opt_list; /* Product option list */

 Qsz_Lng_Lod_t prod_lang_load; /* Product language load list */

 Qus_EC_t error_code; /* Error code parameter */

 char text_desc[50]; /* Text description */

 /**/

 /* Fill in the product information. */

 /**/

 memset(&prod_info,’ ’,sizeof(prod_info));

 memcpy(prod_info.PID,"0ABCABC",7);

 memcpy(prod_info.Rls_Lvl,"V3R1M0",6);

 memcpy(prod_info.Msg_File,"ABCMSG ",10);

 memcpy(prod_info.Fst_Cpyrt,"*CURRENT ",10);

 memcpy(prod_info.Cur_Cpyrt,"*CURRENT ",10);

 memcpy(prod_info.Rls_Date,"941201",6);

 memcpy(prod_info.Alw_Mult_Rls,"*NO ",4);

 memcpy(prod_info.Reg_ID_Type,"*PHONE ",10);

 memcpy(prod_info.Reg_ID_Val,"5072530927 ",14);

 /**/

 /* Fill in the product option list. */

 /**/

 memset(&prod_opt_list,’ ’,sizeof(prod_opt_list));

 memcpy(prod_opt_list.Opt,"0000",4);

 memcpy(prod_opt_list.Msg_ID,"ABC0001",7);

 memcpy(prod_opt_list.Alw_Dyn_Nam,"*NODYNNAM ",10);

 memcpy(prod_opt_list.Cod_Lod,"5001",4);

 /**/

 /* Fill in the product language load list. */

 /**/

 memset(&prod_lang_load,’ ’,sizeof(prod_lang_load));

 memcpy(prod_lang_load.Lng_Lod,"2924 ",8);

 memcpy(prod_lang_load.Opt,"0000",4);

 memset(text_desc,’ ’,50);

 memcpy(text_desc,"Product ABC",11);

252 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/**/

 /* Initialize the error code to have the API send errors through */

 /* the error code parameter. */

 /**/

 error_code.Bytes_Provided=sizeof(error_code);

 QSZCRTPD("ABC0050 ABC ", /* Product definition name */

 &prod_info, /* Product definition info */

 &prod_opt_list, /* Product option list */

 1, /* Number of options */

 &prod_lang_load, /* Language load list */

 1, /* Number languages */

 text_desc, /* Text description */

 "*USE ", /* Public authority */

 &error_code); /* Error code */

 if (error_code.Bytes_Available > 0)

 {

 printf("Failed in QSZCRTPD API with error: %.7s",

 error_code.Exception_Id);

 exit(1);

 }

}

/**/

/* Function: Create_Prod_Load_Obj */

/* Description: Create the product loads ABC0050 (MRM object) and */

/* ABC0029 (MRI object) for product ABC. */

/**/

void Create_Prod_Load_Obj()

{

 Qsz_Lod_Inf_t prod_load_info; /* Product load information */

 Qsz_Lib_Inf_t prin_lib_info; /* Principal library info */

 Qsz_Add_Lib_t add_libs; /* Additional library list */

 Qsz_Pre_Ext_t preop_expgm; /* Preoperational exit program */

 Qsz_Flr_Lst_t folder_list; /* Folder list */

 Qus_EC_t error_code; /* Error code parameter */

 char text_desc[50]; /* Text description */

 /**/

 /* Fill in the product load information. */

 /**/

 memset(&prod_load_info,’ ’,sizeof(prod_load_info));

 memcpy(prod_load_info.PID,"0ABCABC",7);

 memcpy(prod_load_info.Rls_Lvl,"V3R1M0",6);

 memcpy(prod_load_info.Opt,"0000",4);

 memcpy(prod_load_info.Lod_Type,"*CODE ",10);

 memcpy(prod_load_info.Lod_ID,"*CODEDFT",8);

 memcpy(prod_load_info.Reg_ID_Type,"*PRDDFN ",10);

 memcpy(prod_load_info.Min_Tgt_Rls,"*CURRENT ",10);

 /**/

 /* Fill in the principal library information. There are no */

 /* additional libraries. */

 /**/

 memcpy(prin_lib_info.Dev_Lib,"ABC ",10);

 memcpy(prin_lib_info.Prim_Lib,"ABC ",10);

 memcpy(prin_lib_info.Post_Exit_Pgm,"ABCPGMMRM2",10);

 memset(&add_libs,’ ’,sizeof(add_libs));

 /**/

 /* Fill in the preoperational exit program. */

 /**/

 memcpy(preop_expgm.Pre_Ext_Pgm,"ABCPGMMRM1",10);

 memcpy(preop_expgm.Dev_Lib,"ABC ",10);

APIs 253

/**/

 /* There are no folders. */

 /**/

 memset(&folder_list,’ ’,sizeof(folder_list));

 memset(text_desc,’ ’,50);

 memcpy(text_desc,"Product ABC",11);

 /**/

 /* Initialize the error code to have the API send errors through */

 /* the error code parameter. */

 /**/

 error_code.Bytes_Provided=sizeof(error_code);

 QSZCRTPL("ABC0050 ", /* Product load name */

 &prod_load_info, /* Product load information */

 " ", /* Secondary language lib name */

 &prin_lib_info, /* Principal library */

 &add_libs, /* Additional libraries */

 0, /* Number of additional libs */

 &preop_expgm, /* Preoperational exit program */

 1, /* Number of preop exit pgms */

 &folder_list, /* Folder list */

 0, /* Number of folders */

 text_desc, /* Text description */

 "*USE ", /* Public authority */

 &error_code); /* Error code */

 if (error_code.Bytes_Available > 0)

 {

 printf("Failed in QSZCRTPL API with error: %.7s",

 error_code.Exception_Id);

 exit(1);

 }

 /**/

 /* Fill in the product load information. */

 /**/

 memcpy(prod_load_info.Lod_Type,"*LNG ",10);

 memcpy(prod_load_info.Lod_ID,"2924 ",8);

 /**/

 /* Fill in the principal library information. There are no */

 /* additional libraries. */

 /**/

 memcpy(prin_lib_info.Post_Exit_Pgm,"ABCPGMMRI2",10);

 /**/

 /* Fill in the preoperational exit program. */

 /**/

 memcpy(preop_expgm.Pre_Ext_Pgm,"ABCPGMMRI1",10);

 QSZCRTPL("ABC0029 ", /* Product load name */

 &prod_load_info, /* Product load information */

 "ABC2924 ", /* Secondary language lib name */

 &prin_lib_info, /* Principal library */

 &add_libs, /* Additional libraries */

 0, /* Number of additional libs */

 &preop_expgm, /* Preoperational exit program */

 1, /* Number of preop exit pgms */

 &folder_list, /* Folder list */

 0, /* Number of folders */

 text_desc, /* Text description */

 "*USE ", /* Public authority */

 &error_code); /* Error code */

 if (error_code.Bytes_Available > 0)

254 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

{

 printf("Failed in QSZCRTPL API with error: %.7s",

 error_code.Exception_Id);

 exit(1);

 }

}

/**/

/* Function: Change_Obj_Descr */

/* Description: Change object descriptions for all objects */

/* that make up Product ABC. Currently there are 15 */

/* objects. */

/**/

void Change_Obj_Descr()

{

 typedef struct {

 char obj_name_lib[21];

 char obj_type[11];

 char prd_opt_id[5];

 char prd_opt_ld[5];

 char lp_id[4];

 } obj_info_t;

 typedef struct {

 int numkey;

 Qus_Vlen_Rec_3_t PID_rec;

 char PID[4];

 Qus_Vlen_Rec_3_t LID_rec;

 char LID[4];

 Qus_Vlen_Rec_3_t LP_rec;

 char LP[13];

 } change_obj_info_t;

 int i;

 obj_info_t obj_info[15] = {"ABCPGMMRM1ABC ","*PGM ",

 "0000","5001","0ABCABCV3R1M0",

 "ABCPGMMRM2ABC ","*PGM ",

 "0000","5001","0ABCABCV3R1M0",

 "ABCPGMMRI1ABC ","*PGM ",

 "0000","2924","0ABCABCV3R1M0",

 "ABCPGMMRI2ABC ","*PGM ",

 "0000","2924","0ABCABCV3R1M0",

 "ABCPGM ABC ","*PGM ",

 "0000","5001","0ABCABCV3R1M0",

 "QCLSRC ABC ","*FILE ",

 "0000","2924","0ABCABCV3R1M0",

 "ABCDSPF ABC ","*FILE ",

 "0000","2924","0ABCABCV3R1M0",

 "ABCPF ABC ","*FILE ",

 "0000","2924","0ABCABCV3R1M0",

 "ABCMSG ABC ","*MSGF ",

 "0000","2924","0ABCABCV3R1M0",

 "ABC ABC ","*CMD ",

 "0000","2924","0ABCABCV3R1M0",

 "ABCPNLGRP ABC ","*PNLGRP ",

 "0000","2924","0ABCABCV3R1M0",

 "ABC0050 ABC ","*PRDDFN ",

 "0000","5001","0ABCABCV3R1M0",

 "ABC0050 ABC ","*PRDLOD ",

 "0000","5001","0ABCABCV3R1M0",

 "ABC0029 ABC ","*PRDLOD ",

 "0000","2924","0ABCABCV3R1M0",

 "ABC ABC ","*LIB ",

 "0000","5001","0ABCABCV3R1M0"};

 change_obj_info_t cobji; /* Change object information */

 Qus_EC_t error_code; /* Error code parameter */

APIs 255

char rtn_lib[10]; /* Return library */

 /**/

 /* Fill in the changed object information. */

 /**/

 cobji.numkey=3;

 cobji.PID_rec.Key=13;

 cobji.PID_rec.Length_Vlen_Record=4;

 cobji.LID_rec.Key=12;

 cobji.LID_rec.Length_Vlen_Record=4;

 cobji.LP_rec.Key=5;

 cobji.LP_rec.Length_Vlen_Record=13;

 /**/

 /* Initialize the error code to have the API send errors through */

 /* the error code parameter. */

 /**/

 error_code.Bytes_Provided=sizeof(error_code);

 for (i=0; i<15; i++)

 {

 memcpy(cobji.PID,obj_info[i].prd_opt_id,4);

 memcpy(cobji.LID,obj_info[i].prd_opt_ld,4);

 memcpy(cobji.LP,obj_info[i].lp_id,13);

 QLICOBJD(rtn_lib, /* Return library */

 obj_info[i].obj_name_lib, /* Object name */

 obj_info[i].obj_type, /* Object type */

 &cobji, /* Changed object information*/

 &error_code); /* Error code */

 if (error_code.Bytes_Available > 0)

 {

 printf("Failed in QLICOBJD API with error: %.7s",

 error_code.Exception_Id);

 exit(1);

 }

 }

}

/**/

/* Function: Package_Prod */

/* Description: Package Product ABC so that all the SAVLICPGM, */

/* RSTLICPGM and DLTLICPGM commands work with the */

/* product. */

/**/

void Package_Prod()

{

 Qsz_Prd_Opt_Inf_t prod_opt_info; /* Product option information */

 Qus_EC_t error_code; /* Error code parameter */

 /**/

 /* Fill in the product option information. */

 /**/

 memset(&prod_opt_info,’ ’,sizeof(prod_opt_info));

 memcpy(prod_opt_info.Opt,"0000",4);

 memcpy(prod_opt_info.PID,"0ABCABC",7);

 memcpy(prod_opt_info.Rls_Lvl,"V3R1M0",6);

 memcpy(prod_opt_info.Lod_ID,"*ALL ",8);

 /**/

 /* Initialize the error code to have the API send errors through */

 /* the error code parameter. */

 /**/

 error_code.Bytes_Provided=sizeof(error_code);

256 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

QSZPKGPO(&prod_opt_info, /* Product option information */

 "*YES", /* Repackage */

 "*NO ", /* Allow object change */

 &error_code); /* Error code */

 if (error_code.Bytes_Available > 0)

 {

 printf("Failed in QSZPKGPO API with error: %.7s",

 error_code.Exception_Id);

 exit(1);

 }

}

/**/

/* Start of main procedure */

/**/

void main()

{

 /**/

 /* Create Product Definition Object */

 /**/

 Create_Prod_Def_Obj();

 /**/

 /* Create Product Load Objects */

 /**/

 Create_Prod_Load_Obj();

 /**/

 /* Change Object Description */

 /**/

 Change_Obj_Descr();

 /**/

 /* Package Product ABC */

 /**/

 Package_Prod();

}

Example in ILE COBOL: Program for packaging a product:

This example shows you the steps necessary to package your product like IBM products. This program

also works for OPM COBOL.

 IDENTIFICATION DIVISION.

 *

 *Program Name: SFTWPRDEX

 *

 *Language: COBOL

 *

 *Descriptive Name: Software Product Example

 *

 *Description: This example shows you the steps necessary to

 * package your product like IBM products.

 *

 *Header Files Included: QUSEC - Error Code Parameter

 * QSZCRTPD - Create Product Definition API

 * QSZCRTPL - Create Product Load API

 * QSZPKGPO - Package Product Option API

 *

APIs 257

*

 PROGRAM-ID. SFTWPRDEX.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT LISTING ASSIGN TO PRINTER-QPRINT

 ORGANIZATION IS SEQUENTIAL.

 DATA DIVISION.

 FILE SECTION.

 FD LISTING RECORD CONTAINS 132 CHARACTERS

 LABEL RECORDS ARE STANDARD

 DATA RECORD IS LIST-LINE.

 01 LIST-LINE PIC X(132).

 *

 WORKING-STORAGE SECTION.

 *

 * Error Code parameter include. As this sample program

 * uses COPY to include the error code structure, only the first

 * 16 bytes of the error code structure are available. If the

 * application program needs to access the variable length

 * exception data for the error, the developer should physically

 * copy the QSYSINC include and modify the copied include to

 * define additional storage for the exception data.

 *

 COPY QUSEC OF QSYSINC-QLBLSRC.

 *

 * Create Product Definition API Include

 *

 COPY QSZCRTPD OF QSYSINC-QLBLSRC.

 *

 * Create Product Load API Include

 *

 COPY QSZCRTPL OF QSYSINC-QLBLSRC.

 *

 * Package Product Option API Include

 *

 COPY QSZPKGPO OF QSYSINC-QLBLSRC.

 *

 * Error message text

 *

 01 BAD-NEWS.

 05 TEXT1 PIC X(14) VALUE "Failed in API ".

 05 API-NAME PIC X(10).

 05 TEXT2 PIC X(11) VALUE "with error ".

 05 EXCEPTION-ID PIC X(07).

 *

 * Compile Time Array

 *

 01 OBJ-INFO.

 05 ELEMENT-01 PIC X(41)

 VALUE "ABCPGMMRM1*PGM 000050010ABCABCV3R1M0".

 05 ELEMENT-02 PIC X(41)

 VALUE "ABCPGMMRM2*PGM 000050010ABCABCV3R1M0".

 05 ELEMENT-03 PIC X(41)

 VALUE "ABCPGMMRI1*PGM 000029240ABCABCV3R1M0".

 05 ELEMENT-04 PIC X(41)

 VALUE "ABCPGMMRI2*PGM 000029240ABCABCV3R1M0".

 05 ELEMENT-05 PIC X(41)

 VALUE "ABCPGM *PGM 000050010ABCABCV3R1M0".

 05 ELEMENT-06 PIC X(41)

 VALUE "QCLSRC *FILE 000029240ABCABCV3R1M0".

 05 ELEMENT-07 PIC X(41)

 VALUE "ABCDSPF *FILE 000029240ABCABCV3R1M0".

 05 ELEMENT-08 PIC X(41)

258 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

VALUE "ABCPF *FILE 000029240ABCABCV3R1M0".

 05 ELEMENT-09 PIC X(41)

 VALUE "ABCMSG *MSGF 000029240ABCABCV3R1M0".

 05 ELEMENT-10 PIC X(41)

 VALUE "ABC *CMD 000029240ABCABCV3R1M0".

 05 ELEMENT-11 PIC X(41)

 VALUE "ABCPNLGRP *PNLGRP 000029240ABCABCV3R1M0".

 05 ELEMENT-12 PIC X(41)

 VALUE "ABC0050 *PRDDFN 000050010ABCABCV3R1M0".

 05 ELEMENT-13 PIC X(41)

 VALUE "ABC0050 *PRDLOD 000050010ABCABCV3R1M0".

 05 ELEMENT-14 PIC X(41)

 VALUE "ABC0029 *PRDLOD 000029240ABCABCV3R1M0".

 05 ELEMENT-15 PIC X(41)

 VALUE "ABC *LIB 000050010ABCABCV3R1M0".

 *

 01 OBJECT-TABLE REDEFINES OBJ-INFO.

 05 OBJ-INFO-I OCCURS 15 TIMES.

 10 OBJ-NAME PIC X(10).

 10 OBJ-TYPE PIC X(10).

 10 PRD-OPT-ID PIC X(04).

 10 PRD-OPT-LD PIC X(04).

 10 LP-ID PIC X(13).

 *

 * Change Object Information parameter

 *

 01 COBJI.

 05 NUMKEY PIC S9(09) VALUE 3 BINARY.

 05 KEY13 PIC S9(09) VALUE 13 BINARY.

 05 LEN13 PIC S9(09) VALUE 4 BINARY.

 05 PID13 PIC X(04).

 05 KEY12 PIC S9(09) VALUE 12 BINARY.

 05 LEN12 PIC S9(09) VALUE 4 BINARY.

 05 LID12 PIC X(04).

 05 KEY5 PIC S9(09) VALUE 5 BINARY.

 05 LEN5 PIC S9(09) VALUE 13 BINARY.

 05 LP5 PIC X(13).

 *

 * Miscellaneous data

 *

 01 MISC.

 05 FIRST-ERR PIC X(01) VALUE "0".

 05 PROD-ID PIC X(07) VALUE "0ABCABC".

 05 PROD-NAME PIC X(20) VALUE "ABC0050 ABC".

 05 RLS-LVL PIC X(06) VALUE "V3R1M0".

 05 NBR-OPTS PIC S9(09) VALUE 1 BINARY.

 05 NBR-LANGS PIC S9(09) VALUE 1 BINARY.

 05 TEXT-DESC PIC X(50) VALUE "ABC Product".

 05 PUB-AUT PIC X(10) VALUE "*USE".

 05 NBR-ADD-LB PIC S9(09) VALUE 0 BINARY.

 05 NBR-PE PIC S9(09) VALUE 1 BINARY.

 05 NBR-FLDRS PIC S9(09) VALUE 0 BINARY.

 05 OBJNAM PIC X(20).

 05 PROD-ID-NM PIC X(10).

 05 SEC-LANG PIC X(10).

 05 I PIC S9(09) BINARY.

 05 RTN-LIB PIC X(10).

 05 OBJ-TYPE-2 PIC X(10).

 05 REPKG PIC X(04) VALUE "*YES".

 05 ALWCHG PIC X(05) VALUE "*NO".

 *

 * Beginning of Mainline

 *

 PROCEDURE DIVISION.

 MAIN-LINE.

 *

 * Initialize the error code parameter. To signal exceptions to

APIs 259

* this program by the API, you need to set the bytes provided

 * field of the error code to zero. Because this program has

 * exceptions sent back through the error code parameter, it sets

 * the bytes provided field to the number of bytes it gives the

 * API for the parameter.

 *

 MOVE LENGTH OF QUS-EC TO BYTES-PROVIDED OF QUS-EC.

 *

 * Create Product Definition Object - ABC0050

 *

 PERFORM PRDDFN. (1)

 *

 * Create Product Load Objects - ABC0050 (MRM) and ABC0029 (MRI)

 *

 PERFORM PRDLOD. (2)

 *

 * Change Object Description for all objects associated with

 * ABC Product.

 *

 PERFORM COBJD. (3)

 *

 * Package the ABC Product so that all the SAVLICPGM, RSTLIBPGM,

 * and DLTLICPGM commands work with the product.

 *

 PERFORM PKGPO. (4)

 *

 * All done, product is ready to ship.

 *

 STOP RUN.

 *

 * End of MAINLINE

 *

 *

 * Subroutine: PRDDFN

 *

 * Descriptive Name: Create product definitions.

 *

 * Description: This subroutine will create the product definition

 * ABC0050 for the ABC Product.

 *

 *

 PRDDFN.

 *

 * Setup for Product Definition

 * Fill Product Definition Information Parameter

 *

 MOVE PROD-ID OF MISC TO PID OF QSZ-PRD-INF.

 MOVE RLS-LVL OF MISC TO RLS-LVL OF QSZ-PRD-INF.

 MOVE "ABCMSG" TO MSG-FILE OF QSZ-PRD-INF.

 MOVE "*CURRENT" TO FST-CPYRT OF QSZ-PRD-INF.

 MOVE "*CURRENT" TO CUR-CPYRT OF QSZ-PRD-INF.

 MOVE "941201" TO RLS-DATE OF QSZ-PRD-INF.

 MOVE "*NO" TO ALW-MULT-RLS OF QSZ-PRD-INF.

 MOVE "*PHONE" TO REG-ID-TYPE OF QSZ-PRD-INF.

 MOVE "5072535010" TO REG-ID-VAL OF QSZ-PRD-INF.

 *

 * Fill Product Load Parameter

 *

 MOVE "0000" TO OPT OF QSZ-PRD-OPT.

 MOVE "ABC0001" TO MSG-ID OF QSZ-PRD-OPT.

 MOVE "*NODYNNAM" TO ALW-DYN-NAM OF QSZ-PRD-OPT.

 MOVE "5001" TO COD-LOD OF QSZ-PRD-OPT.

 MOVE SPACES TO RESERVED OF QSZ-PRD-OPT.

260 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

*

 * Fill Language Load List Parameter

 *

 MOVE "2924" TO LNG-LOD OF QSZ-LNG-LOD.

 MOVE "0000" TO OPT OF QSZ-LNG-LOD.

 MOVE SPACES TO RESERVED OF QSZ-LNG-LOD.

 *

 * Create the Product Definition for the ABC Product

 *

 MOVE 1 TO NBR-OPTS.

 MOVE 1 TO NBR-LANGS.

 CALL "QSZCRTPD" USING PROD-NAME, QSZ-PRD-INF, QSZ-PRD-OPT,

 NBR-OPTS, QSZ-LNG-LOD, NBR-LANGS,

 TEXT-DESC, PUB-AUT, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 MOVE "QSZCRTPD" TO API-NAME,

 PERFORM ERRCOD.

 *

 *

 * Subroutine: PRDLOD

 *

 * Descriptive Name: Create product loads.

 *

 * Description: This subroutine will create the product loads,

 * ABC0050 and ABC0029, for the ABC Product.

 *

 *

 PRDLOD.

 *

 * Setup for Product Load for MRM Objects

 * Fill Product Load Information Parameter

 *

 MOVE PROD-ID OF MISC TO PID OF QSZ-LOD-INF.

 MOVE RLS-LVL OF MISC TO RLS-LVL OF QSZ-LOD-INF.

 MOVE "0000" TO OPT OF QSZ-LOD-INF.

 MOVE "*CODE" TO LOD-TYPE OF QSZ-LOD-INF.

 MOVE "*CODEDFT" TO LOD-ID OF QSZ-LOD-INF.

 MOVE "*PRDDFN" TO REG-ID-TYPE OF QSZ-LOD-INF.

 MOVE SPACES TO REG-ID-VAL OF QSZ-LOD-INF.

 MOVE "*CURRENT" TO MIN-TGT-RLS OF QSZ-LOD-INF.

 MOVE SPACES TO RESERVED OF QSZ-LOD-INF.

 *

 * Fill Principal Library Information Parameter

 *

 MOVE "ABC" TO DEV-LIB OF QSZ-LIB-INF.

 MOVE "ABC" TO PRIM-LIB OF QSZ-LIB-INF.

 MOVE "ABCPGMMRM2" TO POST-EXIT-PGM OF QSZ-LIB-INF.

 *

 * Fill Preoperation Exit Programs Parameter

 *

 MOVE "ABCPGMMRM1" TO PRE-EXT-PGM OF QSZ-PRE-EXT.

 MOVE "ABC" TO DEV-LIB OF QSZ-PRE-EXT.

 *

 * Fill Additional Library List Parameter

 * None

 *

 * Fill Folder List Parameter

APIs 261

* None

 *

 * Let’s create the product load for the ABC Product - MRM Objects

 *

 MOVE "ABC0050" TO PROD-ID-NM.

 MOVE SPACES TO SEC-LANG.

 *

 CALL "QSZCRTPL" USING PROD-ID-NM, QSZ-LOD-INF, SEC-LANG,

 QSZ-LIB-INF, QSZ-ADD-LIB,

 NBR-ADD-LB, QSZ-PRE-EXT, NBR-PE,

 QSZ-FLR-LST, NBR-FLDRS, TEXT-DESC,

 PUB-AUT, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 MOVE "QSZCRTPL" TO API-NAME,

 PERFORM ERRCOD.

 *

 * Setup for Product Load for MRI Objects

 * Fill Product Load Information Parameter

 *

 MOVE "*LNG" TO LOD-TYPE OF QSZ-LOD-INF.

 MOVE "2924" TO LOD-ID OF QSZ-LOD-INF.

 *

 * Fill Principal Library Information Parameter

 *

 MOVE "ABCPGMMRI2" TO POST-EXIT-PGM OF QSZ-LIB-INF.

 *

 * Fill Preoperation Exit Programs Parameter

 *

 MOVE "ABCPGMMRI1" TO PRE-EXT-PGM OF QSZ-PRE-EXT.

 *

 * Fill Additional Library List Parameter

 * None

 *

 * Fill Folder List Parameter

 * None

 *

 * Let’s create the product load for the ABC Product - MRI Objects

 *

 MOVE "ABC0029" TO PROD-ID-NM.

 MOVE "ABC2924" TO SEC-LANG.

 *

 CALL "QSZCRTPL" USING PROD-ID-NM, QSZ-LOD-INF, SEC-LANG,

 QSZ-LIB-INF, QSZ-ADD-LIB,

 NBR-ADD-LB, QSZ-PRE-EXT, NBR-PE,

 QSZ-FLR-LST, NBR-FLDRS, TEXT-DESC,

 PUB-AUT, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 MOVE "QSZCRTPL" TO API-NAME,

 PERFORM ERRCOD.

 *

 *

 * Subroutine: COBJD

 *

262 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

* Descriptive Name: Change object descriptions for ABC Product.

 *

 * Description: This subroutine will change the object

 * descriptions for all objects that make up the

 * ABC Product. Currently that is 15 objects. They

 * are listed at the end of this program.

 *

 *

 COBJD.

 *

 * Need to associate all objects with the ABC Product

 *

 PERFORM CHG-OBJD VARYING I FROM 1 BY 1 UNTIL I > 15.

 *

 CHG-OBJD.

 STRING OBJ-NAME(I), "ABC" DELIMITED BY SIZE INTO OBJNAM.

 MOVE LP-ID(I) TO LP5.

 MOVE PRD-OPT-ID(I) TO PID13.

 MOVE PRD-OPT-LD(I) TO LID12.

 MOVE OBJ-TYPE(I) TO OBJ-TYPE-2.

 *

 CALL "QLICOBJD" USING RTN-LIB, OBJNAM, OBJ-TYPE-2,

 COBJI, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 MOVE "QLICOBJD" TO API-NAME,

 PERFORM ERRCOD.

 *

 * Subroutine: PKGPO

 *

 * Descriptive Name: Package software ABC Product.

 *

 * Description: This subroutine will package the ABC Product.

 * It makes sure that all objects exist that are

 * associated with the product.

 *

 *

 PKGPO.

 *

 * Setup for packing the ABC Product.

 * Fill Product Option Information Parameter

 *

 MOVE "0000" TO OPT OF QSZ-PRD-OPT-INF.

 MOVE PROD-ID OF MISC TO PID OF QSZ-PRD-OPT-INF.

 MOVE RLS-LVL OF MISC TO RLS-LVL OF QSZ-PRD-OPT-INF.

 MOVE "*ALL" TO LOD-ID OF QSZ-PRD-OPT-INF.

 MOVE SPACES TO RESERVED OF QSZ-PRD-OPT-INF.

 *

 * Let’s package the ABC Product.

 *

 CALL "QSZPKGPO" USING QSZ-PRD-OPT-INF, REPKG,

 ALWCHG, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

APIs 263

* exception does occur.

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 MOVE "QSZPKGPO" TO API-NAME,

 PERFORM ERRCOD.

 *

 *

 * Subroutine: ERRCOD

 *

 * Descriptive Name: Process API errors.

 *

 * Description: This subroutine will print a line to a spooled

 * file if any errors are returned in the error code

 * parameter.

 *

 *

 ERRCOD.

 *

 * Process errors returned from the API.

 *

 * If first error found, then open QPRINT *PRTF

 *

 IF FIRST-ERR = "0"

 OPEN OUTPUT LISTING,

 MOVE "1" TO FIRST-ERR.

 *

 * Output the error and the API that received the error

 *

 MOVE EXCEPTION-ID OF QUS-EC TO EXCEPTION-ID OF BAD-NEWS.

 WRITE LIST-LINE FROM BAD-NEWS.

Example in ILE RPG: Program for packaging a product:

This example shows you the steps necessary to package your product like IBM products.

 F***

 F***

 F*

 F*Program Name: SFTWPRDEX

 F*

 F*Language: ILE RPG

 F*

 F*Descriptive Name: Software Product Example

 F*

 F*Description: This example shows you the steps necessary to

 F* package your product like IBM products.

 F*

 F*Header Files Included: QUSEC - Error Code Parameter

 F* QSZCRTPD - Create Product Definition API

 F* QSZCRTPL - Create Product Load API

 F* QSZPKGPO - Package Product Option API

 F*

 F***

 F***

 F*

 FQPRINT O F 132 PRINTER OFLIND(*INOF) USROPN

 D*

 D* Error Code parameter include. As this sample program

 D* uses /COPY to include the error code structure, only the first

 D* 16 bytes of the error code structure are available. If the

 D* application program needs to access the variable length

 D* exception data for the error, the developer should physically

 D* copy the QSYSINC include and modify the copied include to

264 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

D* define additional storage for the exception data.

 D*

 D/COPY QSYSINC/QRPGLESRC,QUSEC

 D*

 D* Create Product Definition API Include

 D*

 D/COPY QSYSINC/QRPGLESRC,QSZCRTPD

 D*

 D* Create Product Load API Include

 D*

 D/COPY QSYSINC/QRPGLESRC,QSZCRTPL

 D*

 D* Package Product Option API Include

 D*

 D/COPY QSYSINC/QRPGLESRC,QSZPKGPO

 D*

 D* Compile Time Array

 D*

 DOBJ_INFO S 41 DIM(15) CTDATA PERRCD(1)

 D*

 DOBJ_INFO_I DS BASED(OBJ_PTR)

 D OBJ_NAME 10

 D OBJ_TYPE 10

 D PRD_OPT_ID 4

 D PRD_OPT_LD 4

 D LP_ID 13

 D*

 D* Change Object Information parameter

 D*

 DCOBJI DS

 D NUMKEY 9B 0 INZ(3)

 D KEY13 9B 0 INZ(13)

 D LEN13 9B 0 INZ(4)

 D PID13 4

 D KEY12 9B 0 INZ(12)

 D LEN12 9B 0 INZ(4)

 D LID12 4

 D KEY5 9B 0 INZ(5)

 D LEN5 9B 0 INZ(13)

 D LP5 13

 D*

 D* Miscellaneous data

 D*

 DAPI_NAME S 10

 DFIRST_ERR S 1 INZ(’0’)

 DPROD_ID S 7 INZ(’0ABCABC’)

 DPROD_NAME S 20 INZ(’ABC0050 ABC ’)

 DRLS_LVL S 6 INZ(’V3R1M0’)

 DNBR_OPTS S 9B 0 INZ(1)

 DNBR_LANGS S 9B 0 INZ(1)

 DTEXT_DESC S 50 INZ(’ABC Product’)

 DPUB_AUT S 10 INZ(’*USE’)

 DNBR_ADD_LB S 9B 0 INZ(0)

 DNBR_PE S 9B 0 INZ(1)

 DNBR_FLDRS S 9B 0 INZ(0)

 DOBJNAM S 20

 C*

 C* Beginning of Mainline

 C*

 C* Initialize the error code parameter. To signal exceptions to

 C* this program by the API, you need to set the bytes provided

 C* field of the error code to zero. Because this program has

 C* exceptions sent back through the error code parameter, it sets

 C* the bytes provided field to the number of bytes it gives the

 C* API for the parameter.

 C*

 C EVAL QUSBPRV = %SIZE(QUSEC)

APIs 265

C*

 C* Create Product Definition Object - ABC0050

 C*

 C EXSR PRDDFN (1)

 C*

 C* Create Product Load Objects - ABC0050 (MRM) and ABC0029 (MRI)

 C*

 C EXSR PRDLOD (2)

 C*

 C* Change Object Description for all objects associated with

 C* the ABC Product.

 C*

 C EXSR COBJD (3)

 C*

 C* Package the ABC Product so that all the SAVLICPGM, RSTLIBPGM,

 C* and DLTLICPGM commands work with the product.

 C*

 C EXSR PKGPO (4)

 C*

 C* All done, product is ready to ship.

 C*

 C EVAL *INLR = ’1’

 C RETURN

 C*

 C* End of MAINLINE

 C*

 C*

 C***

 C***

 C*

 C* Subroutine: PRDDFN

 C*

 C* Descriptive Name: Create product definitions.

 C*

 C* Description: This subroutine will create the product definition

 C* ABC0050 for the ABC product.

 C*

 C***

 C***

 C*

 C PRDDFN BEGSR

 C*

 C* Setup for Product Definition

 C* Fill Product Definition Information Parameter

 C*

 C EVAL QSZPID = PROD_ID

 C EVAL QSZRL = RLS_LVL

 C EVAL QSZMFIL = ’ABCMSG’

 C EVAL QSZFC = ’*CURRENT’

 C EVAL QSZCC = ’*CURRENT’

 C EVAL QSZRD = ’941201’

 C EVAL QSZAMR = ’*NO’

 C EVAL QSZRIDT = ’*PHONE’

 C EVAL QSZRIDV = ’5072535010’

 C*

 C* Fill Product Load Parameter

 C*

 C EVAL QSZOPT = ’0000’

 C EVAL QSZMID = ’ABC0001’

 C EVAL QSZADN = ’*NODYNNAM’

 C EVAL QSZCL = ’5001’

 C EVAL QSZERVED00 = *BLANKS

 C*

 C* Fill Language Load List Parameter

 C*

 C EVAL QSZLL00 = ’2924’

 C EVAL QSZOPT00 = ’0000’

266 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C EVAL QSZERVED01 = *BLANKS

 C*

 C* Create the Product Definition for the ABC Product

 C*

 C CALL ’QSZCRTPD’

 C PARM PROD_NAME

 C PARM QSZPI

 C PARM QSZPO

 C PARM 1 NBR_OPTS

 C PARM QSZLL

 C PARM 1 NBR_LANGS

 C PARM TEXT_DESC

 C PARM PUB_AUT

 C PARM QUSEC

 C*

 C* If an exception occurs, the API returns the exception in the

 C* error code parameter. The bytes available field is set to

 C* zero if no exception occurs and greater than zero if an

 C* exception does occur.

 C*

 C IF QUSBAVL > 0

 C EVAL API_NAME = ’QSZCRTPD’

 C EXSR ERRCOD

 C ENDIF

 C*

 C ENDSR

 C*

 C***

 C***

 C*

 C* Subroutine: PRDLOD

 C*

 C* Descriptive Name: Create product loads.

 C*

 C* Description: This subroutine will create the product loads,

 C* ABC0050 and ABC0029, for the ABC product.

 C*

 C***

 C***

 C*

 C PRDLOD BEGSR

 C*

 C* Setup for Product Load for MRM Objects

 C* Fill Product Load Information Parameter

 C*

 C EVAL QSZPID00 = PROD_ID

 C EVAL QSZRL00 = RLS_LVL

 C EVAL QSZOPT01 = ’0000’

 C EVAL QSZLT = ’*CODE’

 C EVAL QSZLID = ’*CODEDFT’

 C EVAL QSZRIDT00 = ’*PRDDFN’

 C EVAL QSZRIDV00 = *BLANKS

 C EVAL QSZMTR = ’*CURRENT’

 C EVAL QSZERVED02 = *BLANKS

 C*

 C* Fill Principal Library Information Parameter

 C*

 C EVAL QSZDL = ’ABC’

 C EVAL QSZPL = ’ABC’

 C EVAL QSZPEP = ’ABCPGMMRM2’

 C*

 C* Fill Preoperation Exit Programs Parameter

 C*

 C EVAL QSZPEP00 = ’ABCPGMMRM1’

 C EVAL QSZDL00 = ’ABC’

 C*

 C* Fill Additional Library List Parameter

APIs 267

C* None

 C*

 C* Fill Folder List Parameter

 C* None

 C*

 C* Let’s create the product load for the ABC Product - MRM Objects

 C*

 C CALL ’QSZCRTPL’

 C PARM ’ABC0050’ PROD_ID_NM 10

 C PARM QSZLI

 C PARM *BLANKS SEC_LANG 10

 C PARM QSZLI00

 C PARM QSZAL

 C PARM NBR_ADD_LB

 C PARM QSZPE

 C PARM NBR_PE

 C PARM QSZFL

 C PARM NBR_FLDRS

 C PARM TEXT_DESC

 C PARM PUB_AUT

 C PARM QUSEC

 C*

 C* If an exception occurs, the API returns the exception in the

 C* error code parameter. The bytes available field is set to

 C* zero if no exception occurs and greater than zero if an

 C* exception does occur.

 C*

 C IF QUSBAVL > 0

 C EVAL API_NAME = ’QSZCRTPL’

 C EXSR ERRCOD

 C ENDIF

 C*

 C* Setup for Product Load for MRI Objects

 C* Fill Product Load Information Parameter

 C*

 C EVAL QSZLT = ’*LNG’

 C EVAL QSZLID = ’2924’

 C*

 C* Fill Principal Library Information Parameter

 C*

 C EVAL QSZPEP = ’ABCPGMMRI2’

 C*

 C* Fill Preoperation Exit Programs Parameter

 C*

 C EVAL QSZPEP00 = ’ABCPGMMRI1’

 C*

 C* Fill Additional Library List Parameter

 C* None

 C*

 C* Fill Folder List Parameter

 C* None

 C*

 C* Let’s create the product load for the ABC Product - MRI Objects

 C*

 C CALL ’QSZCRTPL’

 C PARM ’ABC0029’ PROD_ID_NM

 C PARM QSZLI

 C PARM ’ABC2924’ SEC_LANG

 C PARM QSZLI00

 C PARM QSZAL

 C PARM NBR_ADD_LB

 C PARM QSZPE

 C PARM NBR_PE

 C PARM QSZFL

 C PARM NBR_FLDRS

 C PARM TEXT_DESC

 C PARM PUB_AUT

268 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C PARM QUSEC

 C*

 C* If an exception occurs, the API returns the exception in the

 C* error code parameter. The bytes available field is set to

 C* zero if no exception occurs and greater than zero if an

 C* exception does occur.

 C*

 C IF QUSBAVL > 0

 C EVAL API_NAME = ’QSZCRTPL’

 C EXSR ERRCOD

 C ENDIF

 C*

 C ENDSR

 C*

 C***

 C***

 C*

 C* Subroutine: COBJD

 C*

 C* Descriptive Name: Change object descriptions for ABC Product.

 C*

 C* Description: This subroutine will change the object

 C* descriptions for all objects that make up the

 C* ABC Product. Currently that is 15 objects. They

 C* are listed at the end of this program.

 C*

 C***

 C***

 C*

 C COBJD BEGSR

 C*

 C* Need to associate all objects with the ABC Product

 C*

 C 1 DO 15 I 3 0

 C EVAL OBJ_PTR = %ADDR(OBJ_INFO(I))

 C EVAL OBJNAM = OBJ_NAME + ’ABC’

 C EVAL LP5 = LP_ID

 C EVAL PID13 = PRD_OPT_ID

 C EVAL LID12 = PRD_OPT_LD

 C EVAL TYPE = OBJ_TYPE

 C*

 C CALL ’QLICOBJD’

 C PARM RTN_LIB 10

 C PARM OBJNAM

 C PARM TYPE 10

 C PARM COBJI

 C PARM QUSEC

 C*

 C* If an exception occurs, the API returns the exception in the

 C* error code parameter. The bytes available field is set to

 C* zero if no exception occurs and greater than zero if an

 C* exception does occur.

 C*

 C IF QUSBAVL > 0

 C EVAL API_NAME = ’QLICOBJD’

 C EXSR ERRCOD

 C ENDIF

 C*

 C ENDDO

 C*

 C ENDSR

 C*

 C***

 C***

 C*

 C* Subroutine: PKGPO

 C*

APIs 269

C* Descriptive Name: Package software ABC Product.

 C*

 C* Description: This subroutine will package the ABC Product.

 C* It makes sure that all objects exist that are

 C* associated with the product.

 C*

 C***

 C***

 C*

 C PKGPO BEGSR

 C*

 C* Setup for packing the ABC Product.

 C* Fill Product Option Information Parameter

 C*

 C EVAL QSZOPT02 = ’0000’

 C EVAL QSZPID01 = PROD_ID

 C EVAL QSZRL01 = RLS_LVL

 C EVAL QSZLID00 = ’*ALL’

 C EVAL QSZERVED03 = *BLANKS

 C*

 C* Let’s package the ABC Product.

 C*

 C*

 C CALL ’QSZPKGPO’

 C PARM QSZPOI

 C PARM ’*YES’ REPKG 4

 C PARM ’*NO’ ALWCHG 5

 C PARM QUSEC

 C*

 C* If an exception occurs, the API returns the exception in the

 C* error code parameter. The bytes available field is set to

 C* zero if no exception occurs and greater than zero if an

 C* exception does occur.

 C*

 C IF QUSBAVL > 0

 C EVAL API_NAME = ’QSZPKGPO’

 C EXSR ERRCOD

 C ENDIF

 C*

 C ENDSR

 C*

 C***

 C***

 C*

 C* Subroutine: ERROR

 C*

 C* Descriptive Name: Process API errors.

 C*

 C* Description: This subroutine will print a line to a spooled

 C* file if any errors are returned in the error code

 C* parameter.

 C*

 C***

 C***

 C*

 C ERRCOD BEGSR

 C*

 C* Process errors returned from the API.

 C*

 C* If first error found, then open QPRINT *PRTF

 C*

 C IF FIRST_ERR = ’0’

 C OPEN QPRINT

 C EVAL FIRST_ERR = ’1’

 C ENDIF

 C*

 C* Output the error and the API that received the error

270 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C*

 C EXCEPT BAD_NEWS

 C*

 C ENDSR

 OQPRINT E BAD_NEWS 1

 O ’Failed in API ’

 O API_NAME

 O ’with error ’

 O QUSEI

**CTDATA OBJ_INFO

ABCPGMMRM1*PGM 000050010ABCABCV3R1M0

ABCPGMMRM2*PGM 000050010ABCABCV3R1M0

ABCPGMMRI1*PGM 000029240ABCABCV3R1M0

ABCPGMMRI2*PGM 000029240ABCABCV3R1M0

ABCPGM *PGM 000050010ABCABCV3R1M0

QCLSRC *FILE 000029240ABCABCV3R1M0

ABCDSPF *FILE 000029240ABCABCV3R1M0

ABCPF *FILE 000029240ABCABCV3R1M0

ABCMSG *MSGF 000029240ABCABCV3R1M0

ABC *CMD 000029240ABCABCV3R1M0

ABCPNLGRP *PNLGRP 000029240ABCABCV3R1M0

ABC0050 *PRDDFN 000050010ABCABCV3R1M0

ABC0050 *PRDLOD 000050010ABCABCV3R1M0

ABC0029 *PRDLOD 000029240ABCABCV3R1M0

ABC *LIB 000050010ABCABCV3R1M0

Examples: Retrieving a file description to a user space

These programming examples show an application that uses a user space as a receiver variable by

retrieving a file description to a user space. This approach is possible only if you use an HLL that is able

to work with pointers.

The application accepts the following parameters:

v User space name and library

v File name and library

v Record format

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

The following shows the sequence of steps to retrieve a file description to a user space:

1. The application creates a user space to store the data in, changes the user space to be automatically

extendable, and retrieves a pointer to the user space.

2. The application calls the Retrieve File Description API to retrieve the file definition template and uses

the user space as the receiver variable.

This example uses an automatically extended user space as the receiver variable on a retrieve API. A user

space can return a varying amount of information depending on the file description being retrieved. The

user space is automatically extended up to 16MB to accommodate the information being retrieved.

 Related reference

 Retrieve Database File Description (QDBRTVFD)

Example in ILE C: Retrieving a file description to a user space:

This example uses ILE C to retrieve a file definition template to a user space.

 Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
/**/

/* Program Name: RTVFD */

/* */

/* Program Language: ILE C */

APIs 271

/* */

/* Description: Retrieve a file definition template to a */

/* user space. */

/* */

/* Header Files Included: <stdlib.h> */

/* <signal.h> */

/* <string.h> */

/* <stdio.h> */

/* <quscrtus.h> */

/* <quscusat.h> */

/* <qusptrus.h> */

/* <qdbrtvfd.h> */

/* <qusec.h> */

/* <qus.h> */

/* <qliept.h> */

/* */

/* APIs Used: QUSCRTUS - Create User Space */

/* QUSCUSAT - Change User Space Attributes */

/* QUSPTRUS - Retrieve Pointer to User Space */

/* QDBRTVFD - Retrieve File Description */

/**/

 #include <stdlib.h>

 #include <signal.h>

 #include <string.h>

 #include <stdio.h>

 #include <quscrtus.h>

 #include <quscusat.h>

 #include <qusptrus.h>

 #include <qdbrtvfd.h>

 #include <qusec.h>

 #include <qus.h>

 #include <qliept.h> /* Note that this must be the last */

 /* include specified. */

 int error_flag = 0; /* Set by error handler */

/**/

/* Function: error_handler */

/* Description: Handle exceptions. */

/**/

void error_handler(int errparm)

{

 _INTRPT_Hndlr_Parms_T ExcDta = {0};

 _GetExcData(&ExcDta);

 error_flag = 1;

 signal(SIGALL,error_handler);

}

/**/

/* Start of main procedure */

/**/

 main(int argc, char **argv)

{

 typedef struct attrib_struct {

 int attrib_count;

 Qus_Vlen_Rec_3_t keyinfo;

 char key_value;

 } attrib_struct;

 Qus_EC_t error_code; /* Error code parameter */

 attrib_struct attrib_info; /* Attribute to change */

 char user_space[21]; /* User space and library */

 char descr[50]; /* Text description */

 char initial_value = 0x00; /* Initial value for user space*/

 char return_lib[10]; /* Return library */

272 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

char ret_file_lib[20]; /* Returned file and library */

 char file_and_lib[21]; /* File and library */

 char record_fmt[11]; /* Record format name */

 char *space_ptr; /* Pointer to user space object*/

 /**/

 /* Start of executable code. */

 /**/

 if (argc != 4) {

 printf("This program requires 3 parameters:\n");

 printf(" 1) User space name and library\n");

 printf(" 2) File name and library\n");

 printf(" 3) Record format name\n");

 printf("Please retry with those parameters.\n");

 exit(1);

 }

 memcpy(user_space, *++argv, 20);

 memcpy(file_and_lib, *++argv, 20);

 memcpy(record_fmt, *++argv, 10);

 memset(desc,’ ’,50);

 memcpy(descr,"RTVFD User Space",16);

 signal(SIGALL,error_handler); /* Enable the error handler */

 error_code.Bytes_Provided=0; /* Have APIs return exceptions */

 /**/

 /* Create the user space. */

 /**/

 QUSCRTUS(user_space, /* User space */

 " ", /* Extended attribute */

 1024, /* Initial size */

 &initial_value, /* Initial value */

 "*CHANGE ", /* Public authority */

 descr, /* Text description */

 "*YES ", /* Replace if it exists */

 &error_code, /* Error code */

 "*USER "); /* Domain = USER */

 if (error_flag) {

 exit(1);

 }

 /**/

 /* Initialize the attributes to change structure. */

 /**/

 attrib_info.attrib_count = 1; /* Number of attributes */

 attrib_info.keyinfo.Key = 3; /* Key of attribute to change */

 attrib_info.keyinfo.Length_Vlen_Record = 1;

 /* Length of data */

 attrib_info.key_value=’1’; /* Autoextend space */

 /**/

 /* Change the user space to be automatically extendable. */

 /**/

 QUSCUSAT(return_lib, /* Return library */

 user_space, /* User space name and library */

 &attrib_info, /* Attributes to change */

 &error_code); /* Error code */

 if (error_flag) {

 exit(1);

 }

 /**/

 /* Retrieve a pointer to the user space object. */

 /**/

APIs 273

QUSPTRUS(user_space,&space_ptr);

 if (error_flag) {

 exit(1);

 }

 /**/

 /* Retrieve the file description information to the user space. */

 /**/

 QDBRTVFD(space_ptr, /* Receiver variable */

 16776704, /* Return up to 16MB minus 512 */

 /* bytes of data */

 ret_file_lib, /* Returned file and library */

 "FILD0100", /* File definition template */

 file_and_lib, /* File and library name */

 record_fmt, /* Record format name */

 "0", /* No override processing */

 "*LCL ", /* Local system */

 "*INT ", /* Internal formats (1) */

 &error_code); /* Error code */

 if (error_flag) {

 exit(1);

 }

 }

The example program uses the value *INT ((1)). A description and examples of the internal (*INT) and

external (*EXT) formats are provided in the Retrieve Database File Description (QDBRTVFD) API.

Example in ILE COBOL: Retrieving a file description to a user space:

This program retrieves a file definition template to a user space.

 Refer to “Example in ILE C: Retrieving a file description to a user space” on page 271 for the original

example. The following program also works with OPM COBOL.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 IDENTIFICATION DIVISION.

 *

 * Program: RTVFD

 *

 * Language: COBOL

 *

 * Description: This program retrieves a file definition

 * template to a user space.

 *

 * APIs Used: QDBRTVFD - Retrieve File Description

 * QUSCRTUS - Create User Space

 * QUSCUSAT - Change User Space Attributes

 * QUSPTRUS - Retrieve a pointer to a User Space

 *

 PROGRAM-ID. RTVFD.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 *

274 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

* Error Code parameter include. As this sample program

 * uses COPY to include the error code structure, only the first

 * 16 bytes of the error code structure are available. If the

 * application program needs to access the variable length

 * exception data for the error, the developer should physically

 * copy the QSYSINC include and modify the copied include to

 * define additional storage for the exception data.

 *

 COPY QUSEC OF QSYSINC-QLBLSRC.

 *

 * Misc. elements

 *

 01 MISC.

 05 EXIT-POINT-NAME PIC X(20) VALUE "EXAMPLE_EXIT_POINT".

 05 EXIT-PGM-NBR PIC S9(09) VALUE -1 BINARY.

 05 EXIT-PARAMETERS PIC X(10).

 05 FILE-USED PIC X(20).

 05 LIBRARY-NAME PIC X(10).

 05 SPACE-SIZE PIC S9(09) BINARY.

 05 SPACE-INIT PIC X(01) VALUE "X’00’".

 05 SPACE-POINTER POINTER.

 05 FORMAT-NAME-1 PIC X(08).

 05 OVERRIDES PIC X(01) VALUE "0".

 05 SYSTEM PIC X(10) VALUE "*LCL".

 05 FORMAT-1 PIC X(10) VALUE "*INT".

 05 EXT-ATTR PIC X(10).

 05 SPACE-AUT PIC X(10) VALUE "*CHANGE".

 05 SPACE-TEXT PIC X(50) VALUE "QDBRTVFD".

 05 SPACE-REPLACE PIC X(10) VALUE "*YES".

 05 SPACE-DOMAIN PIC X(10) VALUE "*USER".

 05 API-NAME PIC X(10).

 01 CHG-US-ATTR.

 05 NBR-OF-ATTR PIC S9(09) VALUE 1 BINARY.

 05 ATTR-KEY PIC S9(09) VALUE 3 BINARY.

 05 DATA-SIZE PIC S9(09) VALUE 1 BINARY.

 05 ATTR-DATA PIC X(01) VALUE "1".

 *

 LINKAGE SECTION.

 01 SPACE-NAME PIC X(20).

 01 FILE-NAME PIC X(20).

 01 FORMAT-NAME-PARM PIC X(10).

 *

 * Retrieve File Description API include.

 *

 COPY QDBRTVFD OF QSYSINC-QLBLSRC.

 *

 * Beginning of mainline

 *

 PROCEDURE DIVISION USING SPACE-NAME, FILE-NAME,

 FORMAT-NAME-PARM.

 MAIN-LINE.

 *

 PERFORM INITIALIZE-SPACE.

 PERFORM PROCESS-SPACE.

 PERFORM PROGRAM-DONE.

 *

 * Start of subroutines

 *

 PROCESS-SPACE.

 *

 * The template returned from QDBRTVFD is now addressable by way

 * of SPACE-POINTER; as an example the program will now display

 * the access method for the file:

 *

 DISPLAY QDBFPACT OF QDB-QDBFH.

 *

APIs 275

 *

 INITIALIZE-SPACE.

 *

 * One time initialization code for this program

 *

 * Set Error Code structure to not use exceptions

 *

 MOVE 16 TO BYTES-PROVIDED OF QUS-EC.

 *

 * Create a User Space for QDBRTVFD

 *

 MOVE 1024 TO SPACE-SIZE.

 CALL "QUSCRTUS" USING SPACE-NAME, EXT-ATTR, SPACE-SIZE,

 SPACE-INIT, SPACE-AUT, SPACE-TEXT,

 SPACE-REPLACE, QUS-EC, SPACE-DOMAIN.

 *

 * Check for errors on QUSCRTUS

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 MOVE "QUSCRTUS" TO API-NAME,

 PERFORM API-ERROR-FOUND.

 *

 * Change the User Space so that it is extendable

 *

 CALL "QUSCUSAT" USING LIBRARY-NAME, SPACE-NAME,

 CHG-US-ATTR, QUS-EC.

 *

 * Check for errors on QUSCUSAT

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 MOVE "QUSCUSAT" TO API-NAME,

 PERFORM API-ERROR-FOUND.

 *

 * Get a resolved pointer to the User Space

 *

 CALL "QUSPTRUS" USING SPACE-NAME, SPACE-POINTER, QUS-EC.

 *

 * Check for errors on QUSPTRUS

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 MOVE "QUSPTRAT" TO API-NAME,

 PERFORM API-ERROR-FOUND.

 *

 * If no errors, then call QDBRTVFD passing the address of the

 * User Space as the receiver variable. To accomplish this,

 * assign the address of QDB-QDBFH to SPACE-POINTER and then

 * pass QDB-QDBFH.

 *

 SET ADDRESS OF QDB-QDBFH TO SPACE-POINTER.

 *

 MOVE 16776704 TO SPACE-SIZE.

 MOVE "FILD0100" TO FORMAT-NAME-1.

 *

 CALL "QDBRTVFD" USING QDB-QDBFH, SPACE-SIZE, FILE-USED,

 FORMAT-NAME-1, FILE-NAME,

 FORMAT-NAME-PARM, OVERRIDES,

 SYSTEM OF MISC, FORMAT-1, QUS-EC.

 *

 * Check for errors on QDBRTVFD

 *

 IF BYTES-AVAILABLE OF QUS-EC > 0

 MOVE "QDBRTVFD" TO API-NAME,

 PERFORM API-ERROR-FOUND.

 API-ERROR-FOUND.

 *

276 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

* Log any error encountered, and exit the program

 *

 DISPLAY API-NAME.

 DISPLAY EXCEPTION-ID OF QUS-EC.

 PERFORM PROGRAM-DONE.

 PROGRAM-DONE.

 *

 * Exit the program

 *

 STOP RUN.

Example in ILE RPG: Retrieving a file description to a user space:

This program retrieves a file definition template to a user space.

 Refer to “Example in ILE C: Retrieving a file description to a user space” on page 271 for the original

example.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 D***

 D***

 D*

 D* Program: RTVFD

 D*

 D* Language: ILE RPG

 D*

 D* Description: This program retrieves a file definition

 D* template to a user space.

 D*

 D* APIs Used: QDBRTVFD - Retrieve File Description

 D* QUSCRTUS - Create User Space

 D* QUSCUSAT - Change User Space Attributes

 D* QUSPTRUS - Retrieve a pointer to a User Space

 D*

 D***

 D***

 D*

 D* Error Code parameter include

 D*

 D/COPY QSYSINC/QRPGLESRC,QUSEC

 D*

 D* Not shown due to its size, this program also includes QDBRTVFD

 D* and defines all of the data structures in QDBRTVFD as being

 D* BASED(SPCPTR). For illustrative purposes, this sample shows

 D* only the first significant data structure.

 D*

 D**

 D*

 D*File Definition Template (FDT) Header

 D*

 D**

 D*This section is always located at the beginning of the

 D*returned data.

 D**

 DQDBQ25 DS BASED(SPCPTR)

 D* Header information - The

 D* FDT starts here

 D QDBFYRET 1 4B 0

 D* Bytes returned - The length

 D* of the data returned

 D QDBFYAVL 5 8B 0

 D* Bytes available - The number

 D* of bytes provided for the

 D* file definition template

APIs 277

D* data

 D*QDBFHFLG 2

 D QDBBITS27 9 10

 D* QDBRSV100 2 BITS

 D* QDBFHFPL00 1 BIT

 D* QDBRSV200 1 BIT

 D* QDBFHFSU00 1 BIT

 D* QDBRSV300 1 BIT

 D* QDBFHFKY00 1 BIT

 D* QDBRSV400 1 BIT

 D* QDBFHFLC00 1 BIT

 D* QDBFKFSO00 1 BIT

 D* QDBRSV500 1 BIT

 D* QDBFHSHR00 1 BIT

 D* QDBRSV600 2 BITS

 D* QDBFIGCD00 1 BIT

 D* QDBFIGCL00 1 BIT

 D* Attribute Bytes

 D QDBRSV7 11 14

 D* Reserved.

 D QDBLBNUM 15 16B 0

 D* Number Of Data Members

 D* 1 = Externally described

 D* physical file, or program

 D* described physical file

 D* that is NOT linked to a

 D* Data Dictionary.

 D* 1-32 = Number of Data

 D* Dictionary record

 D* formats for a program

 D* described physical

 D* file that is linked to

 D* a Data Dictionary.

 D* 1-32 = Number of based-on

 D* physical files for

 D* a logical file.

 D*QDBFKDAT 14

 D QDBFKNUM00 17 18B 0

 D QDBFKMXL00 19 20B 0

 D* QDBFKFLG00 1

 D QDBBITS28 21 21

 D* QDBRSV802 1 BIT

 D* QDBFKFCS02 1 BIT

 D* QDBRSV902 4 BITS

 D* QDBFKFRC02 1 BIT

 D* QDBFKFLT02 1 BIT

 D QDBFKFDM00 22 22

 D QDBRSV1000 23 30

 D* Keyed Sequence Access Path

 D QDBFHAUT 31 40

 D* Public Authority (AUT)

 D* ’*CHANGE ’ = Public change

 D* authority.

 D* ’*ALL ’ = Public all

 D* authority.

 D* ’*USE ’ = Public use

 D* authority.

 D* ’*EXCLUDE ’ = Public exclude

 D* authority.

 D* ’authorization-list-name’

 D* = Name of the

 D* authorization

 D* list whose

 D* authority is

 D* used for the

 D* file.

 D* This is the original public

278 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

D* authority that the file was

 D* created with, NOT the current

 D* public authority for the file.

 D QDBFHUPL 41 41

 D* Preferred Storage Unit (UNIT)

 D* X’00’ = The storage space for

 D* the file and its

 D* members can be

 D* allocated on any

 D* available auxiliary

 D* storage unit (*ANY).

 D* X’01’-X’FF’ = The unit

 D* identifier (a

 D* number from 1

 D* to 255 assigned

 D* when the disk

 D* device is

 D* configured) of

 D* a specific

 D* auxiliary

 D* storage unit on

 D* the system.

 D QDBFHMXM 42 43B 0

 D* Maximum Members (MAXMBRS)

 D* 0 = No maximum is specified

 D* for the number of members,

 D* the system maximum of

 D* 32,767 members is used

 D* (*NOMAX).

 D* 1-32,767 = The value for the

 D* maximum number of

 D* members that the

 D* file can have

 D* (maximum-members).

 D QDBFWTFI 44 45B 0

 D* Maximum File Wait Time

 D* (WAITFILE)

 D* -1 = The default wait time

 D* specified in the class

 D* description is used as

 D* the wait time for the

 D* file (*CLS).

 D* 0 = A program does NOT wait

 D* for the file, an

 D* immediate allocation of

 D* the file is required

 D* (*IMMED).

 D* 1-32,767 = The number of

 D* seconds that a

 D* program waits for

 D* the file (number-

 D* of-seconds).

 D QDBFHFRT 46 47B 0

 D* Records To Force A Write

 D* (FRCRATIO)

 D* 0 = There is NO force write

 D* ratio, the system

 D* determines when the

 D* records are written to

 D* auxiliary storage (*NONE).

 D* 1-32,767 = The number of

 D* inserted, updated,

 D* or deleted records

 D* that are processed

 D* before they are

 D* explicitly forced

 D* to auxiliary

APIs 279

D* storage (number-

 D* of-records-before-

 D* force).

 D QDBHMNUM 48 49B 0

 D* Number Of Members

 D* 0-32,767 = The current number

 D* of members for the

 D* file.

 D QDBRSV11 50 58

 D* Reserved.

 D QDBFBRWT 59 60B 0

 D* Maximum Record Wait Time

 D* (WAITRCD)

 D* -2 = The wait time is the

 D* maximum allowed by the

 D* system, 32,767 seconds

 D* (*NOMAX).

 D* -1 = A program does NOT wait

 D* for the record, an

 D* immediate allocation of

 D* the record is required

 D* (*IMMED).

 D* 1-32,767 = The number of

 D* seconds that a

 D* program waits for

 D* the record

 D* (number-of-

 D* seconds).

 D*QDBQAAF00 1

 D QDBBITS29 61 61

 D* QDBRSV1200 7 BITS

 D* QDBFPGMD00 1 BIT

 D* Additional Attribute Flags

 D QDBMTNUM 62 63B 0

 D* Total Number Of Record

 D* Formats

 D* 1-32 = Number of record

 D* formats for the file.

 D*QDBFHFL2 2

 D QDBBITS30 64 65

 D* QDBFJNAP00 1 BIT

 D* QDBRSV1300 1 BIT

 D* QDBFRDCP00 1 BIT

 D* QDBFWTCP00 1 BIT

 D* QDBFUPCP00 1 BIT

 D* QDBFDLCP00 1 BIT

 D* QDBRSV1400 9 BITS

 D* QDBFKFND00 1 BIT

 D* Additional Attribute Flags

 D QDBFVRM 66 67B 0

 D* First Supported

 D* Version Release Modification

 D* Level

 D* X’0000’ = Pre-Version 2

 D* Release 1

 D* Modification 0 file.

 D* X’1500’ = Version 2 Release 1

 D* Modification 0,

 D* V2R1M0, file.

 D* X’1501’ = Version 2 Release 1

 D* Modification 1,

 D* V2R1M1, file.

 D* X’1600’ = Version 2 Release 2

 D* Modification 0,

 D* V2R2M0, file.

 D* New Database support is used

 D* in the file which will

280 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

D* prevent it from being saved

 D* and restored to a prior

 D* Version Release and

 D* Modification level.

 D*QDBQAAF2 1

 D QDBBITS31 68 68

 D* QDBFHMCS00 1 BIT

 D* QDBRSV1500 1 BIT

 D* QDBFKNLL00 1 BIT

 D* QDBFNFLD00 1 BIT

 D* QDBFVFLD00 1 BIT

 D* QDBFTFLD00 1 BIT

 D* QDBFGRPH00 1 BIT

 D* QDBRSV1600 1 BIT

 D* Additional Attribute Flags

 D QDBRSV17 69 69

 D* Reserved.

 D QDBFHCRT 70 82

 D* File Level Identifier

 D* The date of the file in

 D* internal standard format

 D* (ISF), CYYMMDDHHMMSS.

 D*QDBFHTX 52

 D QDBRSV1800 83 84

 D QDBFHTXT00 85 134

 D* File Text Description

 D QDBRSV19 135 147

 D* Reserved

 D*QDBFSRC 30

 D QDBFSRCF00 148 157

 D QDBFSRCM00 158 167

 D QDBFSRCL00 168 177

 D* Source File Fields

 D QDBFKRCV 178 178

 D* Access Path Recovery

 D* (RECOVER)

 D* ’A’ = The file has its access

 D* path built after the

 D* IPL has been completed

 D* (*AFTIPL).

 D* ’N’ = The access path of the

 D* file is NOT built

 D* during or after an IPL

 D* (*NO). The file’s

 D* access path is built

 D* when the file is next

 D* opened.

 D* ’S’ = The file has its access

 D* path built during the

 D* IPL (*IPL).

 D QDBRSV20 179 201

 D* Reserved.

 D QDBFTCID 202 203B 0

 D* Coded Character Set

 D* Identifier, CCSID, For

 D* Text Description (TEXT)

 D* 0 = There is NO text

 D* description for the file.

 D* 1-65,535 = The CCSID for the

 D* file’s text

 D* description.

 D QDBFASP 204 205

 D* Auxiliary Storage Pool (ASP)

 D* X’0000’ = The file is

 D* located on the

 D* system auxiliary

 D* storage pool.

APIs 281

D* X’0002’-X’0010’ = The user

 D* auxiliary storage

 D* pool the file is

 D* located on

 D* (asp-identifier).

 D QDBRSV21 206 206

 D* Reserved.

 D QDBXFNUM 207 208B 0

 D* Maximum Number Of Fields

 D* 1-8000 = The number of fields

 D* in the file’s record

 D* format that contains

 D* the largest number

 D* of fields.

 D QDBRSV22 209 284

 D* Reserved.

 D QDBFODIC 285 288B 0

 D* Offset from the start of the

 D* FDT header, Qdbfh, to the

 D* IDDU/SQL Data Dictionary

 D* Area, Qdbfdic.

 D QDBRSV23 289 302

 D* Reserved.

 D QDBFFIGL 303 304B 0

 D* File Generic Key Length

 D* 0-2000 = The length of the

 D* key before the first

 D* *NONE key field for

 D* the file.

 D* If this file has an arrival

 D* sequence access path, this

 D* field is NOT applicable.

 D QDBFMXRL 305 306B 0

 D* Maximum Record Length

 D* 1-32766 = The length of the

 D* record in the

 D* file’s record

 D* format that

 D* contains the

 D* largest number of

 D* bytes.

 D QDBRSV24 307 314

 D* Reserved.

 D QDBFGKCT 315 316B 0

 D* File Generic Key Field Count

 D* 0-120 = The count of the

 D* number of key fields

 D* before the first

 D* *NONE key field for

 D* the file.

 D* If this file has an arrival

 D* sequence access path, this

 D* field is NOT applicable.

 D QDBFOS 317 320B 0

 D* Offset from the start of the

 D* FDT header, Qdbfh, to the

 D* File Scope Array, Qdbfb.

 D QDBRSV25 321 328

 D* Reserved.

 D QDBFOCS 329 332B 0

 D* Offset from the start of the

 D* FDT header, Qdbfh, to the

 D* Alternative Collating

 D* Sequence Table section,

 D* Qdbfacs.

 D QDBRSV26 333 336

 D* Reserved.

282 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

D QDBFPACT 337 338

 D* Access Path Type

 D* ’AR’ = Arrival sequence

 D* access path.

 D* ’KC’ = Keyed sequence access

 D* path with duplicate

 D* keys allowed.

 D* Duplicate keys are

 D* accessed in first-

 D* changed-first-out

 D* (FCFO) order.

 D* ’KF’ = Keyed sequence access

 D* path with duplicate

 D* keys allowed.

 D* Duplicate keys are

 D* accessed in first-

 D* in-first-out

 D* (FIFO) order.

 D* ’KL’ = Keyed sequence access

 D* path with duplicate

 D* keys allowed.

 D* Duplicate keys are

 D* accessed in last-

 D* in-first-out

 D* (LIFO) order.

 D* ’KN’ = Keyed sequence access

 D* path with duplicate

 D* keys allowed.

 D* No order is guaranteed

 D* when accessing

 D* duplicate keys.

 D* Duplicate keys are

 D* accessed in one of the

 D* following methods:

 D* (FCFO) (FIFO) (LIFO).

 D* ’KU’ = Keyed sequence access

 D* path with NO duplicate

 D* keys allowed (UNIQUE).

 D QDBFHRLS 339 344

 D* File Version Release

 D* Modification Level

 D* ’VxRyMz’ = Where x is the

 D* Version, y is the

 D* Release, and z is

 D* the Modification

 D* level

 D* example V2R1M1

 D* Version 2 Release

 D* 1 Modification 1

 D QDBRSV27 345 364

 D* Reserved.

 D QDBPFOF 365 368B 0

 D* Offset from the start of the

 D* FDT header, Qdbfh, to the

 D* Physical File Specific

 D* Attributes section, Qdbfphys.

 D QDBLFOF 369 372B 0

 D* Offset from the start of the

 D* FDT header, Qdbfh, to the

 D* Logical File Specific

 D* Attributes section, Qdbflogl.

 D*QDBFSSFP00 6

 D* QDBFNLSB01 1

 D QDBBITS58 373 373

 D* QDBFSSCS02 3 BITS

 D* QDBR10302 5 BITS

 D QDBFLANG01 374 376

APIs 283

D QDBFCNTY01 377 378

 D* Sort Sequence Table

 D QDBFJORN 379 382B 0

 D* Offset from the start of the

 D* FDT header, Qdbfh, to the

 D* Journal Section, Qdbfjoal.

 D QDBRSV28 383 400

 D* Reserved.

 D**

 D*

 D*The FDT header ends here.

 D*

 D**

 D*

 D* Misc. elements

 D*

 DSPC_NAME S 20

 DFILE_NAME S 20

 DFMT_NAME S 10

 DFILE_USED S 20

 DLIB_NAME S 10

 DSPC_SIZE S 9B 0

 DSPC_INIT S 1 INZ(X’00’)

 DSPCPTR S *

 DFORMAT S 8

 DOVERRIDES S 1 INZ(’0’)

 DSYSTEM S 10 INZ(’*LCL’)

 DFORMAT_1 S 10 INZ(’*INT’)

 DCHG_ATTR DS

 D NBR_ATTR 9B 0 INZ(1)

 D ATTR_KEY 9B 0 INZ(3)

 D DATA_SIZE 9B 0 INZ(1)

 D ATTR_DATA 1 INZ(’1’)

 C*

 C* Start of mainline

 C*

 C *ENTRY PLIST

 C PARM SPC_NAME

 C PARM FILE_NAME

 C PARM FMT_NAME

 C*

 C EXSR INIT

 C EXSR PROCES

 C EXSR DONE

 C*

 C* Start of subroutines

 C*

 C***

 C PROCES BEGSR

 C*

 C* The template returned from QDBRTVFD is now addressable by way

 C* of SPCPTR; as an example the program will now display the

 C* access method for the file:

 C*

 C DSPLY QDBFPACT

 C ENDSR

 C*

 C***

 C INIT BEGSR

 C*

 C* One time initialization code for this program

 C*

 C* Set Error Code structure to not use exceptions

 C*

 C Z-ADD 16 QUSBPRV

 C*

 C* Create a User Space for QDBRTVFD

284 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C*

 C CALL ’QUSCRTUS’

 C PARM SPC_NAME

 C PARM *BLANKS EXT_ATTR 10

 C PARM 1024 SPC_SIZE

 C PARM SPC_INIT

 C PARM ’*CHANGE’ SPC_AUT 10

 C PARM ’QDBRTVFD’ SPC_TEXT 50

 C PARM ’*YES’ SPC_REPLAC 10

 C PARM QUSEC

 C PARM ’*USER’ SPC_DOMAIN 10

 C*

 C* Check for errors on QUSCRTUS

 C*

 C QUSBAVL IFGT 0

 C MOVEL ’QUSCRTUS’ APINAM 10

 C EXSR APIERR

 C END

 C*

 C* Change the User Space so that it is extendable

 C*

 C CALL ’QUSCUSAT’

 C PARM LIB_NAME

 C PARM SPC_NAME

 C PARM CHG_ATTR

 C PARM QUSEC

 C*

 C* Check for errors on QUSCUSAT

 C*

 C QUSBAVL IFGT 0

 C MOVEL ’QUSCUSAT’ APINAM 10

 C EXSR APIERR

 C END

 C*

 C* Get a resolved pointer to the User Space

 C*

 C CALL ’QUSPTRUS’

 C PARM SPC_NAME

 C PARM SPCPTR

 C PARM QUSEC

 C*

 C* Check for errors on QUSPTRUS

 C*

 C QUSBAVL IFGT 0

 C MOVEL ’QUSPTRUS’ APINAM 10

 C EXSR APIERR

 C END

 C*

 C* If no errors, then call QDBRTVFD passing the address of the

 C* User Space as the receiver variable. As Data Structure

 C* QDBQ25 is defined as BASED(SPCPTR) and SPCPTR is set to the

 C* first byte of the User Space, simply passing QDBQ25 will cause

 C* QDBRTVFD to use the User Space.

 C*

 C CALL ’QDBRTVFD’

 C PARM QDBQ25

 C PARM 16776704 SPC_SIZE

 C PARM FILE_USED

 C PARM ’FILD0100’ FORMAT

 C PARM FILE_NAME

 C PARM FMT_NAME

 C PARM OVERRIDES

 C PARM SYSTEM

 C PARM FORMAT_1

 C PARM QUSEC

 C*

 C* Check for errors on QDBRTVFD

APIs 285

C*

 C QUSBAVL IFGT 0

 C MOVEL ’QDBRTVFD’ APINAM 10

 C EXSR APIERR

 C END

 C ENDSR

 C***

 C APIERR BEGSR

 C*

 C* Log any error encountered, and exit the program

 C*

 C APINAM DSPLY

 C QUSEI DSPLY

 C EXSR DONE

 C ENDSR

 C***

 C DONE BEGSR

 C*

 C* Exit the program

 C*

 C EVAL *INLR = ’1’

 C RETURN

 C ENDSR

Examples: Using data queues or user queues

Data queues and user queues both provide a means for one or more processes to communicate

asynchronously. The queues can be processed FIFO (first-in first-out), LIFO (last-in first-out), or by key.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

 Related concepts

 “About application programming interfaces (APIs)” on page 4
Describes most of the iSeries application programming interfaces (APIs), as well as some APIs for

related products that can be used on iSeries servers.

 “Domain concepts” on page 116

All objects are assigned a domain attribute when they are created.

Determining whether to use data queues or user queues:

If user queues and data queues supply the same function, which one should you choose for your

implementation? The following is a comparison of the two and an insight into when you should use one

queue rather than the other.

 First, your programming experience is an important consideration in selecting a queue type. If you are

familiar with C or MI programming, you may want to select the user queue. User queues can be accessed

only using MI, and MI can be used only by ILE RPG, ILE COBOL, C, and MI programs.

Next, performance plays an important part in determining what type of queue to use. As stated in

System APIs or CL commands--when to use each, APIs generally give better performance than CL

commands. Also, MI instructions perform better than an external call to an API because APIs have

overhead associated with them. User queues use MI instructions to manipulate entries; data queues use

APIs. Therefore, the user queue has better performance than the data queue.

Last, you need to consider how the queue entries are manipulated. For example, you need a way to

perform enqueue and dequeue operations on entries from a queue. As stated earlier, user queues use MI

instructions to manipulate entries. Specifically, you use the ENQ MI instruction to enqueue a message,

and the DEQ MI instruction to dequeue a message. If you are running at security level 40 or greater, you

must ensure that the user queue is created in the user domain in order to directly manipulate a user

queue using MI instructions. Because data queue entries are manipulated by APIs, the security level of

the machine does not limit the use of the API.

286 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

You cannot create a user queue object in a library that does not permit user-domain objects, which is

determined by the QALWUSRDMN system value. (See Domain concepts for more information on

QALWUSRDMN.) Data queues are always created in the system domain, so there is no problem with the

data queue being created into a specific library.

The following is a summary to help you select the type of queue that is right for your program:

v Use user queues when:

– You have a programming background in MI.

– You need the additional performance of an API for creating and deleting and MI instructions for

manipulating entries.

– You do not need to create a user-domain queue into a library where the QALWUSRDMN system

value does not permit user-domain user objects when at security level 40 or 50.
v Use data queues when:

– You have a programming background in or prefer to program in a high-level language such as

COBOL, C, or RPG.

– You do not need the additional performance of MI instructions for directly manipulating entries.

– You need to create queues into a library that is not listed in the QALWUSRDMN system value.
 Related concepts

 “Domain concepts” on page 116

All objects are assigned a domain attribute when they are created.

 “About application programming interfaces (APIs)” on page 4
Describes most of the iSeries application programming interfaces (APIs), as well as some APIs for

related products that can be used on iSeries servers.

Example in ILE C: Data queue:

This program illustrates how to use APIs to create and manipulate a data queue.

 Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
/***/

/* */

/*Program Name: DQUEUEX */

/* */

/*Program Language: ILE C */

/* */

/*Description: This program illustrates how to use APIs to create */

/* and manipulate a data queue. */

/* */

/* */

/*Header Files Included: <stdio.h> */

/* <string.h> */

/* <stdlib.h> */

/* <decimal.h> */

/* <qrcvdtaq.h> */

/* <qsnddtaq.h> */

/* */

/*APIs Used: QSNDDTAQ - Send data queue */

/* QRCVDTAQ - Receive data queue */

/* */

/***/

/***/

/***/

/* Includes */

/***/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

APIs 287

#include <decimal.h>

#include <qsnddtaq.h> /* from QSYSINC/h */

#include <qrcvdtaq.h> /* from QSYSINC/h */

/***/

/* */

/* Main */

/* */

/***/

void main()

{

 decimal(5,0) DataLength = 10.0d,

 WaitTime = 0.0d;

 char QueueData[10];

 /***/

 /* Create library QUEUELIB. */

 /***/

 system("CRTLIB LIB(QUEUELIB)");

 /***/

 /* Create a data queue called EXAMPLEQ in library QUEUELIB. The */

 /* queue will have a maximum entry length set at 10, and will be */

 /* FIFO (first-in first-out). */

 /***/

 system("CRTDTAQ DTAQ(QUEUELIB/EXAMPLEQ) MAXLEN(10)");

 /***/

 /* Send information to the data queue. */

 /***/

 QSNDDTAQ("EXAMPLEQ ", /* Data queue name */

 "QUEUELIB ", /* Queue library name */

 DataLength, /* Length of queue entry */

 "EXAMPLE "); /* Data sent to queue */

 /***/

 /* Receive information from the data queue. */

 /***/

 QRCVDTAQ("EXAMPLEQ ", /* Data queue name */

 "QUEUELIB ", /* Queue library name */

 &DataLength, /* Length of queue entry */

 &QueueData, /* Data received from queue */

 WaitTime); /* Wait time */

 printf("Queue entry information: %.10s\n", QueueData);

 /***/

 /* Delete the data queue. */

 /***/

 system("DLTDTAQ DTAQ(QUEUELIB/EXAMPLEQ)");

 /***/

 /* Delete the library. */

 /***/

 system("DLTLIB LIB(QUEUELIB)");

}

Example in ILE COBOL: Data queue:

288 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

This program illustrates how to use APIs to create and manipulate a *DTAQ. The following program also

works with OPM COBOL.

 Refer to “Example in ILE C: Data queue” on page 287 for the original example.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 IDENTIFICATION DIVISION.

 *

 * Program Name: DQUEUEX

 *

 * Programming Language: COBOL

 *

 * Description: This program illustrates how to use APIs to

 * create and manipulate a *DTAQ.

 *

 * Header Files Included: QUSEC - Error Code Parameter

 * QCAPCMD - Process Command API

 *

 *

 PROGRAM-ID. DQUEUEX.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT LISTING ASSIGN TO PRINTER-QPRINT

 ORGANIZATION IS SEQUENTIAL.

 DATA DIVISION.

 FILE SECTION.

 FD LISTING RECORD CONTAINS 132 CHARACTERS

 LABEL RECORDS ARE STANDARD

 DATA RECORD IS LIST-LINE.

 01 LIST-LINE PIC X(132).

 WORKING-STORAGE SECTION.

 *

 * Error Code parameter include

 *

 COPY QUSEC OF QSYSINC-QLBLSRC.

 *

 * Process Command API Include

 *

 COPY QCAPCMD OF QSYSINC-QLBLSRC.

 *

 * Command strings

 *

 01 CRTLIB PIC X(50) VALUE "CRTLIB QUEUELIB".

 01 DLTLIB PIC X(50) VALUE "DLTLIB QUEUELIB".

 01 CRTDQ PIC X(50)

 VALUE "CRTDTAQ QUEUELIB/EXAMPLEQ MAXLEN(10)".

 01 DLTDQ PIC X(50) VALUE "DLTDTAQ QUEUELIB/EXAMPLEQ".

 *

 * Error message text

 *

 01 BAD-NEWS.

 05 TEXT1 PIC X(14) VALUE "Failed in API ".

 05 API-NAME PIC X(10) VALUE "QCAPCMD".

 05 TEXT2 PIC X(11) VALUE "with error ".

 05 EXCEPTION-ID PIC X(07).

 *

 * Miscellaneous elements

 *

APIs 289

01 COMMAND-LENGTH PIC S9(09) VALUE 50 BINARY.

 01 RECEIVER PIC X(01).

 01 RECEIVER-LENGTH PIC S9(09) VALUE 0 BINARY.

 01 OPTIONS-SIZE PIC S9(09) VALUE 20 BINARY.

 01 FORMAT-NAME PIC X(08) VALUE "CPOP0100".

 01 FIRST-ERROR PIC X(01) VALUE "0".

 01 NAME-OF-QUEUE PIC X(10) VALUE "EXAMPLEQ".

 01 NAME-OF-LIBRARY PIC X(10) VALUE "QUEUELIB".

 01 SIZE-OF-MSG PIC S9(05) VALUE 10 PACKED-DECIMAL.

 01 WAIT-TIME PIC S9(05) VALUE 0 PACKED-DECIMAL.

 01 MSG PIC X(10) VALUE "EXAMPLE".

 01 MSG-BACK PIC X(10).

 *

 * Beginning of mainline

 *

 PROCEDURE DIVISION.

 MAIN-LINE.

 *

 * Initialize the error code parameter. To signal exceptions to

 * this program by the API, you need to set the bytes provided

 * field of the error code to zero. Because this program has

 * exceptions sent back through the error code parameter, it sets

 * the bytes provided field to the number of bytes it gives the

 * API for the parameter.

 *

 MOVE 16 TO BYTES-PROVIDED.

 *

 * Initialize QCAPCMD options control block for CL processing

 *

 MOVE 0 TO COMMAND-PROCESS-TYPE.

 MOVE "0" TO DBCS-DATA-HANDLING.

 MOVE "0" TO PROMPTER-ACTION.

 MOVE "0" TO COMMAND-STRING-SYNTAX.

 MOVE SPACES TO MESSAGE-KEY.

 MOVE LOW-VALUES TO RESERVED OF QCA-PCMD-CPOP0100.

 *

 * Create library QUEUELIB

 *

 CALL QCAPCMD USING CRTLIB, COMMAND-LENGTH, QCA-PCMD-CPOP0100,

 OPTIONS-SIZE, FORMAT-NAME, RECEIVER,

 RECEIVER-LENGTH, RECEIVER-LENGTH, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 *

 IF BYTES-AVAILABLE > 0 PERFORM ERROR-FOUND.

 *

 * Create a data queue called EXAMPLEQ in library QUEUELIB. The

 * queue will have a maximum entry length set at 10, and will be

 * FIFO (first-in first-out).

 *

 CALL QCAPCMD USING CRTDQ, COMMAND-LENGTH, QCA-PCMD-CPOP0100,

 OPTIONS-SIZE, FORMAT-NAME, RECEIVER,

 RECEIVER-LENGTH, RECEIVER-LENGTH, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 *

 IF BYTES-AVAILABLE > 0 PERFORM ERROR-FOUND.

 *

 * Send information to the data queue.

290 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

*

 CALL "QSNDDTAQ" USING NAME-OF-QUEUE, NAME-OF-LIBRARY,

 SIZE-OF-MSG, MSG.

 *

 * Retrieve information from the data queue.

 *

 CALL "QRCVDTAQ" USING NAME-OF-QUEUE, NAME-OF-LIBRARY,

 SIZE-OF-MSG, MSG-BACK, WAIT-TIME.

 *

 * Display the returned message

 *

 DISPLAY MSG-BACK.

 *

 * Delete the data queue

 *

 CALL QCAPCMD USING DLTDQ, COMMAND-LENGTH, QCA-PCMD-CPOP0100,

 OPTIONS-SIZE, FORMAT-NAME, RECEIVER,

 RECEIVER-LENGTH, RECEIVER-LENGTH, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 *

 IF BYTES-AVAILABLE > 0 PERFORM ERROR-FOUND.

 *

 * Delete the library

 *

 CALL QCAPCMD USING DLTLIB, COMMAND-LENGTH, QCA-PCMD-CPOP0100,

 OPTIONS-SIZE, FORMAT-NAME, RECEIVER,

 RECEIVER-LENGTH, RECEIVER-LENGTH, QUS-EC.

 *

 * If an exception occurs, the API returns the exception in the

 * error code parameter. The bytes available field is set to

 * zero if no exception occurs and greater than zero if an

 * exception does occur.

 *

 *

 IF BYTES-AVAILABLE > 0 PERFORM ERROR-FOUND.

 *

 STOP RUN.

 *

 * End of MAINLINE

 *

 *

 ERROR-FOUND.

 *

 * Process errors returned from the API.

 *

 * If first error found, then open QPRINT *PRTF

 *

 IF FIRST-ERROR = "0" OPEN OUTPUT LISTING,

 MOVE "1" TO FIRST-ERROR.

 *

 * Print the error and the API that received the error

 *

 MOVE EXCEPTION-ID OF QUS-EC TO EXCEPTION-ID OF BAD-NEWS.

 WRITE LIST-LINE FROM BAD-NEWS.

Example in OPM RPG: Data queue:

This program illustrates how to use APIs to create and manipulate a *DTAQ.

 Refer to “Example in ILE C: Data queue” on page 287 for the original example.

APIs 291

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 F***

 F***

 F*

 F* Program Name: DQUEUEX

 F*

 F* Programming Language: OPM RPG

 F*

 F* Description: This program illustrates how to use APIs to

 F* create and manipulate a *DTAQ.

 F*

 F* Header Files Included: QUSEC - Error Code Parameter

 F* QCAPCMD - Process Command API

 F*

 F***

 F*

 FQPRINT O F 132 PRINTER UC

 F***

 I*

 I* Error Code parameter include

 I*

 I/COPY QSYSINC/QRPGSRC,QUSEC

 I*

 I* Process Command API Include

 I*

 I/COPY QSYSINC/QRPGSRC,QCAPCMD

 I*

 I* Command strings

 I*

 I DS

 I I ’CRTLIB LIB(QUEUELIB)’ 1 20 CRTLIB

 I I ’DLTLIB LIB(QUEUELIB)’ 21 40 DLTLIB

 I I ’CRTDTAQ DTAQ(QUEUELI- 41 82 CRTDQ

 I ’B/EXAMPLEQ) MAXLEN(1-

 I ’0)’

 I I ’DLTDTAQ DTAQ(QUEUELI- 83 113 DLTDQ

 I ’B/EXAMPLEQ)’

 I*

 I* Miscellaneous data structure

 I*

 I DS

 I 1 100 CMDSTR

 I B 101 1040LENSTR

 I I 20 B 105 1080SIZE

 I I 0 B 10901120RCVSIZ

 I I ’0’ 113 113 FSTERR

 I 114 123 APINAM

 C*

 C* Beginning of mainline

 C*

 C* Initialize the error code parameter. To signal exceptions to

 C* this program by the API, you need to set the bytes provided

 C* field of the error code to zero. Because this program has

 C* exceptions sent back through the error code parameter, it sets

 C* the bytes provided field to the number of bytes it gives the

 C* API for the parameter.

 C*

 C Z-ADD16 QUSBNB

 C*

 C* Initialize QCAPCMD options control block for CL processing

 C*

 C Z-ADD0 QCABCB

 C MOVE ’0’ QCABCC

 C MOVE ’0’ QCABCD

 C MOVE ’0’ QCABCF

 C MOVE *BLANKS QCABCG

 C MOVE *LOVAL QCABCH

292 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C*

 C* Create library QUEUELIB

 C*

 C MOVELCRTLIB CMDSTR

 C Z-ADD20 LENSTR

 C*

 C EXSR EXCCMD

 C*

 C* Create a data queue called EXAMPLEQ in library QUEUELIB. The

 C* queue will have a maximum entry length set at 10, and will be

 C* FIFO (first-in first-out).

 C*

 C MOVELCRTDQ CMDSTR

 C Z-ADD42 LENSTR

 C*

 C EXSR EXCCMD

 C*

 C* Send information to the data queue.

 C*

 C CALL ’QSNDDTAQ’

 C PARM ’EXAMPLEQ’QUENAM 10

 C PARM ’QUEUELIB’LIBNAM 10

 C PARM 10 MSGSZ 50

 C PARM ’EXAMPLE’ MSG 10

 C*

 C* Retrieve information from the data queue.

 C*

 C CALL ’QRCVDTAQ’

 C PARM ’EXAMPLEQ’QUENAM 10

 C PARM ’QUEUELIB’LIBNAM 10

 C PARM 10 MSGSZ 50

 C PARM MSGBCK 10

 C PARM 0 WAITTM 50

 C*

 C* Display the returned message

 C*

 C DSPLY MSGBCK

 C*

 C* Delete the data queue

 C*

 C MOVELDLTDQ CMDSTR

 C Z-ADD31 LENSTR

 C*

 C EXSR EXCCMD

 C*

 C* Delete the library

 C*

 C MOVELDLTLIB CMDSTR

 C Z-ADD20 LENSTR

 C*

 C EXSR EXCCMD

 C*

 C SETON LR

 C RETRN

 C*

 C* End of MAINLINE

 C*

 C***

 C*

 C EXCCMD BEGSR

 C*

 C* Process requested CL command

 C*

 C CALL ’QCAPCMD’

 C PARM CMDSTR

 C PARM LENSTR

 C PARM QCABC

APIs 293

C PARM SIZE

 C PARM ’CPOP0100’FORMAT 8

 C PARM RCVVAR 1

 C PARM 0 RCVSIZ

 C PARM RCVSIZ

 C PARM QUSBN

 C*

 C* If an exception occurs, the API returns the exception in the

 C* error code parameter. The bytes available field is set to

 C* zero if no exception occurs and greater than zero if an

 C* exception does occur.

 C*

 C QUSBNC IFGT 0

 C MOVEL’QCAPCMD’ APINAM

 C EXSR ERRCOD

 C ENDIF

 C ENDSR

 C*

 C***

 C*

 C ERRCOD BEGSR

 C*

 C* Process errors returned from the API.

 C*

 C* If first error found, then open QPRINT *PRTF

 C*

 C FSTERR IFEQ ’0’

 C OPEN QPRINT

 C MOVEL’1’ FSTERR

 C ENDIF

 C*

 C* Print the error and the API that received the error

 C*

 C EXCPTBADNEW

 C*

 C ENDSR

 OQPRINT E 106 BADNEW

 O ’Failed in API ’

 O APINAM

 O ’with error ’

 O QUSBND

Example in ILE RPG: Data queue:

This program illustrates how to use APIs to create and manipulate a *DTAQ.

 Refer to “Example in ILE C: Data queue” on page 287 for the original example.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 F***

 F***

 F*

 F* Program Name: DQUEUEX

 F*

 F* Programming Language: ILE RPG

 F*

 F* Description: This program illustrates how to use APIs to

 F* create and manipulate a *DTAQ.

 F*

 F* Header Files Included: QUSEC - Error Code Parameter

 F* QCAPCMD - Process Command API

 F*

 F***

 F*

 FQPRINT O F 132 PRINTER OFLIND(*INOF) USROPN

294 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

F***

 D*

 D* Error Code parameter include

 D*

 D/COPY QSYSINC/QRPGLESRC,QUSEC

 D*

 D* Process Command API Include

 D*

 D/COPY QSYSINC/QRPGLESRC,QCAPCMD

 D*

 D* Command strings

 D*

 D

 DCRTLIB C ’CRTLIB LIB(QUEUELIB)’

 DDLTLIB C ’DLTLIB LIB(QUEUELIB)’

 DCRTDQ C ’CRTDTAQ DTAQ(QUEUELIB/+

 D EXAMPLEQ) MAXLEN(10)’

 DDLTDQ C ’DLTDTAQ DTAQ(QUEUELIB/EXAMPLEQ)’

 D*

 D* Miscellaneous data structure

 D*

 DCMD_STR S 100

 DLEN_STR S 9B 0

 DCAP0100_SZ S 9B 0 INZ(%SIZE(QCAP0100))

 DRCVVAR_SZ S 9B 0 INZ(0)

 DAPI_NAME S 10

 DFIRST_ERR S 1 INZ(’0’)

 C*

 C* Beginning of mainline

 C*

 C* Initialize the error code parameter. To signal exceptions to

 C* this program by the API, you need to set the bytes provided

 C* field of the error code to zero. Because this program has

 C* exceptions sent back through the error code parameter, it sets

 C* the bytes provided field to the number of bytes it gives the

 C* API for the parameter.

 C*

 C EVAL QUSBPRV = %SIZE(QUSEC)

 C*

 C* Initialize QCAPCMD options control block for CL processing

 C*

 C EVAL QCACMDPT = 0

 C EVAL QCABCSDH = ’0’

 C EVAL QCAPA = ’0’

 C EVAL QCACMDSS = ’0’

 C EVAL QCAMK = *BLANKS

 C EVAL QCAERVED = *LOVAL

 C*

 C* Create library QUEUELIB

 C*

 C EVAL CMD_STR = CRTLIB

 C EVAL LEN_STR = %SIZE(CRTLIB)

 C*

 C EXSR EXEC_CMD

 C*

 C* Create a data queue called EXAMPLEQ in library QUEUELIB. The

 C* queue will have a maximum entry length set at 10, and will be

 C* FIFO (first-in first-out).

 C*

 C EVAL CMD_STR = CRTDQ

 C EVAL LEN_STR = %SIZE(CRTDQ)

 C*

 C EXSR EXEC_CMD

 C*

 C* Send information to the data queue.

 C*

 C CALL ’QSNDDTAQ’

APIs 295

C PARM ’EXAMPLEQ ’ NAME_OF_Q 10

 C PARM ’QUEUELIB ’ NAME_OF_LB 10

 C PARM 10 MSG_SZ 5 0

 C PARM ’EXAMPLE ’ MSG 10

 C*

 C* Retrieve information from the data queue.

 C*

 C CALL ’QRCVDTAQ’

 C PARM ’EXAMPLEQ ’ NAME_OF_Q

 C PARM ’QUEUELIB ’ NAME_OF_LB

 C PARM 10 MSG_SZ

 C PARM MSG_BACK 10

 C PARM 0 WAIT_TIME 5 0

 C*

 C* Display the returned message

 C*

 C DSPLY MSG_BACK

 C*

 C* Delete the data queue

 C*

 C EVAL CMD_STR = DLTDQ

 C EVAL LEN_STR = %SIZE(DLTDQ)

 C*

 C EXSR EXEC_CMD

 C*

 C* Delete the library

 C*

 C EVAL CMD_STR = DLTLIB

 C EVAL LEN_STR = %SIZE(DLTLIB)

 C*

 C EXSR EXEC_CMD

 C*

 C EVAL *INLR = ’1’

 C RETURN

 C*

 C* End of MAINLINE

 C*

 C***

 C*

 C EXEC_CMD BEGSR

 C*

 C* Process the requested CL command

 C*

 C CALL ’QCAPCMD’

 C PARM CMD_STR

 C PARM LEN_STR

 C PARM QCAP0100

 C PARM CAP0100_SZ

 C PARM ’CPOP0100’ FORMAT 8

 C PARM RCVVAR 1

 C PARM 0 RCVVAR_SZ

 C PARM RCVVAR_SZ

 C PARM QUSEC

 C*

 C* If an exception occurs, the API returns the exception in the

 C* error code parameter. The bytes available field is set to

 C* zero if no exception occurs and greater than zero if an

 C* exception does occur.

 C*

 C IF QUSBAVL > 0

 C EVAL API_NAME = ’QCAPCMD’

 C EXSR ERRCOD

 C ENDIF

 C ENDSR

 C*

 C***

 C*

296 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C ERRCOD BEGSR

 C*

 C* Process errors returned from the API.

 C*

 C* If first error found, then open QPRINT *PRTF

 C*

 C IF FIRST_ERR = ’0’

 C OPEN QPRINT

 C EVAL FIRST_ERR = ’1’

 C ENDIF

 C*

 C* Print the error and the API that received the error

 C*

 C EXCEPT BAD_NEWS

 C*

 C ENDSR

 OQPRINT E BAD_NEWS 1

 O ’Failed in API ’

 O API_NAME

 O ’with error ’

 O QUSEI

Example in ILE C: User queue:

This program illustrates how to use APIs to create and manipulate a user queue.

 Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
/***/

/* */

/*Program Name: UQUEUEX */

/* */

/*Program Language: ILE C */

/* */

/*Description: This program illustrates how to use APIs to create */

/* and manipulate a user queue. */

/* */

/* */

/*Header Files Included: <stdio.h> */

/* <signal.h> */

/* <string.h> */

/* <stdlib.h> */

/* <miptrnam.h> */

/* <miqueue.h> */

/* <pointer.h> */

/* <quscrtuq.h> */

/* <qusdltuq.h> */

/* <qusec.h> */

/* */

/*APIs Used: QUSCRTUQ - Create a user queue */

/* QUSDLTUQ - Delete a user queue */

/* */

/***/

/***/

/***/

/* Includes */

/***/

#include <stdio.h>

#include <signal.h>

#include <string.h>

#include <stdlib.h>

#include <milib.h> /* from QCLE/h */

#include <miptrnam.h> /* from QCLE/h */

#include <miqueue.h> /* from QCLE/h */

#include <pointer.h>

#include <quscrtuq.h> /* from QSYSINC/h */

APIs 297

#include <qusdltuq.h> /* from QSYSINC/h */

#include <qusec.h> /* from QSYSINC/h */

/***/

/* Structures */

/***/

typedef struct {

 Qus_EC_t ec_fields;

 char exception_data[100];

} error_code_struct;

/***/

/* */

/* Main */

/* */

/***/

void main()

{

 char text_desc[50];

 error_code_struct error_code;

 _SYSPTR queuelib_sysptr,

 user_queue_obj_sysptr;

 _RSLV_Template_T rslvsp_template;

 _ENQ_Msg_Prefix_T enq_msg_prefix;

 _DEQ_Msg_Prefix_T deq_msg_prefix;

 char enq_msg[50],

 deq_msg[50];

 int success=0;

 /***/

 /* Create a library to create the user queue into. */

 /***/

 system("CRTLIB LIB(QUEUELIB)");

 /***/

 /* Initialize the error code parameter. */

 /***/

 error_code.ec_fields.Bytes_Provided=sizeof(error_code_struct);

 /***/

 /* Call the QUSCRTUQ API to create a user queue. */

 /* */

 /* This will create a user queue called EXAMPLEQ in library */

 /* QUEUELIB, with the following attributes: */

 /* */

 /* 1. Extended attribute of "VALID ", which could have */

 /* been any valid *NAME. */

 /* 2. A queue type of "F", or First-in, first-out. */

 /* 3. A key length of 0. If the queue is not keyed, this */

 /* value must be 0. */

 /* 4. A maximum message size of 10 bytes. This number can */

 /* be as large as 64K bytes. */

 /* 5. The initial number of messages set to 10. */

 /* 6. Additional number of messages set to 10. */

 /* 7. Public authority of *USE. */

 /* 8. A valid text description. */

 /* 9. Replace option of *YES. This means that if a user queue */

 /* already exists by the name specified, in the library */

 /* specified, that it will be replaced by this */

 /* request. */

 /* 10. Domain value of *USER. */

 /* 11. Pointer value of *NO. Messages in the queue cannot */

 /* contain pointer data. */

 /***/

298 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

memcpy(text_desc, "THIS IS TEXT FOR THE EXAMPLE USER QUEUE ",

 50);

 QUSCRTUQ("EXAMPLEQ QUEUELIB ", /* Qualified user queue name */

 "VALID ", /* Extended attribute */

 "F", /* Queue type */

 0, /* Key length */

 10, /* Maximum message size */

 10, /* Initial number of messages */

 10, /* Additional number of messages */

 "*ALL ", /* Public authority */

 text_desc, /* Text Description */

 "*YES ", /* Replace existing user queue */

 &error_code, /* Error code */

 "*USER ", /* Domain of user queue */

 "*NO "); /* Allow pointer data */

 /***/

 /* If an exception occurred, the API would have returned the */

 /* exception in the error code parameter. The bytes available */

 /* field will be set to zero if no exception occurred and greater */

 /* than zero if an exception did occur. */

 /***/

 if (error_code.ec_fields.Bytes_Available > 0)

 {

 printf("ATTEMPT TO CREATE A USER QUEUE FAILED WITH EXCEPTION:%.7s",

 error_code.ec_fields.Exception_Id);

 exit(1);

 }

 /***/

 /* Send information to the queue. */

 /* */

 /* We will need to use MI instructions to accomplish this. */

 /* There are three steps that must be done: */

 /* */

 /* 1. Resolve a system pointer to the library containing the user */

 /* queue object. */

 /* 2. Using the system pointer to the library, resolve a system */

 /* pointer to user queue object in the library. */

 /* 3. Enqueue the entry using the system pointer for the user */

 /* queue. */

 /* */

 /***/

 /***/

 /* First we must resolve to library QUEUELIB. */

 /***/

 memset(rslvsp_template.Obj.Name,’ ’,30);

 memcpy(rslvsp_template.Obj.Name,"QUEUELIB",8);

 rslvsp_template.Obj.Type_Subtype = _Library; /* found in milib.h */

 rslvsp_template.Auth = _AUTH_NONE; /* found in milib.h */

 _RSLVSP6(&queuelib_sysptr, /* system pointer to be set */

 &rslvsp_template, /* resolve template */

 &rslvsp_template.Auth); /* authority to set in sysptr */

 /***/

 /* We can now resolve to the user queue object. We will pass the */

 /* system pointer to library QUEUELIB to RSLVSP so the resolve */

 /* will only search library QUEUELIB for the user queue object. */

 /* This is necessary so that we ensure that we are using the */

 /* correct object. */

 /***/

 memset(rslvsp_template.Obj.Name,’ ’,30);

APIs 299

memcpy(rslvsp_template.Obj.Name, "EXAMPLEQ", 8);

 rslvsp_template.Obj.Type_Subtype = _Usrq; /* found in milib.h */

 rslvsp_template.Auth = _AUTH_ALL; /* found in milib.h */

 _RSLVSP8(&user_queue_obj_sysptr, /* system pointer to be set */

 &rslvsp_template, /* resolve template */

 &queuelib_sysptr, /* sysptr to library */

 &rslvsp_template.Auth); /* authority to set in sysptr */

 /***/

 /* Enqueue the entry. */

 /***/

 enq_msg_prefix.Msg_Len = 10;

 enq_msg_prefix.Msg[0] = ’\0’; /* Only used for keyed queues*/

 memcpy(enq_msg, "EXAMPLE ", 10);

 _ENQ(&user_queue_obj_sysptr, /* system pointer to user queue */

 &enq_msg_prefix, /* message prefix */

 (_SPCPTR)enq_msg); /* message text */

 /***/

 /* Dequeue the entry. */

 /***/

 success = _DEQI(&deq_msg_prefix, /* message prefix */

 (_SPCPTR)deq_msg, /* message text */

 &user_queue_obj_sysptr); /* sys ptr to user queue */

 if(success)

 {

 printf("Queue entry information: %.10s\n", deq_msg);

 }

 else

 {

 printf("Entry not dequeued\n");

 }

 /***/

 /* Delete the user queue. */

 /***/

 QUSDLTUQ("EXAMPLEQ QUEUELIB ", /* Qualified user queue name */

 &error_code); /* Error code */

 /***/

 /* If an exception occurred, the API would have returned the */

 /* exception in the error code parameter. The bytes available */

 /* field will be set to zero if no exception occurred and greater */

 /* than zero if an exception did occur. */

 /***/

 if (error_code.ec_fields.Bytes_Available > 0)

 {

 printf("ATTEMPT TO DELETE A USER QUEUE FAILED WITH EXCEPTION:%.7s",

 error_code.ec_fields.Exception_Id);

 exit(1);

 }

 /***/

 /* Delete the library created for this example. */

 /***/

 system("DLTLIB LIB(QUEUELIB)");

}

300 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Examples: APIs

Contains example programs that use APIs and exit programs.

Note: To use these examples, you will need the header files provided in the QSYSINC (system include)

library.

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

 Related concepts

 “Include files and the QSYSINC library” on page 62
The QSYSINC (system include) library provides all source includes for APIs shipped with i5/OS.

 “Performing tasks using APIs” on page 242

This topic provides some examples of using APIs to perform different types of tasks.

Example: Changing an active job

This program will reduce the run priority of active jobs with the same name.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

This command interface to the Change Active Jobs (CHGACTJOB) program can reduce the run priority of

active jobs with the same name. You can also reduce the run priority of jobs using a specified user name.

You may:

v Specify a job name or the *ALL value.

v Specify the user name as the *ALL value.

v Use the default run priority of 99.

The CHGACTJOB command ensures that one of the following is true:

v Not all jobs were specified.

v The *ALL value was not specified for the JOB parameter.

v The *ALL value was not specified for the USER parameter.

This example uses the following APIs:

v Create User Space (QUSCRTUS)

v List Job (QUSLJOB)

APIs 301

|
|
|
|
|

|
|

|

|
|

|

|
|
|

v Retrieve User Space (QUSRTVUS)

v Retrieve Job Information (QUSRJOBI)

The following is the message description needed for the Change Active Jobs (CHGACTJOB) command:

ADDMSGD MSGID(USR3C01) MSGF(QCPFMSG) +

MSG(’JOB(*ALL) is not valid with USER(*ALL)’) SEV(30)

The following is the command definition for the CHGACTJOB command:

 CMD PROMPT(’Change Active Jobs’)

 /* CPP CHGACTJOB */

 PARM KWD(JOB) TYPE(*NAME) LEN(10) +

 SPCVAL((*ALL)) MIN(1) +

 PROMPT(’Job name:’)

 PARM KWD(USER) TYPE(*NAME) LEN(10) DFT(*ALL) +

 SPCVAL((*ALL) (*CURRENT)) PROMPT(’User +

 name:’)

 PARM KWD(RUNPTY) TYPE(*DEC) LEN(5 0) DFT(99) +

 RANGE(00 99) PROMPT(’Run priority:’)

 DEP CTL(&USER *EQ *ALL) PARM((&JOB *NE *ALL)) +

 NBRTRUE(*EQ 1) MSGID(USR3C01)

To create the command, specify the following:

CRTCMD CMD(QGPL/CHGACTJOB) PGM(QGPL/CHGACTJOB) +

 SRCFILE(QGPL/CMDSRC)

The following is the command-processing program that is written in CL to list the active jobs and reduce

the run priority if necessary:

 /* *** */

 /* PROGRAM: CHGACTJOB */

 /* */

 /* LANGUAGE: CL */

 /* */

 /* DESCRIPTION: THIS PROGRAM WILL REDUCE THE RUN PRIORITY OF ACTIVE */

 /* JOBS WITH THE SAME NAME. */

 /* */

 /* APIs USED: QUSCRTUS, QUSLJOB, QUSRTVUS, QUSRJOBI */

 /* */

 /* *** */

 PGM PARM(&JOB &USER &RUNPTY)

 /* */

 /* Input parameters */

 /* */

 DCL VAR(&JOB) TYPE(*CHAR) LEN(10) +

 /* Input job name */

 DCL VAR(&USER) TYPE(*CHAR) LEN(10) +

 /* Input user name */

 DCL VAR(&RUNPTY) TYPE(*DEC) LEN(5 0) +

 /* Input run priority */

 /* */

 /* Local variables */

 /* */

 DCL VAR(&RJOB) TYPE(*CHAR) LEN(10) +

 /* Retrieve job name */

 DCL VAR(&RUSER) TYPE(*CHAR) LEN(10) +

 /* Retrieve user name */

 DCL VAR(&RNBR) TYPE(*CHAR) LEN(6) +

 /* Retrieve job number */

 DCL VAR(&RUNPTYC) TYPE(*CHAR) LEN(5) +

 /* Input run priority in character form */

302 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

DCL VAR(&RUNPTY8) TYPE(*DEC) LEN(8 0) +

 /* Retrieve run priority after convert from +

 binary 4 */

 DCL VAR(&RUNPTY5) TYPE(*DEC) LEN(5 0) +

 /* Retrieve run priority in decimal 5,0 +

 form */

 DCL VAR(&RUNPTY5C) TYPE(*CHAR) LEN(5) +

 /* Retrieve run priority in character form */

 DCL VAR(&RUNPTY4) TYPE(*CHAR) LEN(4) +

 /* Retrieve run priority in binary 4 form */

 DCL VAR(&NUMBER) TYPE(*CHAR) LEN(6) +

 /* Current job number */

 DCL VAR(&USRSPC) TYPE(*CHAR) LEN(20) +

 VALUE(’CHGA QTEMP ’) +

 /* User space name for APIs */

 DCL VAR(&EUSRSPC) TYPE(*CHAR) LEN(10) +

 /* User space name for commands */

 DCL VAR(&JOBNAME) TYPE(*CHAR) LEN(26) +

 VALUE(’ *ALL ’) +

 /* Full job name for list job */

 DCL VAR(&BIN4) TYPE(*CHAR) LEN(4) +

 /* Number of jobs for list job and +

 User space offset in binary 4 form */

 DCL VAR(&LOOP) TYPE(*DEC) LEN(8 0) +

 /* Number of jobs from list job */

 DCL VAR(&DEC8) TYPE(*DEC) LEN(8 0) +

 /* User space offset in decimal 8,0 form */

 DCL VAR(&ELEN) TYPE(*DEC) LEN(8 0) +

 /* List job entry length in decimal 8,0 +

 form */

 DCL VAR(&ELENB) TYPE(*CHAR) LEN(4) +

 /* List job entry length in binary 4 +

 form */

 DCL VAR(&LJOBE) TYPE(*CHAR) LEN(52) +

 /* Retrieve area for list job entry */

 DCL VAR(&INTJOB) TYPE(*CHAR) LEN(16) +

 /* Retrieve area for internal job id */

 DCL VAR(&JOBI) TYPE(*CHAR) LEN(104) +

 /* Retrieve area for job information */

 DCL VAR(&JOBTYPE) TYPE(*CHAR) LEN(1) +

 /* Job type */

 /* */

 /* Start of executable code */

 /* */

 /* */

 /* Retrieve job number to use for local user space name */

 /* */

 RTVJOBA NBR(&NUMBER)

 CHGVAR VAR(%SST(&USRSPC 5 6)) VALUE(&NUMBER)

 CHGVAR VAR(&EUSRSPC) VALUE(%SST(&USRSPC 1 10))

 /* */

 /* Delete user space if it already exists */

 /* */

 DLTUSRSPC USRSPC(QTEMP/&EUSRSPC)

 MONMSG CPF0000

 /* */

 /* Create user space */

 /* */

 CALL QUSCRTUS (&USRSPC ’CHGACTJOB ’ X’00000100’ ’ ’ +

 ’*ALL ’ +

APIs 303

’CHGACTJOB TEMPORARY USER SPACE-

 ’)

 /* */

 /* Set up job name for list jobs */

 /* */

 CHGVAR VAR(%SST(&JOBNAME 1 10)) VALUE(&JOB)

 CHGVAR VAR(%SST(&JOBNAME 11 10)) VALUE(&USER)

 /* */

 /* List active jobs with job name specified */

 /* */

 CALL QUSLJOB (&USRSPC ’JOBL0100’ &JOBNAME +

 ’*ACTIVE ’)

 /* */

 /* Retrieve number of entries returned. Convert to decimal and */

 /* if zero go to NOJOBS label to send out ’No jobs’ message. */

 /* */

 CALL QUSRTVUS (&USRSPC X’00000085’ X’00000004’ +

 &BIN4)

 CHGVAR &LOOP %BINARY(&BIN4)

 IF COND(&LOOP = 0) THEN(GOTO CMDLBL(NOJOBS))

 /* */

 /* Retrieve list entry length, convert to decimal. */

 /* Retrieve list entry offset, convert to decimal, and add one */

 /* to set the position. */

 /* */

 CALL QUSRTVUS (&USRSPC X’00000089’ X’00000004’ +

 &ELENB)

 CHGVAR &ELEN %BINARY(&ELENB)

 CALL QUSRTVUS (&USRSPC X’0000007D’ X’00000004’ +

 &BIN4)

 CHGVAR &DEC8 %BINARY(&BIN4)

 CHGVAR VAR(&DEC8) VALUE(&DEC8 + 1)

 /* */

 /* Loop for the number of jobs until no more jobs then go to */

 /* ALLDONE label */

 /* */

 STARTLOOP: IF (&LOOP = 0) THEN(GOTO ALLDONE)

 /* */

 /* Convert decimal position to binary 4 and retrieve list job entry */

 /* */

 CHGVAR %BINARY(&BIN4) &DEC8

 CALL QUSRTVUS (&USRSPC &BIN4 &ELENB +

 &LJOBE)

 /* */

 /* Copy internal job identifier and retrieve job information for */

 /* basic performance information. */

 /* */

 CHGVAR VAR(&INTJOB) VALUE(%SST(&LJOBE 27 16))

 CALL QUSRJOBI (&JOBI X’00000068’ ’JOBI0100’ +

 ’*INT ’ +

 &INTJOB)

 /* */

304 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* Copy job type and if subsystem monitor, spool reader, system job, */

 /* spool writer, or SCPF system job then loop to next job */

 /* */

 CHGVAR VAR(&JOBTYPE) VALUE(%SST(&JOBI 61 1))

 IF COND((&JOBTYPE = ’M’) *OR (&JOBTYPE = ’R’) +

 *OR (&JOBTYPE = ’S’) *OR (&JOBTYPE = ’W’) +

 *OR (&JOBTYPE = ’X’)) +

 THEN(GOTO CMDLBL(ENDLOOP))

 /* */

 /* Copy run priority, convert to decimal, convert to decimal 5,0, */

 /* and if request run priority is less than or equal to the current */

 /* run priority then loop to next job. */

 /* */

 CHGVAR VAR(&RUNPTY4) VALUE(%SST(&JOBI 65 4))

 CHGVAR &RUNPTY8 %BINARY(&RUNPTY4)

 CHGVAR VAR(&RUNPTY5) VALUE(&RUNPTY8)

 IF COND(&RUNPTY5 *GE &RUNPTY) THEN(GOTO +

 CMDLBL(ENDLOOP))

 /* */

 /* Retrieve job name, convert to run priority to character, change */

 /* the job run priority and seen message stating the run priority */

 /* was changed. */

 /* */

 CHGVAR VAR(&RJOB) VALUE(%SST(&JOBI 9 10))

 CHGVAR VAR(&RUSER) VALUE(%SST(&JOBI 19 10))

 CHGVAR VAR(&RNBR) VALUE(%SST(&JOBI 29 6))

 CHGVAR VAR(&RUNPTYC) VALUE(&RUNPTY)

 CHGVAR VAR(&RUNPTY5C) VALUE(&RUNPTY5)

 CHGJOB JOB(&RNBR/&RUSER/&RJOB) RUNPTY(&RUNPTYC)

 MONMSG MSGID(CPF1343) EXEC(GOTO CMDLBL(ENDLOOP))

 SNDPGMMSG MSG(’Job’ *BCAT &RNBR *TCAT ’/’ *TCAT +

 &RUSER *TCAT ’/’ *TCAT &RJOB *BCAT ’run +

 priority was change from’ *BCAT &RUNPTY5C +

 *BCAT ’to’ *BCAT &RUNPTYC *TCAT ’.’)

 /* */

 /* At end of loop set new decimal position to next entry and */

 /* decrement loop counter by one. */

 /* */

 ENDLOOP: CHGVAR VAR(&DEC8) VALUE(&DEC8 + &ELEN)

 CHGVAR VAR(&LOOP) VALUE(&LOOP - 1)

 GOTO CMDLBL(STARTLOOP)

 /* */

 /* Send message that no jobs were found. */

 /* */

 NOJOBS: SNDPGMMSG MSG(’No jobs found.’)

 /* */

 /* All done. Now delete temporary user space that we created. */

 /* */

 ALLDONE: DLTUSRSPC USRSPC(QTEMP/&EUSRSPC)

 MONMSG CPF0000

 ENDPGM

The program can be changed to change the run priority by removing the IF statement to compare the

current and requested run priority.

APIs 305

To create the CL program, specify the following:

CRTCLPGM PGM(QGPL/CHGACTJOB) SRCFILE(QGPL/QCLSRC)

You can change the command to:

v Specify a different printer device.

v Specify a different output queue.

v Specify different job attributes that the Change Job (CHGJOB) command can change.

v List only jobs on an output queue and remove the spooled files.

v Provide a menu to select jobs to be changed.

Example: Changing a job schedule entry

This program will change the user for a list of job schedule entries.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

This command interface to the Change Job Schedule Entry User (CHGSCDEUSR) program can change the

USER parameter in the job schedule entry. You may:

v Specify a job schedule entry name

v Specify a generic job schedule entry name

v Specify the *ALL value

This example uses the following APIs:

v Create User Space (QUSCRTUS)

v List Job Schedule Entries (QWCLSCDE)

v Retrieve User Space (QUSRTVUS)

The following is the command definition for the CHGSCDEUSR command:

 CMD PROMPT(’Change Job Schedule Entry User’)

 /* CPP CHGSCDEUSR */

 PARM KWD(JOB) TYPE(*GENERIC) LEN(10) +

 SPCVAL((*ALL)) +

 MIN(1) PROMPT(’Job name:’)

 PARM KWD(OLDUSER) TYPE(*NAME) LEN(10) +

 MIN(1) PROMPT(’Old user name:’)

 PARM KWD(NEWUSER) TYPE(*NAME) LEN(10) +

 MIN(1) PROMPT(’New user name:’)

To create the command, specify the following:

CRTCMD CMD(QGPL/CHGSCDEUSR) PGM(QGPL/CHGSCDEUSR) +

 SRCFILE(QGPL/QCMDSRC)

The following is the command-processing program that is written in CL to list the job schedule entries

and change the user if necessary:

 /* ** */

 /* PROGRAM: CHGSCDEUSR */

 /* */

 /* LANGUAGE: CL */

 /* */

 /* DESCRIPTION: THIS PROGRAM WILL CHANGE THE USER FOR A LIST OF */

 /* JOB SCHEDULE ENTRIES. */

 /* */

 /* APIs USED: QUSCRTUS, QWCLSCDE, QUSRTVUS */

 /* */

 /* ** */

 PGM PARM(&JOBNAME &OLDUSER &NEWUSER)

306 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* */

 /* Input parameters are as follows: */

 /* */

 DCL VAR(&JOBNAME) TYPE(*CHAR) LEN(10) /* Input +

 job name */

 DCL VAR(&OLDUSER) TYPE(*CHAR) LEN(10) /* Input +

 old user name */

 DCL VAR(&NEWUSER) TYPE(*CHAR) LEN(10) /* Input +

 new user name */

 /* */

 /* Local variables are as follows: */

 /* */

 DCL VAR(&USRSPC) TYPE(*CHAR) LEN(20) +

 VALUE(’CHGSCDEUSRQTEMP ’) /* User +

 space name for APIs */

 DCL VAR(&CNTHDL) TYPE(*CHAR) LEN(16) +

 VALUE(’ ’) /* Continuation +

 handle */

 DCL VAR(&NUMENTB) TYPE(*CHAR) LEN(4) /* Number +

 of entries from list job schedule entries +

 in binary form */

 DCL VAR(&NUMENT) TYPE(*DEC) LEN(8 0) /* Number +

 of entries from list job schedule entries +

 in decimal form */

 DCL VAR(&HDROFFB) TYPE(*CHAR) LEN(4) /* Offset +

 to the header portion of the user space in +

 binary form */

 DCL VAR(&HDRLENB) TYPE(*CHAR) LEN(4) /* Length +

 to the header portion of the user space in +

 binary form */

 DCL VAR(&GENHDR) TYPE(*CHAR) LEN(140) /* Generic +

 header information from the user space */

 DCL VAR(&HDRINFO) TYPE(*CHAR) LEN(26) /* Header +

 information from the user space */

 DCL VAR(&LSTSTS) TYPE(*CHAR) LEN(1) /* Status +

 of the list in the user space */

 DCL VAR(&OFFSETB) TYPE(*CHAR) LEN(4) /* Offset +

 to the list portion of the user space in +

 binary form */

 DCL VAR(&STRPOSB) TYPE(*CHAR) LEN(4) /* Starting +

 position in the user space in binary form */

 DCL VAR(&ELENB) TYPE(*CHAR) LEN(4) /* List job +

 entry length in binary 4 form */

 DCL VAR(&LENTRY) TYPE(*CHAR) LEN(1156) /* +

 Retrieve area for list job schedule entry */

 DCL VAR(&INFOSTS) TYPE(*CHAR) LEN(1) /* Retrieve +

 area for information status */

 DCL VAR(&JOBNAM) TYPE(*CHAR) LEN(10) /* Retrieve +

 area for job name */

 DCL VAR(&ENTRY#) TYPE(*CHAR) LEN(6) /* Retrieve +

 area for entry number */

 DCL VAR(&USERNM) TYPE(*CHAR) LEN(10) /* Retrieve +

 area for user name */

 /* */

 /* Start of code */

 /* */

 /* */

 /* You may want to monitor for additional messages here. */

 /* */

 /* */

 /* This creates the user space. The user space will be 256 bytes */

APIs 307

/* and will be initialized to blanks. */

 /* */

 CALL PGM(QUSCRTUS) PARM(&USRSPC ’CHGSCDEUSR’ +

 X’00000100’ ’ ’ ’*ALL ’ ’CHGSCDEUSR +

 TEMPORARY USER SPACE ’)

 MONMSG MSGID(CPF3C00) EXEC(GOTO CMDLBL(ERROR))

 /* */

 /* This lists job schedule entries of the name specified. */

 /* */

 PARTLIST: CALL PGM(QWCLSCDE) PARM(&USRSPC ’SCDL0200’ +

 &JOBNAME &CNTHDL 0)

 /* */

 /* Retrieve the generic header from the user space. */

 /* */

 CALL PGM(QUSRTVUS) PARM(&USRSPC X’00000001’ +

 X’0000008C’ &GENHDR)

 MONMSG MSGID(CPF3C00) EXEC(GOTO CMDLBL(ERROR))

 /* */

 /* Get the information status for the list from the generic header. */

 /* If it is incomplete, go to BADLIST label and send out ’Bad list’ */

 /* message. */

 /* */

 CHGVAR VAR(&LSTSTS) VALUE(%SST(&GENHDR 104 1))

 IF COND(&LSTSTS = ’I’) THEN(GOTO CMDLBL(BADLIST))

 /* */

 /* Get the number of entries returned. Convert to decimal and */

 /* if zero go to NOENTS label to send out ’No entries’ message. */

 /* */

 CHGVAR VAR(&NUMENTB) VALUE(%SST(&GENHDR 133 4))

 CHGVAR VAR(&NUMENT) VALUE(%BIN(&NUMENTB))

 IF COND(&NUMENT = 0) THEN(GOTO CMDLBL(NOENTS))

 /* */

 /* Get the list entry length and the list entry offset. */

 /* These values are used to set up the starting position. */

 /* */

 CHGVAR VAR(&ELENB) VALUE(%SST(&GENHDR 137 4))

 CHGVAR VAR(&OFFSETB) VALUE(%SST(&GENHDR 125 4))

 CHGVAR VAR(%BIN(&STRPOSB)) VALUE(%BIN(&OFFSETB) + 1)

 /* */

 /* This loops for the number of entries until no more entries are */

 /* found and goes to the ALLDONE label. */

 /* */

 STARTLOOP: IF COND(&NUMENT = 0) THEN(GOTO CMDLBL(PARTCHK))

 /* */

 /* This retrieves the list entry. */

 /* */

 CALL PGM(QUSRTVUS) PARM(&USRSPC &STRPOSB &ELENB +

 &LENTRY)

 MONMSG MSGID(CPF3C00) EXEC(GOTO CMDLBL(ERROR))

 /* */

 /* This copies the information status, job name, entry number, and */

 /* user name. */

 /* */

308 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

CHGVAR VAR(&INFOSTS) VALUE(%SST(&LENTRY 1 1))

 CHGVAR VAR(&JOBNAM) VALUE(%SST(&LENTRY 2 10))

 CHGVAR VAR(&ENTRY#) VALUE(%SST(&LENTRY 12 10))

 CHGVAR VAR(&USERNM) VALUE(%SST(&LENTRY 547 10))

 /* */

 /* This checks to make sure the list entry contains the user name. */

 /* If it does, the user name is compared to the old user name */

 /* passed in. If either of these checks fails, this entry will */

 /* be skipped. */

 /* */

 IF COND(&INFOSTS *NE ’ ’) THEN(GOTO +

 CMDLBL(ENDLOOP))

 IF COND(&USERNM *NE &OLDUSER) THEN(GOTO +

 CMDLBL(ENDLOOP))

 /* */

 /* This code will issue the CHGJOBSCDE command for the entry. */

 /* */

 CHGJOBSCDE JOB(&JOBNAM) ENTRYNBR(&ENTRY#) USER(&NEWUSER)

 MONMSG MSGID(CPF1620) EXEC(GOTO CMDLBL(NOCHG))

 SNDPGMMSG MSG(’Entry’ *BCAT &JOBNAM *BCAT &ENTRY# +

 *BCAT ’was changed.’)

 GOTO CMDLBL(ENDLOOP)

 NOCHG: SNDPGMMSG MSG(’Entry’ *BCAT &JOBNAM *BCAT &ENTRY# +

 *BCAT ’was NOT changed.’)

 /* */

 /* At end of loop, set new decimal position to the next entry and */

 /* decrement the loop counter by one. */

 /* */

 ENDLOOP: CHGVAR VAR(%BIN(&STRPOSB)) VALUE(%BIN(&STRPOSB) +

 + %BIN(&ELENB))

 CHGVAR VAR(&NUMENT) VALUE(&NUMENT - 1)

 GOTO CMDLBL(STARTLOOP)

 /* */

 /* This sends a message that no entries were found. */

 /* */

 NOENTS: SNDPGMMSG MSG(’No entries found.’)

 GOTO CMDLBL(ALLDONE)

 /* */

 /* This sends a message that the list was incomplete. */

 /* */

 BADLIST: SNDPGMMSG MSG(’Incomplete list in the user space. +

 See joblog for details.’)

 GOTO CMDLBL(ALLDONE)

 /* */

 /* This sends a message that an unexpected error occurred. */

 /* */

 ERROR: SNDPGMMSG MSG(’Unexpected error. +

 See joblog for details.’)

 GOTO CMDLBL(ALLDONE)

 /* */

 /* This will check for a partial list in the user space and */

 /* finish processing the rest of the list. */

 /* */

APIs 309

PARTCHK: IF COND(&LSTSTS = ’C’) THEN(GOTO CMDLBL(ALLDONE))

 /* */

 /* Retrieve the header information from the user space. */

 /* Use this information to get the rest of the list. */

 /* */

 CHGVAR VAR(&HDROFFB) VALUE(%SST(&GENHDR 121 4))

 CHGVAR VAR(&HDRLENB) VALUE(%SST(&GENHDR 117 4))

 CALL PGM(QUSRTVUS) PARM(&USRSPC &HDROFFB +

 &HDRLENB &HDRINFO)

 MONMSG MSGID(CPF3C00) EXEC(GOTO CMDLBL(ERROR))

 CHGVAR VAR(&CNTHDL) VALUE(%SST(&HDRINFO 11 16))

 GOTO CMDLBL(PARTLIST)

 /* */

 /* All done. Now the temporary user space is deleted. */

 /* */

 ALLDONE: DLTUSRSPC USRSPC(QTEMP/%SST(&USRSPC 1 10))

 MONMSG MSGID(CPF0000)

 ENDPGM

To create the CL program, specify the following:

CRTCLPGM PGM(QGPL/CHGSCDEUSR) SRCFILE(QGPL/QCLSRC)

You can change the command to:

v Specify different parameters that the Change Job Schedule Entry (CHGJOBSCDE) command can

change.

v Provide a menu to select job schedule entries to be changed.

Example: Creating a batch machine

This program enters commands to be processed onto a queue called ’TESTQ’ in Library ’QGPL’.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

These ILE C programs emulate a batch machine. One program, $USQEXSRV, acts as a server and takes

the entries off a user queue and then runs the request through the Execute Command (QCMDEXC) API.

The other program, $USQEXREQ, acts as a requester and puts the entries into a user space. The APIs

used in this example are:

v Create User Queue (QUSCRTUQ)

v Execute Command (QCMDEXC)

Requester program ($USQEXREQ)

The following is a requester program using ILE C:

/**/

/* PROGRAM: $USQEXREQ */

/* */

/* LANGUAGE: ILE C */

/* */

/* DESCRIPTION: THIS PROGRAM ENTERS COMMANDS TO BE PROCESSED ONTO */

/* A QUEUE CALLED ’TESTQ’ IN LIBRARY ’QGPL’. THE USER WILL BE */

/* PROMPTED TO ENTER AS MANY COMMANDS (UNDER 51 CHARACTERS) AS */

/* IS DESIRED. WHEN THE USER WISHES TO END THE PROGRAMS, */

/* ALL THAT NEED BE DONE IS ENTER ’quit’ AT THE PROMPT. */

/* */

/* APIs USED: */

/* */

310 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/**/

#include <stdio.h>

#include <string.h>

#include <miqueue.h>

#include <miptrnam.h>

main()

{

_ENQ_Msg_Prefix_T e_msg_prefix;

_SYSPTR queue;

char INMsg[100];

/**/

/* Resolve to the queue created by $USQEXSRV. */

/**/

queue = rslvsp(_Usrq,"TESTQ","QGPL",_AUTH_ALL);

e_msg_prefix.Msg_Len = 100;

/**/

/* Loop until the user enters ’quit’ as the command. */

/**/

 while (1) {

 printf("\nEnter command to put on queue, or ’quit’ \n ");

 scanf("%100s", INMsg);

 gets(INMsg);

 printf("\nCommand entered was ==> %.100s\n",INMsg);

/**/

/* Check to see if the user entered ’quit’ as the command. */

/* If true then break out of the ’while’ loop. */

/**/

 if ((strncmp(INMsg,"quit",4) == 0)||(strncmp(INMsg,"QUIT",4) == 0))

 { break; }

/**/

/* Add the user-entered command to the queue. */

/**/

 enq(queue,&e_msg_prefix,INMsg);

 strcpy(INMsg," ");

 } /*while*/

/**/

/* Add the command end to the queue which causes the */

/* server program ($USQEXSRV) to end */

/**/

 strcpy(INMsg,"END");

 enq(queue,&e_msg_prefix,INMsg);

} /* $USQEXREQ */

To create the requester program using ILE C, specify the following:

CRTBNDC PGM(QGPL/$USQEXREQ) SRCFILE(QGPL/QCSRC)

Server program ($USQEXSRV)

The following is the server program using ILE C:

/**/

/* PROGRAM: $USQEXSRV */

/* */

/* LANGUAGE: ILE C */

APIs 311

/* */

/* DESCRIPTION: THIS PROGRAM EXTRACTS COMMANDS TO BE RUN FROM */

/* A QUEUE CALLED ’TESTQ’ IN LIBRARY ’QGPL’. THE COMMANDS WILL */

/* BE EXTRACTED AND RUN IN FIFO ORDER. THE QUEUE WILL BE */

/* CREATED PRIOR TO USE AND SHOULD BE DELETED AFTER EACH USE */

/* OF THIS EXAMPLE PROGRAM. THIS PROGRAM END WHEN IT */

/* EXTRACTS THE COMMAND ’END’ FROM THE QUEUE. */

/* THE FLOW IS AS FOLLOWS: */

/* (1) CREATE THE USER QUEUE */

/* (2) ENTER LOOP */

/* (3) WAIT FOREVER FOR A COMMAND ON THE QUEUE */

/* (4) IF COMMAND IS ’END’ THEN EXIT LOOP */

/* (5) ELSE RUN COMMAND, RESTART LOOP */

/* (6) END LOOP */

/* FOR BEST RESULTS, THIS PROGRAM CAN BE CALLED BY THE USER, THEN*/

/* THE $USQEXREQ SHOULD BE CALLED FROM ANOTHER SESSION. */

/* */

/* APIs USED: QCMDEXC, QUSCRTUQ */

/* */

/**/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <micomput.h>

#include <miqueue.h>

#include <miptrnam.h>

#include <quscrtuq.h>

#include <qcmdexc.h>

main()

{

_DEQ_Msg_Prefix_T d_msg_prefix;

_SYSPTR queue;

char OUTMsg[100];

int cmd_name_lngth;

decimal(15,5) pack_name_lngth;

char igc_param[] = "IGC";

/**/

/* Set up the parameters to be used in the call to ’QUSCRTUQ’ */

/**/

char q_name[]= "TESTQ QGPL ";

char ext_atr[]= "TESTER ";

char q_type[]= "F";

int key_lngth = 0;

int max_msg_s = 100;

int int_msgs = 10;

int add_msgs = 50;

char auth[] = "*ALL ";

char desc[] = "Description ";

/**/

/* Call the ’QUSCRTUQ’ program to create the user queue. */

/**/

 QUSCRTUQ(q_name,ext_atr,q_type,key_lngth,max_msg_s,int_msgs,

 add_msgs,auth,desc);

/**/

/* Resolve to the queue created above. */

/**/

 queue = rslvsp(_Usrq,"TESTQ","QGPL",_AUTH_ALL);

/**/

312 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* Set the deq operation to wait for command indefinitely. */

/**/

 d_msg_prefix.Wait_Forever = 1;

/**/

/* Loop until the command ’END’ is extracted from the queue */

/**/

 while (1) {

 deq(&d_msg_prefix,OUTMsg,queue);

/**/

/* Check to see if the command extracted is ’END’ */

/* If true then break out of the ’while’ loop. */

/**/

 if (strncmp(OUTMsg,"END",3) == 0)

 { break; }

 cmd_name_lngth = strlen(OUTMsg);

/**/

/* Convert the integer in cmd_name_lngth to a packed decimal */

/**/

 cpynv(NUM_DESCR(_T_PACKED,15,5), &pack_name_lngth,

 NUM_DESCR(_T_SIGNED,4,0), &cmd_name_lngth);

/**/

/* Execute the command extracted from the queue */

/**/

 QCMDEXC(OUTMsg,pack_name_lngth,igc_param);

 } /* while */

} /* $USQEXSRV */

To create the server program using ILE C, specify the following:

CRTBNDC PGM(QGPL/$USQEXSRV) SRCFILE(QGPL/QCSRC)

Example: Creating and manipulating a user index

This example shows how to create and manipulate a user index with a call from an MI program. For

another example using the QUSCRTUI API, see Creating Your Own Telephone Directory.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
/**/

/* */

/* PROGRAM: GLOBALV */

/* */

/* LANGUAGE: MI/IRP */

/* */

/* DESCRIPTION: MAINTAINS AN INDEPENDENT INDEX. EACH INDEX ENTRY */

/* CONTAINS 100 BYTES OF USER DATA. THE ENTRIES ARE */

/* KEYED TWO 10 BYTE VALUES: THE USER PROFILE AND A */

/* VALUE IDENTIFIER. */

/* */

/* APIs USED: QUSCRTUI */

/* */

/* PARAMETERS: */

/* */

/* PARM TYPE DESCRIPTION */

/* */

/* 1 CHAR(1) FUNCTION: */

/* */

/* ’U’: UPDATE GLOBALV INFORMATION */

APIs 313

/* ’R’: RETRIEVE GLOBALV INFORMATION */

/* */

/* 2 CHAR(10) USER PROFILE */

/* */

/* THE NAME OF THE USER PROFILE FOR WHICH */

/* INFORMATION IS TO BE SAVED OR RETRIEVED. */

/* */

/* 3 CHAR(10) VALUE ID */

/* */

/* THE NAME OF THE GLOBALV VARIABLE ID FOR WHICH */

/* INFORMATION IS TO BE SAVED OR RETRIEVED. */

/* */

/* 4 CHAR(100) VALUE */

/* */

/* IF FUNCTION IS ’U’, THIS VALUE SHOULD CONTAIN */

/* THE NEW VALUE TO BE ASSOCIATED WITH THE */

/* USER ID AND VALUE ID. */

/* */

/* IF FUNCTION IS ’R’, THIS VARIABLE WILL BE */

/* SET TO THE VALUE ASSOCIATED WITH THE USER ID */

/* AND VALUE ID. IF NO VALUE EXISTS, *NONE */

/* IS SPECIFIED. */

/* */

/**/

ENTRY * (GLOBALV_PARM) EXT;

/**/

/* PARAMETER VALUE POINTERS FOR GLOBALV. */

/**/

DCL SPCPTR GV_REQUEST@ PARM;

DCL SPCPTR GV_USERID@ PARM;

DCL SPCPTR GV_VALUEID@ PARM;

DCL SPCPTR GV_VALUE@ PARM;

/**/

/* PARAMETER VALUES FOR GLOBALV. */

/**/

DCL DD GV_REQUEST CHAR(1) BAS(GV_REQUEST@);

DCL DD GV_USERID CHAR(10) BAS(GV_USERID@);

DCL DD GV_VALUEID CHAR(10) BAS(GV_VALUEID@);

DCL DD GV_VALUE CHAR(100) BAS(GV_VALUE@);

/**/

/* PARAMETER LIST FOR GLOBALV. */

/**/

DCL OL GLOBALV_PARM (GV_REQUEST@

 ,GV_USERID@

 ,GV_VALUEID@

 ,GV_VALUE@

) PARM EXT;

/**/

/* ARGUMENT VALUES FOR CREATE USER INDEX (QUSCRTUI) API. */

/**/

DCL DD UI_NAME CHAR(20) INIT("GLOBALV QGPL ");

DCL DD UI_ATTR CHAR(10) INIT(" ");

DCL DD UI_EATR CHAR(1) INIT("F");

DCL DD UI_ELEN BIN(4) INIT(120);

DCL DD UI_KATR CHAR(1) INIT("1");

DCL DD UI_KLEN BIN(4) INIT(20);

DCL DD UI_IUPD CHAR(1) INIT("0");

DCL DD UI_OPT CHAR(1) INIT("0");

314 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

DCL DD UI_AUT CHAR(10) INIT("*CHANGE ");

DCL DD UI_TEXT CHAR(50)

 INIT("GLOBALV INDEX ");

/**/

/* POINTERS TO ARGUMENT VALUES FOR QUSCRTUI API. */

/**/

DCL SPCPTR UI_NAME@ INIT(UI_NAME);

DCL SPCPTR UI_ATTR@ INIT(UI_ATTR);

DCL SPCPTR UI_EATR@ INIT(UI_EATR);

DCL SPCPTR UI_ELEN@ INIT(UI_ELEN);

DCL SPCPTR UI_KATR@ INIT(UI_KATR);

DCL SPCPTR UI_KLEN@ INIT(UI_KLEN);

DCL SPCPTR UI_IUPD@ INIT(UI_IUPD);

DCL SPCPTR UI_OPT@ INIT(UI_OPT);

DCL SPCPTR UI_AUT@ INIT(UI_AUT);

DCL SPCPTR UI_TEXT@ INIT(UI_TEXT);

/**/

/* ARGUMENT LIST FOR QUSCRTUI API. */

/**/

DCL OL QUSCRTUI_ARG (UI_NAME@

 ,UI_ATTR@

 ,UI_EATR@

 ,UI_ELEN@

 ,UI_KATR@

 ,UI_KLEN@

 ,UI_IUPD@

 ,UI_OPT@

 ,UI_AUT@

 ,UI_TEXT@

) ARG;

/**/

/* SYTSEM POINTER TO QUSCRTUI API *PGM OBJECT. */

/**/

DCL SYSPTR QUSCRTUI INIT("QUSCRTUI",TYPE(PGM));

/**/

/* SYSTEM POINTER TO GLOBALV *USRIDX OBJECT. */

/**/

DCL SYSPTR INX@;

DCL DD INX_OBJECTID CHAR(34);

DCL DD INX_OBJECTID_TYPE CHAR(2) DEF(INX_OBJECTID) POS(1)

 INIT(X’0E0A’);

DCL DD INX_OBJECTID_NAME CHAR(30) DEF(INX_OBJECTID) POS(3)

 INIT(’GLOBALV ’);

DCL DD INX_OBJECTID_AUT CHAR(2) DEF(INX_OBJECTID) POS(33)

 INIT(X’0000’);

/**/

/* EXCEPTION MONITOR TO DETECT 2201X EXCEPTIONS (OBJECT NOT FOUND) */

/**/

DCL EXCM EXCM_NOOBJECT EXCID(H"2201") INT(CREATE_INDEX) IMD;

/**/

/* PASA INVOCATION ENTRY FOR RETURN FROM EXCEPTION. */

/**/

DCL DD RTN_NOOBJECT CHAR(18) BDRY(16);

DCL SPCPTR RTN_NOOBJECT@ INIT(RTN_NOOBJECT);

APIs 315

DCL DD RTN_NOOBJECT_ADDR CHAR(16) DEF(RTN_NOOBJECT);

DCL DD RTN_NOOBJECT_OPT CHAR(1) DEF(RTN_NOOBJECT) POS(18)

 INIT(X’00’);

/**/

/* RECEIVER VARIABLE FOR INDEPENDENT INDEX OPERATIONS. */

/**/

DCL DD INX_RECEIVER CHAR(120);

DCL SPCPTR INX_RECEIVER@ INIT(INX_RECEIVER);

/**/

/* OPTION TEMPLATE FOR INDEPENDENT INDEX OPERATIONS. */

/**/

DCL DD INX_OPT CHAR(14);

DCL SPCPTR INX_OPT@ INIT(INX_OPT);

DCL SPC INX_OPT_SPC BAS(INX_OPT@);

DCL DD INX_OPT_RULE CHAR(2) DIR;

DCL DD INX_OPT_ARGL BIN(2) DIR;

DCL DD INX_OPT_ARGO BIN(2) DIR;

DCL DD INX_OPT_OCCC BIN(2) DIR;

DCL DD INX_OPT_RTNC BIN(2) DIR;

DCL DD INX_OPT_ELEN BIN(2) DIR;

DCL DD INX_OPT_EOFF BIN(2) DIR;

/**/

/* ARGUMENT VARIABLE FOR INDEPENDENT INDEX OPERATIONS. */

/**/

DCL DD INX_ARG CHAR(120);

DCL SPCPTR INX_ARG@ INIT(INX_ARG);

/**/

/* START OF CODE */

/**/

 MATINVE RTN_NOOBJECT_ADDR,*,X’03’; /* MATERIALIZE THIS PROGRAM’S */

 /* INVOCATION ENTRY IN THE */

 /* PASA. THIS ENTRY IS USED */

 /* WHEN RETURNING FROM THE */

 /* EXCEPTION HANDLER BELOW. */

 RSLVSP INX@,INX_OBJECTID,*,*; /* RESOLVE TO "GLOBALV" USER INDEX */

 /* OBJECT. IF THE OBJECT DOES NOT */

 /* EXIST, THEN THE X’2201’ EXCEPTION*/

 /* IS RETURNED, CAUSING THE "OBJECT */

 /* NOT FOUND" EXCEPTION HANDLER AT */

 /* THE END OF THE PROGRAM TO RUN. */

 CMPBLA(B) GV_REQUEST,’U’/NEQ(NOT_UPDATE); /* IF GV_REQUEST ¬= U */

 /* BRANCH TO NOT_UPDATE */

 /* SET UP OPTIONS FOR INSERT INDEPENDENT INDEX ENTRY (INSINXEN) */

 /* OPERATION. */

 CPYBLA INX_OPT_RULE,X’0002’; /* RULE= INSERT. */

 CPYNV INX_OPT_OCCC,1; /* OCCURRENCE COUNT = 1. */

 CPYBLA INX_ARG(1:10),GV_USERID; /* SPECIFY INDEX ENTRY. */

 CPYBLA INX_ARG(11:10),GV_VALUEID;

 CPYBLA INX_ARG(21:100),GV_VALUE;

 INSINXEN INX@,INX_ARG@,INX_OPT@; /* INSERT THE INDEX ENTRY. */

 RTX *; /* RETURN */

NOT_UPDATE:

316 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

CMPBLA(B) GV_REQUEST,’R’/NEQ(NOT_RETRIEVE); /* IF GV_REQUEST ¬= R */

 /* GOTO NOT_RETRIEVE. */

 /* SET UP OPTIONS FOR FIND INDEPENDENT INDEX ENTRY (FNDINXEN) */

 /* OPERATION. */

 CPYBLA INX_OPT_RULE,X’0001’; /* RULE= FIND WITH EQUAL KEY. */

 CPYNV INX_OPT_ARGL,20; /* ARGUMENT LENGTH= 20. */

 CPYNV INX_OPT_OCCC,1; /* OCCURRENCE COUNT=1. */

 CPYBLA INX_ARG(1:10),GV_USERID; /* SPECIFY SEARCH ARGUMENT. */

 CPYBLA INX_ARG(11:10),GV_VALUEID;

 FNDINXEN INX_RECEIVER@,INX@,INX_OPT@,INX_ARG@; /* FIND ENTRY. */

 CMPNV(B) INX_OPT_RTNC,1/EQ(FOUND_ENTRY); /* IF RETURN_COUNT = 1 */

 /* GOTO FOUND_ENTRY. */

 CPYBLAP GV_VALUE,’*NONE’,’ ’; /* ENTRY WAS NOT FOUND, SPECIFY */

 /* VALUE OF *NONE. */

 RTX *; /* RETURN */

FOUND_ENTRY:

 CPYBLA GV_VALUE,INX_RECEIVER(21:100); /* ENTRY WAS FOUND, */

 /* COPY VALUE TO USER */

 /* PARAMETER. */

 RTX *; /* RETURN */

NOT_RETRIEVE:

 RTX *; /* UNKNOWN FUNCTION CODE. RETURN. */

/**/

/* "OBJECT NOT FOUND" EXCEPTION HANDLER. */

/**/

ENTRY CREATE_INDEX INT;

 MODEXCPD EXCM_NOOBJECT,X’0000’,X’01’; /* TURN OFF EXCEPTION */

 /* MONITOR. */

 CALLX QUSCRTUI,QUSCRTUI_ARG,*; /* USE QUSCRTUI API TO CREATE THE */

 /* USER INDEX OBJECT. */

 RTNEXCP RTN_NOOBJECT@; /* RETURN FROM THE EXCEPTION HANDLER AND */

 /* RETRY THE OPERATION. */

PEND;

 Related reference

 “Example: Creating your own telephone directory”

This program creates a user index named ’TESTIDX’ in the library ’QGPL’.

Example: Creating your own telephone directory

This program creates a user index named ’TESTIDX’ in the library ’QGPL’.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

To create a telephone directory, you must use the following $USIDXCRT ILE C program to create a user

index, and you must use the $USIDXEX ILE C program to insert the entries into a telephone directory.

To set up the program to create a user index, specify the following:

/**/

/* PROGRAM: $USIDXCRT */

/* */

/* LANGUAGE: ILE C */

/* */

APIs 317

/* DESCRIPTION: THIS PROGRAM CREATES A USER INDEX NAMED "TESTIDX" */

/* IN THE LIBRARY "QGPL". */

/* */

/* APIs USED: QUSCRTUI */

/* */

/**/

#include <quscrtui.h>

main()

{

/**/

/* Set up the parameters to be used in the call to ’QUSCRTUI’ */

/**/

char idx_name[]= "TESTIDX QGPL ";

char ext_atr[]= "TESTER ";

char entry_lgth_att[] = "F";

int entry_lngth = 50;

char key_insert[] = "1";

int key_lngth = 15;

char imm_update[] = "0";

char optim[] = "0";

char auth[] = "*CHANGE ";

char desc[] = "Description ";

/**/

/* Call the ’QUSCRTUI’ program to create the user index. */

/**/

 QUSCRTUI(idx_name,ext_atr,entry_lgth_att,entry_lngth,key_insert,

 key_lngth,imm_update,optim,auth,desc);

}

To compile the program that creates the user index, specify the following:

CRTBNDC PGM(QGPL/$USIDXCRT) SRCFILE(QGPL/QCSRC)

To insert entries into the user index, use the following ILE C program:

/**/

/* PROGRAM: $USIDXEX */

/* */

/* LANGUAGE: ILE C */

/* */

/* DESCRIPTION: THIS PROGRAM USES A USER INDEX TO KEEP TRACK OF */

/* NAMES AND PHONE NUMBERS. THERE ARE TWO OPERATIONS THAT ARE */

/* DEMONSTRATED IN THIS EXAMPLE. THE FIRST IS THE INSERTION OF */

/* AN ENTRY INTO THE INDEX, AND SECONDLY THE FINDING OF A GIVEN */

/* INDEX ENTRY. */

/* THE INDEX IS KEYED ON THE LAST NAME, THEREFORE ENTER AS MUCH */

/* OF THE NAME AS YOU KNOW AND THE PROGRAM WILL LIST ALL ENTRIES */

/* MATCHING YOUR STRING (IN ALPHABETICAL ORDER). */

/* */

/* APIs USED: NONE */

/* */

/**/

#include <stdio.h>

#include <string.h>

#include <miindex.h>

#include <miptrnam.h>

#include <stdlib.h>

#include <ctype.h>

_SYSPTR index;

_IIX_Opt_List_T ins_option_list;

_IIX_Opt_List_T *fnd_option_list;

char Name_And_Num[50];

char In_Name[50];

char Out_Num[5000];

char response[1];

char name[35];

char number[15];

318 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

int Ent_Found,count,start,length_of_entry;

/**/

/* Procedure to copy ’cpylngth’ elements of ’string2’ into the */

/* new string, ’string1’; starting at position ’strpos’. */

/**/

void strncpyn(string1,string2,strpos,cpylngth)

 char string1[],string2[];

 int strpos,cpylngth;

{

 int x = 0;

 while (x < cpylngth)

 string1[x++]=string2[strpos++];

} /*strncpyn*/

/**/

/* Procedure to convert any string into uppercase, where applicable */

/**/

void convert_case(string1)

 char string1[];

{

 int x = 0;

 while (x < (strlen(string1))) {

 string1[x] = toupper(string1[x]);

 x++;

 } /*while*/

} /*convert_case*/

main()

{

fnd_option_list = malloc(sizeof(_IIX_Opt_List_T)

 +99*sizeof(_IIX_Entry_T));

/**/

/* Resolve to the index created in $USIDXCRT. */

/**/

 index = rslvsp(_Usridx,"TESTIDX","QGPL",_AUTH_ALL);

/**/

/* Set up the insert option list */

/**/

 ins_option_list.Rule = _INSERT_REPLACE;

 ins_option_list.Arg_Length = 50;

 ins_option_list.Occ_Count = 1;

 ins_option_list.Entry[0].Entry_Length = 50;

 ins_option_list.Entry[0].Entry_Offset = 0;

/**/

/* Set up the find option list */

/**/

 fnd_option_list->Rule = _FIND_EQUALS;

 fnd_option_list->Occ_Count = 100;

/**/

/* Loop until the choice ’Q’ is entered at the menu */

/**/

 while (1==1) {

 printf("\n\n***********************\n");

APIs 319

printf("* TELEPHONE INDEX *\n");

 printf("***********************\n");

 printf("* ’A’ Add name & num *\n");

 printf("* ’L’ List a number *\n");

 printf("* ’Q’ Quit index *\n");

 printf("***********************\n");

 gets(response);

 if ((strncmp(response,"A",1)==0)||(strncmp(response,"a",1)==0))

 { printf("\nEnter name to add. ex(Last, First)\n");

 gets(name);

 convert_case(name);

 printf("\nEnter number to add. ex(999-9999)\n");

 gets(number);

 strcpy(name,strcat(name," "));

 strcpy(Name_And_Num,strcat(name,number));

 printf("\nName and number to add is => %s\n",Name_And_Num);

 insinxen(index,Name_And_Num,Integrated Netfinity Server_option_list);

 } /* if ’a’*/

 if ((strncmp(response,"L",1)==0)||(strncmp(response,"l",1)==0))

 {

 printf("\nEnter name to find. ex(Last, First)\n");

 gets(In_Name);

 convert_case(In_Name);

 fnd_option_list->Arg_Length = strlen(In_Name);

 fndinxen(Out_Num,index,fnd_option_list,In_Name);

 length_of_entry = fnd_option_list->Entry[0].Entry_Length;

 Ent_Found = fnd_option_list->Ret_Count;

 if (Ent_Found == 0)

 printf("\nName not found in index => %s\n",In_Name);

 else {

 if (Ent_Found > 1) {

 printf("\n%d occurences found,\n",Ent_Found);

 count = 0;

 start = 0;

 while (count++ < Ent_Found) {

 printf("Name and number is => %s\n",Out_Num);

 start = start + length_of_entry;

 strncpyn(Out_Num,Out_Num,start,length_of_entry);

 } /* while */

 }else

 printf("\nName and number is => %s\n",Out_Num);

 } /*else*/

 } /*if ’l’*/

 if ((strncmp(response,"Q",1)==0)||(strncmp(response,"q",1)==0))

 { break; }

 } /*while*/

} /*$USIDXEX*/

To create the ILE C program to insert entries into the user index, specify the following:

CRTBNDC PGM(QGPL/$USIDXEX) SRCFILE(QGPL/QCSRC)

 Related reference

 “Example: Creating and manipulating a user index” on page 313

This example shows how to create and manipulate a user index with a call from an MI program. For

another example using the QUSCRTUI API, see Creating Your Own Telephone Directory.

Examples: Defining queries

This topic includes several examples that use the Query (QQQQRY) API.

The examples define the following query functions:

v A simple query to perform ordering

v A join query

v A join query with selection grouping and ordering

320 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

The following QQAPI header (or include) file and the QQFUNCS qu

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

ery code are used by all the examples. The example programs follow the QQAPI header and QQFUNCS

code.

QQAPI header

/**/

#ifndef _QQAPIH

#define _QQAPIH

/***/

/***/

/* */

/* FUNCTION: Defines constants and structures for use */

/* with the QQQQRY API examples. */

/* */

/* LANGUAGE: ILE C */

/* */

/* APIs USED: None */

/* */

/***/

/***/

/* The following define will enable some debug procedures and code */

/* #define QQDEBUG */

/* Query Open options */

#define QO_INPUT 1

#define QO_OUTPUT 2

#define QO_UPDATE 4

#define QO_DELETE 8

/* simple defines */

#define ON 1

#define OFF 0

/* user defined limits - change as needed */

#define MAX_ORDERBY 20

 /* max number of order by fields (8000 max)*/

#define MAX_JOINTESTS 20

 /* max number of join tests (999 max)*/

#define MAX_GROUPBY 20

 /* max number of order by fields (120 max)*/

/* storage sizes - increase if needed */

#define QDT_SIZE 6000

#define FORMAT_SIZE 5000

#define SELECT_SIZE 5000

#define AP_SIZE 65535 /* Initialize access plan size to 64K */

/* Required definitions - do NOT change, hard limits */

#define MAX_FILES 32 /* Maximum number of files in a query */

#define REQ_REL "01" /* Required value for release field */

#define REQ_VER "00" /* Required value for version field */

#define QFLD_SIZE 30 /* QQ API field size - see qqqqry.h */

/* define error code structure */

typedef struct

{

 int bytes_provided;

APIs 321

int bytes_available;

 char msgid[(7]);

 char reserved;

 char data[(512]);

} error_code;

/* define attribute record for QUSCUSAT API */

typedef _Packed struct

{

 int numAttrs;

 int key;

 int length;

 _Packed union {

 long spaceSize; /* key = 1 */

 char initialValue; /* key = 2 */

 char autoExtend; /* key = 3 */

 } data;

} QUSCUSAT_T;

/* define access plan structure */

typedef _Packed struct

{

 _SPCPTR storagePtr;

 long size;

 char reserved[(28]);

} ACCPLN_T;

/* Function prototypes: */

void dumpPtr(char *, char *, int);

char *strcnv400(char *, int);

int strcpy400(char *, char *, int);

void initUFCB(QDBUFCB_T *, int , Qdb_Qddfmt_t *);

void initQDT(QDBQH_T *, char , int , int ,

 char , int);

void initFile(QDBQFHDR_T *, char , char);

void initFormat(Qdb_Qddfmt_t *, char *);

void initSelection(QDBQS_T *);

void initOrderBy(QDBQKH_T *);

void initGroupBy(QDBQGH_T *);

void initJoin(QDBQJHDR_T *);

int addFile(QDBQFHDR_T *, QDBQN_T *,

 char *, char *, char *, char *);

int getRecordFmt(Qdb_Qddfmt_t *, long,

 char *, char *, char *);

long copyField(Qdb_Qddfmt_t *, char *, int ,

 Qdb_Qddfmt_t *);

void setFieldUsage(Qdb_Qddfmt_t *, char *, char);

int addSelectField(QDBQS_T *, char *, int);

int addSelectLiteral(QDBQS_T *, void *, int);

int addSelectOperator(QDBQS_T *, char *);

int addOrderBy(QDBQKH_T *, QDBQKF_T *,

 char *, int);

int addGroupBy(QDBQGH_T *, QDBQGF_T *,

 char *, int);

int addJoinTest(QDBQJHDR_T *, QDBQJFLD_T *, char *,

 int , char *, int , char *);

void addQDTsection(QDBQH_T *, char *, int , int *);

long createAccessPlanSpace(ACCPLN_T *, char *, long);

int saveQDT(QDBQH_T *, ACCPLN_T *);

int saveAccessPlan(ACCPLN_T *);

int loadQDT(QDBQH_T *, ACCPLN_T *);

long loadAccessPlan(ACCPLN_T *, char *);

#endif

/**/

322 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

QQFUNCS query code

/**/

#include <stdio.h>

#include <string.h>

#include <qdbrtvfd.h>

#include <qqqqry.h>

#include <quscrtus.h>

#include <qusptrus.h>

#include <quscusat.h>

#include <qusrusat.h>

#include "qqapi.h"

/***/

/***/

/* */

/* FUNCTION: This module contains all of the functions */

/* used by the examples to build the API information. */

/* */

/* LANGUAGE: ILE C */

/* */

/* APIs USED: QDBRTVFD, QUSCRTUS, QUSCUSAT, QUSPTRUS, QUSRUSAT */

/* */

/***/

/***/

#ifdef QQDEBUG

/* dumpPtr(comment string, pointer, length)

 - prints a comment then dumps data in hexadecimal starting at the

 given pointer location for the specified length */

void dumpPtr(char *text, char *ptr, int len)

{

 int i;

 printf("%s\n", text);

 for (i=0; i < len; i++, ptr++)

 {

 printf("%02X ", (int) *ptr);

 if ((i+1) % 16 == 0)

 printf("\n");

 }

 printf("\n");

}

#endif

/* strcnv400(source string, string length)

 - convert a string to a zero terminated string */

char *strcnv400(char *str, int len)

{

static char buffer[256];

 strncpy(buffer, str, len);

 buffer[len] = (char) 0;

 return(buffer);

}

/* strcpy400(destination string, source string, source length)

 - copy a zero terminated string to a string, pad with blanks

 if necessary */

int strcpy400(char *dest, char *src, int len)

{

 int i;

 if ((i = strlen(src)) > len)

 len = i;

 if (len)

APIs 323

memcpy(dest, src, strlen(src));

 if (i < len)

 memset((dest+i), ’ ’, len-i);

 return(len);

}

/* initUFCB(ufcb, open options, record format)

 - initialize the UFCB structure */

void initUFCB(QDBUFCB_T *ufcbPtr, int openFlags,

 Qdb_Qddfmt_t *formatPtr)

{

 _Packed struct qufcb *ufcb;

 /* verify parameters */

 if (ufcbPtr == NULL || openFlags == 0)

 {

 printf("Invalid UFCB settings\n");

 return;

 }

 /* Clear the entire UFCB */

 memset((void *) ufcbPtr, (char) 0, sizeof(QDBUFCB_T));

 /* Now start initializing values */

 ufcb = &ufcbPtr->qufcb;

 strcpy400((char *) ufcb->relver.release, REQ_REL,

 sizeof(ufcb->relver.release));

 strcpy400((char *) ufcb->relver.version, REQ_VER,

 sizeof(ufcb->relver.version));

 /* Blocked Records (BLKRCD) should be on if CPYFRMQRYF is used */

 ufcb->markcnt.flg2brcd = ON;

 ufcb->parameter.maximum = MAXFORMATS;

 /* Set the open option */

 if (openFlags&QO_INPUT)

 ufcb->open.flagui = ON;

 if (openFlags&QO_OUTPUT)

 ufcb->open.flaguo = ON;

 if (openFlags&QO_UPDATE)

 ufcb->open.flaguu = ON;

 if (openFlags&QO_DELETE)

 ufcb->open.flagud = ON;

 /* set up options to match _Ropen options */

 ufcb->parameter.keyfdbk = KEYFDBK;

 ufcb->parameter.keyonoff = ON; /* Key feedback ON */

 ufcb->parameter.filedep = FILEDEP;

 ufcb->parameter.fldonoff = ON; /* File dependent I/O ON */

 /* turn the rest of the parameters off */

 ufcb->parameter.seqonly = NOTSEQUPROC;

 ufcb->parameter.primrln1 = NOTRECORDLTH;

 ufcb->parameter.commitc = NOTCOMITCTL;

 /* if the format is supplied,

 define it in the UFCB and do level checking */

 if (formatPtr != NULL)

 {

 ufcb->parameter.lvlchk = LEVELCK;

 ufcb->parameter.lvlonoff = ON; /* Level check ON */

 ufcb->parameter.curnum = 1; /* only one format */

 /* set the format name and format level identifier */

 ufcb->parameter.recfmts = FORMATSEQ;

 memcpy(ufcb->parameter.formats[0].name, formatPtr->Qddfname,

 sizeof(ufcb->parameter.formats[0].name));

 memcpy(ufcb->parameter.formats[0].number, formatPtr->Qddfseq,

 sizeof(ufcb->parameter.formats[0].number));

 }

 else /* no format and level checking */

 {

 ufcb->parameter.lvlchk = NOTLEVELCK;

 ufcb->parameter.recfmts = NOTFORMATSEQ;

324 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

}

 ufcb->ufcbend = ENDLIST;

}

/* initQDT(qdt, options...)

 - initialize the QDT header */

void initQDT(QDBQH_T *qdtHdr, char alwCpyDta,

 int optAllAp, int statusMsgs,

 char optimize, int forRows)

{

 if (qdtHdr == NULL)

 {

 printf("Invalid QDT settings\n");

 return; /* invalid pointer */

 }

 /* Clear the entire QDT */

 memset((void *) qdtHdr, (char) 0, sizeof(QDBQH_T));

 /* set the initial QDT space used size */

 qdtHdr->qdbspcsize = sizeof(QDBQH_T);

 /* QDT options... */

 /* ordering not specified */

 qdtHdr->qdbqkeyo = -1;

 /* set optimize parameter (ALLIO, FIRSTIO, MINWAIT) */

 if (optimize == QDBQFINA || optimize == QDBQFINF ||

 optimize == QDBQFINM || optimize == QDBQFINC)

 qdtHdr->qdbqfin = optimize; /* OPTIMIZE() parameter */

 else

 qdtHdr->qdbqfin = QDBQFINA; /* default to OPTIMIZE(*ALLIO) */

 /* set allow copy data parameter (YES, NO, OPTIMIZE) */

 if (alwCpyDta == QDBQTEMN || alwCpyDta == QDBQTEMO ||

 alwCpyDta == QDBQTEMA)

 qdtHdr->qdbqtem = alwCpyDta; /* ALWCPYDTA() parameter */

 else

 qdtHdr->qdbqtem = QDBQTEMA; /* default to ALWCPYDTA(*YES) */

 /* status messages (YES, NO) */

 qdtHdr->qdbqattr.qdbqnst = statusMsgs ? ON : OFF;

 /* optimize all access path parameter (YES, NO) */

 qdtHdr->qdbqdt_7.qdbqopta = optAllAp ? ON : OFF;

 /* optimizer for n rows parameter */

 qdtHdr->qdbq_optmrows = forRows > 0 ? forRows : 0;

}

/* initFile(file section, join type, join order option)

 - initialize the file header section */

void initFile(QDBQFHDR_T *fileHdr, char joinType, char joinOrder)

{

 if (fileHdr == NULL)

 {

 printf("Invalid File Header settings\n");

 return; /* invalid pointer */

 }

 /* Clear the header */

 memset((void *) fileHdr, (char) 0, sizeof(QDBQFHDR_T));

 /* File Spec options... */

 /* inner, partial outer or exception join type */

 if (joinType == QDBQINNJ || joinType == QDBQOUTJ ||

 joinType == QDBQEXCJ)

 fileHdr->qdbqmfop = joinType;

 else

 fileHdr->qdbqmfop = QDBQINNJ;

 /* join order - any order or join as specified */

 fileHdr->qdbqmfor = joinOrder == QDBQMFON ? QDBQMFON : QDBQMFOA;

}

APIs 325

/* initFormat(format section, format name)

 - initialize the format header section */

void initFormat(Qdb_Qddfmt_t *formatHdr, char *name)

{

 if (formatHdr == NULL)

 {

 printf("Invalid Format Header settings\n");

 return; /* invalid pointer */

 }

 /* Clear the header */

 memset((void *) formatHdr, (char) 0, sizeof(Qdb_Qddfmt_t));

 /* Format Spec options... */

 strcpy400(formatHdr->Qddfname, name, sizeof(formatHdr->Qddfname));

 formatHdr->Qddfrcid = 65535;

 formatHdr->Qddfsrcd = 65535;

 formatHdr->Qddflgs.Qddfrsid = 1;

 memset(formatHdr->Qddfseq, ’ ’, sizeof(formatHdr->Qddfseq));

 memset(formatHdr->Qddftext, ’ ’, sizeof(formatHdr->Qddftext));

 /* Format size (so far) */

 formatHdr->Qddbyava = sizeof(Qdb_Qddfmt_t);

 formatHdr->Qddbyrtn = formatHdr->Qddbyava;

}

/* initSelection(selection section)

 - initialize the selection header section */

void initSelection(QDBQS_T *selectHdr)

{

 if (selectHdr == NULL)

 {

 printf("Invalid selection settings\n");

 return; /* invalid pointer */

 }

 /* Clear the header */

 memset((void *) selectHdr, (char) 0, sizeof(QDBQS_T));

 /* set initial selection spec size (minus dummy selection spec) */

 selectHdr->qdbqsl = sizeof(QDBQS_T) - sizeof(selectHdr->qdbqspec);

}

/* initOrderBy(orderby section)

 - initialize order by header section */

void initOrderBy(QDBQKH_T *orderByHdr)

{

 if (orderByHdr == NULL)

 {

 printf("Invalid Order By settings\n");

 return; /* invalid pointer */

 }

 /* Clear the header */

 memset((void *) orderByHdr, (char) 0, sizeof(QDBQKH_T));

}

/* initGroupBy(groupby section)

 - initialize group by header section */

void initGroupBy(QDBQGH_T *groupByHdr)

{

 if (groupByHdr == NULL)

 {

 printf("Invalid Group By settings\n");

 return; /* invalid pointer */

 }

 /* Clear the header */

 memset((void *) groupByHdr, (char) 0, sizeof(QDBQGH_T));

}

326 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* initJoin(join section)

 - initialize join header section */

void initJoin(QDBQJHDR_T *joinHdr)

{

 if (joinHdr == NULL)

 {

 printf("Invalid Join settings\n");

 return; /* invalid pointer */

 }

 /* Clear the header */

 memset((void *) joinHdr, (char) 0, sizeof(QDBQKH_T));

 /* set initial join spec size */

 joinHdr->qdbqjln = sizeof(QDBQJHDR_T);

}

/* addFile (file section, file spec section, file name, file library,

 file member, file format)

 - add file information to the file section */

int addFile(QDBQFHDR_T *fileHdr, QDBQN_T *fileSpec,

 char *filename, char *library, char *member, char *format)

{

 int i;

 QDBQFLMF_T *fileSpecPtr;

 if (fileHdr == NULL || fileSpec == NULL || filename == NULL)

 return(0); /* invalid data */

 if (fileHdr->qdbqfilnum == MAX_FILES)

 return(0); /* no more files allowed */

 /* increment the count of file specs */

 i = fileHdr->qdbqfilnum++;

 /* initialize the file spec area */

 memset((void *) &fileSpec[i], (char) 0, sizeof(QDBQN_T));

 fileSpecPtr = (QDBQFLMF_T *) &fileSpec[i].qdbqflmf;

 /* fill in the data... */

 strcpy400(fileSpecPtr->qdbqfile, filename,

 sizeof(fileSpecPtr->qdbqfile));

 if (library == NULL)

 strcpy400(fileSpecPtr->qdbqlib, QDBQLIBL,

 sizeof(fileSpecPtr->qdbqlib));

 else

 strcpy400(fileSpecPtr->qdbqlib, library,

 sizeof(fileSpecPtr->qdbqlib));

 if (member == NULL)

 strcpy400(fileSpecPtr->qdbqmbr, QDBQFRST,

 sizeof(fileSpecPtr->qdbqmbr));

 else

 strcpy400(fileSpecPtr->qdbqmbr, member,

 sizeof(fileSpecPtr->qdbqmbr));

 if (format == NULL)

 strcpy400(fileSpecPtr->qdbqfmt, QDBQONLY,

 sizeof(fileSpecPtr->qdbqfmt));

 else

 strcpy400(fileSpecPtr->qdbqfmt, format,

 sizeof(fileSpecPtr->qdbqfmt));

 /* return the amount of storage used in the file specs */

 return(fileHdr->qdbqfilnum*sizeof(QDBQN_T));

}

/* getRecordFmt(format, format storage size(max),

 file name, file library, file format)

 - get a record format (using QDBRTVFD) */

int getRecordFmt(Qdb_Qddfmt_t *formatPtr, long spaceSize,

 char *filename, char *libname, char *formatname)

{

APIs 327

error_code errcod;

 char override = ’1’; /* process overrides */

 char fileLibname[20];

 char outFilLib[20];

 char format[10];

 if (formatPtr == NULL || filename == NULL)

 return(0); /* missing data */

 errcod.bytes_provided = 512;

 errcod.msgid[0] = (char) 0;

 /* set up temporary variables... */

 strcpy400(fileLibname, filename, 10);

 if (libname == NULL)

 strcpy400(&fileLibname[10], QDBQLIBL, 10);

 else

 strcpy400(&fileLibname[10], libname, 10);

 if (formatname == NULL)

 strcpy400(format, filename, 10);

 else

 strcpy400(format, formatname, 10);

 /* call the RTVFD API to get the record format */

 QDBRTVFD((char *) formatPtr, spaceSize, outFilLib,

 "FILD0200",

 fileLibname, format, &override,

 "*LCL ", "*EXT ", &errcod);

 if (errcod.msgid[0])

 {

 printf("API QDBRTVFD failed\n");

 printf("msgid = %7s\n", strcnv400(errcod.msgid,

 sizeof(errcod.msgid)));

 }

 if (formatPtr->Qddbyrtn != formatPtr->Qddbyava)

 return(0); /* missing data */

 /* return total storage used in format */

 return(formatPtr->Qddbyrtn);

}

/* copyField(format, field name, file number, existing format)

 - copy a field from an existing format */

long copyField(Qdb_Qddfmt_t *formatPtr, char *fieldName, int fieldFile,

 Qdb_Qddfmt_t *oldFormatPtr)

{

 int i;

 long fieldSize;

 char padField[30];

 Qdb_Qddffld_t *fieldPtr, *oldFieldPtr;

 if (formatPtr == NULL || fieldName == NULL || oldFormatPtr == NULL)

 return(0); /* missing data */

 strcpy400(padField, fieldName, 30);

 /* set up field pointers */

 fieldPtr = (Qdb_Qddffld_t *) ((char *) formatPtr +

 formatPtr->Qddbyava);

 oldFieldPtr = (Qdb_Qddffld_t *) (oldFormatPtr + 1);

 /* loop through all the fields, looking for a match */

 for (i=0; i < oldFormatPtr->Qddffldnum; i++,

 oldFieldPtr = (Qdb_Qddffld_t *) ((char *) oldFieldPtr +

 oldFieldPtr->Qddfdefl))

 /* if a match was found... */

 if (memcmp(oldFieldPtr->Qddfflde, padField, 30) == 0)

 {

 /* copy the field over */

 fieldSize = oldFieldPtr->Qddfdefl;

 memcpy(fieldPtr, oldFieldPtr, fieldSize);

 /* set the file number it was defined in */

 fieldPtr->Qddfjref = fieldFile;

328 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* increment the format header information */

 formatPtr->Qddffldnum++;

 formatPtr->Qddfrlen += fieldPtr->Qddffldb;

 formatPtr->Qddbyava += fieldSize;

 formatPtr->Qddbyrtn = formatPtr->Qddbyava;

 break;

 }

 /* return total storage used in format */

 return(formatPtr->Qddbyrtn);

}

/* setFieldUsage(format, field name, usage)

 - set the field usage in a format */

void setFieldUsage(Qdb_Qddfmt_t *formatPtr, char *fieldName, char usage)

{

 int i;

 char padField[30];

 Qdb_Qddffld_t *fieldPtr;

 if (formatPtr == NULL)

 return; /* missing data */

 if (fieldName != NULL)

 strcpy400(padField, fieldName, 30);

 /* set up field pointers */

 fieldPtr = (Qdb_Qddffld_t *) (formatPtr + 1);

 /* loop through all the fields, looking for a match */

 for (i=0; i < formatPtr->Qddffldnum; i++,

 fieldPtr = (Qdb_Qddffld_t *) ((char *) fieldPtr +

 fieldPtr->Qddfdefl))

 /* if all fields to be set or a match was found... */

 if (fieldName == NULL ||

 memcmp(fieldPtr->Qddfflde, padField, 30) == 0)

 fieldPtr->Qddffiob = usage;

}

/* addSelectField(section section, field name, file number for field)

 - add a selection for a file field to the selection section */

int addSelectField(QDBQS_T *selectHdr, char *fieldName, int fieldFile)

{

 QDBQSIT_T *selectItemPtr;

 QDBQSOPF_T *selectFldPtr;

 int itemSize;

 if (selectHdr == NULL || fieldName == NULL)

 return(0); /* invalid data */

 /* set up all the section for adding a field */

 selectItemPtr = (QDBQSIT_T *) ((char *) selectHdr +

 selectHdr->qdbqsl);

 itemSize = sizeof(QDBQSIT_T) - sizeof(selectItemPtr->qdbqsitm);

 memset((void *) selectItemPtr, (char) 0, itemSize);

 selectFldPtr = (QDBQSOPF_T *) ((char *) selectItemPtr + itemSize);

 memset((void *) selectFldPtr, (char) 0, sizeof(QDBQSOPF_T));

 /* set up the selection item information for a field */

 selectItemPtr->qdbqslen = itemSize + sizeof(QDBQSOPF_T);

 /* length */

 selectItemPtr->qdbqsitt = QDBQOPF; /* type is field */

 /* now set up the field */

 strcpy400(selectFldPtr->qdbqsofn, fieldName,

 sizeof(selectFldPtr->qdbqsofn));

 selectFldPtr->qdbqsofj = fieldFile;

 /* update the header statistics */

 selectHdr->qdbqsnum++; /* increment number of select specs */

 selectHdr->qdbqsl += selectItemPtr->qdbqslen; /* total length */

 /* return the total storage now in the selection section */

 return(selectHdr->qdbqsl);

APIs 329

}

/* addSelectLiteral(selection section, literal, size of literal data)

 - add a selection for a literal to the selection section */

int addSelectLiteral(QDBQS_T *selectHdr, void *literal, int sizeLit)

{

 QDBQSIT_T *selectItemPtr;

 QDBQSOCH_T *selectLitPtr;

 void *selectDataPtr;

 int itemSize;

 if (selectHdr == NULL || literal == NULL || sizeLit < 1)

 return(0); /* invalid data */

 /* set up all the sections for adding a literal */

 selectItemPtr = (QDBQSIT_T *)

 ((char *) selectHdr + selectHdr->qdbqsl);

 itemSize = sizeof(QDBQSIT_T) - sizeof(selectItemPtr->qdbqsitm);

 memset((void *) selectItemPtr, (char) 0, itemSize);

 selectLitPtr = (QDBQSOCH_T *) ((char *) selectItemPtr + itemSize);

 memset((void *) selectLitPtr, (char) 0, sizeof(QDBQSOCH_T));

 selectDataPtr = (void *) (selectLitPtr + 1);

 /* set up the selection item information for a literal */

 selectItemPtr->qdbqslen = itemSize + sizeof(QDBQSOCH_T) + sizeLit;

 selectItemPtr->qdbqsitt = QDBQOPC; /* literal type */

 /* now set up the literal */

 selectLitPtr->qdbqsocl = sizeLit; /* literal size */

 selectLitPtr->qdbqsoft = ’\xFF’;

 /* use job format for date/time fields */

 memcpy(selectDataPtr, literal, sizeLit);

 /* save the literal value */

 /* update the header statistics */

 selectHdr->qdbqsnum++; /* increment number of select specs */

 selectHdr->qdbqsl += selectItemPtr->qdbqslen; /* total length */

 /* return the total storage now in the selection section */

 return(selectHdr->qdbqsl);

}

/* addSelectOperator(selection section, operator type)

 - add a selection for an operator to the selection section */

int addSelectOperator(QDBQS_T *selectHdr, char *operator)

{

 QDBQSIT_T *selectItemPtr;

 QDBQSOPR_T *selectOprPtr;

 QDBQSOP2_T *selectWldPtr;

 int itemSize;

 int oprSize;

 if (selectHdr == NULL || operator == NULL)

 return(0); /* invalid data */

 /* set up all the sections for adding an operator */

 selectItemPtr = (QDBQSIT_T *)

 ((char *) selectHdr + selectHdr->qdbqsl);

 itemSize = sizeof(QDBQSIT_T) - sizeof(selectItemPtr->qdbqsitm);

 memset((void *) selectItemPtr, (char) 0, itemSize);

 selectOprPtr = (QDBQSOPR_T *) ((char *) selectItemPtr + itemSize);

 oprSize = sizeof(QDBQSOPR_T) + sizeof(QDBQSOP2_T);

 memset((void *) selectOprPtr, (char) 0, oprSize);

 /* set up the selection item information for an operator */

 selectItemPtr->qdbqslen = itemSize + oprSize; /* length */

 selectItemPtr->qdbqsitt = QDBQOPTR; /* operator type */

 /* now set up the operator */

 memcpy(selectOprPtr->qdbqsop, operator,

 sizeof(selectOprPtr->qdbqsop));

 /* wildcard operator set up */

 if (memcmp(operator, QDBQWILD, 2) == 0)

330 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

{

 selectOprPtr->qdbqswc1 = ’_’;

 selectOprPtr->qdbqswc2 = ’*’;

 selectWldPtr = (QDBQSOP2_T *) (selectOprPtr + 1);

 memcpy(selectWldPtr->qdbqsdb1,"\42_", 2);

 memcpy(selectWldPtr->qdbqsdb2,"\42*", 2);

 }

 /* update the header statistics */

 selectHdr->qdbqsnum++; /* increment number of select specs */

 selectHdr->qdbqsl += selectItemPtr->qdbqslen; /* total length */

 /* return the total storage now in the selection section */

 return(selectHdr->qdbqsl);

}

/* addOrderBy(orderby section, orderby specs section, key field name,

 descend sort option

 - add an order by to the order by section */

int addOrderBy(QDBQKH_T *orderByHdr, QDBQKF_T *orderByFld,

 char *keyfield, int descend)

{

 int i;

 QDBQKF_T *orderByFldPtr;

 if (orderByHdr == NULL || orderByFld == NULL || keyfield == NULL)

 return(0);

 if (orderByHdr->qdbqknum == MAX_ORDERBY)

 return(0);

 /* increment the order by spec counter */

 i = orderByHdr->qdbqknum++;

 /* add the new orderby data */

 orderByFldPtr = &orderByFld[i];

 memset((void *) orderByFldPtr, (char) 0, sizeof(QDBQKF_T));

 strcpy400(orderByFldPtr->qdbqkfld, keyfield,

 sizeof(orderByFldPtr->qdbqkfld));

 orderByFldPtr->qdbqksq.qdbqksad = (descend) ? ON : OFF;

 /* return the space used by the order by specs */

 return(orderByHdr->qdbqknum*sizeof(QDBQKF_T));

}

/* addGroupBy(groupby section, groupby field spec section,

 groupby field name, file number of groupby field)

 - add a group by to the group by section */

int addGroupBy(QDBQGH_T *groupByHdr, QDBQGF_T *groupByFld,

 char *groupfield, int fromFile)

{

 int i;

 QDBQGF_T *groupByFldPtr;

 if (groupByHdr == NULL || groupByFld == NULL || groupfield == NULL)

 return(0);

 if (groupByHdr->qdbqgfnum == MAX_GROUPBY)

 return(0);

 /* increment the group by spec counter */

 i = groupByHdr->qdbqgfnum++;

 /* add the new groupby data */

 groupByFldPtr = (QDBQGF_T *) &groupByFld[i];

 memset((void *) groupByFldPtr, (char) 0, sizeof(QDBQGF_T));

 strcpy400(groupByFldPtr->qdbqgfld, groupfield,

 sizeof(groupByFldPtr->qdbqgfld));

 groupByFldPtr->qdbqgflj = fromFile;

 /* return the space used by the group by specs */

 return(groupByHdr->qdbqgfnum*sizeof(QDBQGF_T));

}

APIs 331

/* addJoinTest(join section, join test section, join from field name,

 join from file number, join to field name, join to file number,

 join operator)

 - add a join test to the join section */

int addJoinTest(QDBQJHDR_T *joinHdr,

 QDBQJFLD_T *joinSpec, char *fromFld,

 int fromFile, char *toFld, int toFile, char *joinOp)

{

 int i;

 QDBQJFLD_T *joinSpecPtr;

 if (joinHdr == NULL || joinSpec == NULL)

 return(0);

 if (joinHdr->qdbqjknum == MAX_JOINTESTS)

 return(0);

 /* increment the join test counter */

 i = joinHdr->qdbqjknum++;

 memset((void *) &joinSpec[i], (char) 0, sizeof(QDBQJFLD_T));

 /* add the new join data */

 joinSpecPtr = &joinSpec[i];

 strcpy400(joinSpecPtr->qdbqjfnm, fromFld,

 sizeof(joinSpecPtr->qdbqjfnm));

 joinSpecPtr->qdbqjfnum = fromFile; /* 1, 2, 3, etc */

 strcpy400(joinSpecPtr->qdbqjtnm, toFld,

 sizeof(joinSpecPtr->qdbqjtnm));

 joinSpecPtr->qdbqjtnum = toFile; /* 1, 2, 3, etc */

 /* Join operator - see #defines in QQ API include */

 strcpy400(joinSpecPtr->qdbqjop, joinOp,

 sizeof(joinSpecPtr->qdbqjop));

 /* set size of entire join spec */

 joinHdr->qdbqjln += sizeof(QDBQJFLD_T);

 /* return the space used by the join tests */

 return(joinHdr->qdbqjknum*sizeof(QDBQJFLD_T));

}

/* addQDTsection(qdt, new section, size of new section, qdt offset)

 - place a new section into the QDT */

void addQDTsection(QDBQH_T *qdtHdr, char *newSection,

 int newSize, int *offset)

{

 char *sectionPtr;

 /* position to the current end of the QDT */

 sectionPtr = (char *) qdtHdr + qdtHdr->qdbspcsize;

 /* append in the new section data */

 memcpy(sectionPtr, newSection, newSize);

 /* if an offset is to be stored, remember it now */

 if (offset != NULL)

 *offset = qdtHdr->qdbspcsize;

 /* update the QDT size */

 qdtHdr->qdbspcsize += newSize;

}

/* createAccessPlanSpace(access plan, user space name, size)

 - creates a *USRSPC object for storing the access plan */

long createAccessPlanSpace(ACCPLN_T *accessPlan, char *name,

 long spaceSize)

{

 QUSCUSAT_T chgAttr;

 _SPCPTR usrSpcPtr;

 char library[10];

 char value = (char) 0;

 char text[50];

 error_code errcode;

332 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

errcode.bytes_provided = 512;

 strcpy400(text,"Access Plan for QQ API example",50);

 /* Create the User Space */

 QUSCRTUS(name,

 "ACCESSPLAN",

 spaceSize,

 &value,

 "*ALL ",

 text,

 "*YES ",

 &errcode,

 "*USER ");

 if (errcode.msgid[0])

 {

 printf("Create User Space API failed!\n");

 printf("msgid = %7s\n", strcnv400(errcode.msgid,

 sizeof(errcode.msgid)));

 return(-1);

 }

 /* Change the User Space to allow Auto-Extend */

 strcpy400(library,&name[10],10);

 chgAttr.numAttrs = 1;

 chgAttr.key = 3; /* Auto extend */

 chgAttr.length = sizeof(char);

 chgAttr.data.autoExtend = ’1’;

 QUSCUSAT(library,

 name,

 &chgAttr,

 &errcode);

 if (errcode.msgid[0])

 {

 printf("Change User Space Attributes FAILED!\n");

 printf("msgid = %7s\n", strcnv400(errcode.msgid,

 sizeof(errcode.msgid)));

 return(-1);

 }

 /* Retrieve Space Pointer to the User Space */

 QUSPTRUS(name,

 &usrSpcPtr,

 &errcode);

 if (errcode.msgid[0])

 {

 printf("Retrieve Space Pointer to User Space FAILED!\n");

 printf("msgid = %7s\n", strcnv400(errcode.msgid,

 sizeof(errcode.msgid)));

 return(-1);

 }

 /* Now move to the access plan itself (on 16 byte boundary) */

 accessPlan->storagePtr = (_SPCPTR) ((char*) usrSpcPtr + 16);

 return(0);

}

/* saveAccessPlan(access plan)

 - update the size in the access plan (QQQQRY actually wrote the data) */

int saveAccessPlan(ACCPLN_T *accessPlan)

{

 _SPCPTR usrSpcPtr;

 /* Position to the start of the user space */

 usrSpcPtr = (_SPCPTR) ((char*) accessPlan->storagePtr - 16);

 /* Write the access plan size out at the start */

 memcpy(usrSpcPtr, (void *) &accessPlan->size,

APIs 333

sizeof(accessPlan->size));

#ifdef QQDEBUG

 printf("AP size = %ld\n", accessPlan->size);

#endif

 return(0);

}

/* saveQDT(qdt, access plan)

 - append the QDT to the end of the access plan */

int saveQDT(QDBQH_T *qdtPtr, ACCPLN_T *accessPlan)

{

 _SPCPTR usrSpcPtr;

 /* Position to the just after the access plan */

 usrSpcPtr = (_SPCPTR) ((char*) accessPlan->storagePtr +

 accessPlan->size);

 /* Write the QDT size out */

 memcpy(usrSpcPtr, &qdtPtr->qdbspcsize, sizeof(qdtPtr->qdbspcsize));

#ifdef QQDEBUG

 printf("qdt size = %ld\n", qdtPtr->qdbspcsize);

#endif

 /* Move up the user space pointer */

 usrSpcPtr = (_SPCPTR) ((char *) usrSpcPtr + 16);

 /* Write the QDT itself out */

 memcpy(usrSpcPtr, qdtPtr, qdtPtr->qdbspcsize);

 return(0);

}

/* loadQDT(qdt, access plan)

 - load the QDT from the end of the access plan */

int loadQDT(QDBQH_T *qdtPtr, ACCPLN_T *accessPlan)

{

 _SPCPTR usrSpcPtr;

 /* Position to the just after the access plan */

 usrSpcPtr = (_SPCPTR) ((char*) accessPlan->storagePtr +

 accessPlan->size);

 /* Write the QDT size out */

 memcpy((void *) &qdtPtr->qdbspcsize, usrSpcPtr,

 sizeof(qdtPtr->qdbspcsize));

#ifdef QQDEBUG

 printf("qdt size = %ld\n", qdtPtr->qdbspcsize);

#endif

 /* Move up the user space pointer */

 usrSpcPtr = (_SPCPTR) ((char *) usrSpcPtr + 16);

 /* Write the QDT itself out */

 memcpy((void *) qdtPtr, usrSpcPtr, qdtPtr->qdbspcsize);

 return(qdtPtr->qdbspcsize);

}

/* loadAccessPlan(access plan, userspace name)

 - loads an access plan from a *USRSPC object */

long loadAccessPlan(ACCPLN_T *accessPlan, char *name)

{

 Qus_SPCA_0100_t usrSpcAttr;

 _SPCPTR usrSpcPtr;

 error_code errcode;

 errcode.bytes_provided = 512;

 errcode.msgid[0] = (char) 0;

 /* Retrieve Space Pointer to the User Space */

 QUSPTRUS(name, &usrSpcPtr, &errcode);

 if (errcode.msgid[0])

334 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

{

 printf("Retrieve Space Pointer to User Space FAILED!\n");

 printf("msgid = %7s\n", strcnv400(errcode.msgid,

 sizeof(errcode.msgid)));

 return(0);

 }

 /* Retrieve Size of Access Plan */

 QUSRUSAT(&usrSpcAttr,

 sizeof(Qus_SPCA_0100_t),

 "SPCA0100",

 name,

 &errcode);

 if (errcode.msgid[0])

 {

 printf("Retrieve User Space Attributes FAILED!\n");

 printf("msgid = %7s\n", strcnv400(errcode.msgid,

 sizeof(errcode.msgid)));

 return(0);

 }

#ifdef QQDEBUG

 else

 {

 printf("Original User Space Attributes\n");

 printf("Bytes Returned ==> %d\n",usrSpcAttr.Bytes_Returned);

 printf("Bytes Available ==> %d\n",usrSpcAttr.Bytes_Available);

 printf("Space Size ==> %d\n",usrSpcAttr.Space_Size);

 printf("Auto Extend ==> %c\n",

 usrSpcAttr.Automatic_Extendability);

 }

#endif

 /* Pull the access plan size out first */

 memcpy((void *) &accessPlan->size, usrSpcPtr,

 sizeof(accessPlan->size));

#ifdef QQDEBUG

 printf("AP size = %ld\n", accessPlan->size);

#endif

 /* Now move to the access plan itself (on 16 byte boundary) */

 accessPlan->storagePtr = (_SPCPTR) ((char*) usrSpcPtr + 16);

 return(accessPlan->size);

}

/**/

Defining a simple query

This QQQQRY API example defines a simple query to perform ordering. The following is the equivalent

SQL:

SELECT * FROM OPENFILE1

ORDER BY LNAME

/**/

/* PROGRAM: QQAPI1 */

/* */

/* LANGUAGE: ILE C */

/* */

/* DESCRIPTION: THIS PROGRAM DEFINES A SIMPLE QUERY TO PERFORM */

/* ORDERING. */

/* */

/* APIs USED: QQQQRY */

/* */

/**/

APIs 335

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <recio.h>

#include <qdbrtvfd.h>

#include <qqqqry.h>

#include "qqapi.h"

/* get the record format from the file */

#pragma mapinc("recfmt","APIQQ/OPENFILE1(OPENFILE1)","input","p z",,)

#include "recfmt"

/* main - start of the program

 *

 * Flow:

 * - initialize variables

 * - override to set up sharing

 * - build various QDT sections

 * - build QDT with those sections

 * - QQQQRY to run the query

 * - open the data path

 * - read the data and display it

 * - close the data paths

 *

 */

main()

{

 /* record I/O variables */

 _RIOFB_T *feedback;

 _RFILE *file1;

 APIQQ_OPENFILE1_OPENFILE1_i_t recBuf;

 int recCount = 0;

 /* Query variables */

 QDBUFCB_T ufcbBuf;

 char qdtBuf[QDT_SIZE];

 char formatBuf[FORMAT_SIZE];

 QDBQH_T *qdtPtr;

 Qdb_Qddfmt_t *formatPtr;

 QDBQFHDR_T fileHdr;

 QDBQN_T fileSpec[MAX_FILES];

 QDBQKH_T orderByHdr;

 QDBQKF_T orderByFld[MAX_ORDERBY];

 int formatSize;

 int fileSpecSize;

 int orderBySize;

 error_code errcod;

 errcod.bytes_provided = 512;

 /* initialize the pointers */

 qdtPtr = (QDBQH_T *) qdtBuf;

 formatPtr = (Qdb_Qddfmt_t *) formatBuf;

 /* initialize the headers */

 initQDT(qdtPtr, QDBQTEMO, ON, ON, QDBQFINA, 0);

 initFile(&fileHdr, QDBQINNJ, QDBQMFOA);

 initOrderBy(&orderByHdr);

 /* set up override to allow sharing */

 system("OVRDBF FILE(OPENFILE1) SHARE(*YES)");

 /* Note: If level checking is not done

 (ie. no format on initUFCB) then

 the override above must specify LVLCHK(*NO) */

336 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* build the individual QDT sections */

 fileSpecSize = addFile(&fileHdr, fileSpec, "OPENFILE1",

 NULL, NULL, NULL);

 formatSize = getRecordFmt(formatPtr, FORMAT_SIZE, "OPENFILE1",

 NULL, NULL);

 orderBySize = addOrderBy(&orderByHdr, orderByFld, "LNAME", OFF);

 /* initialize the UFCB */

 initUFCB(&ufcbBuf, QO_INPUT, formatPtr);

 /* Now build the real QDT... */

 addQDTsection(qdtPtr, (char *) &fileHdr,

 sizeof(fileHdr), &qdtPtr->qdbqfilo);

 addQDTsection(qdtPtr, (char *) fileSpec, fileSpecSize, NULL);

 addQDTsection(qdtPtr, (char *) formatPtr,

 formatSize, &qdtPtr->qdbqfldo);

 addQDTsection(qdtPtr, (char *) &orderByHdr, sizeof(orderByHdr),

 &qdtPtr->qdbqkeyo);

 addQDTsection(qdtPtr, (char *) orderByFld, orderBySize, NULL);

 /* Finally, run the query! */

 QQQQRY("RUNQRY ", (char *) &ufcbBuf, qdtBuf, NULL, NULL,

 &errcod);

 if (errcod.msgid[0])

 {

 printf("API QQQQRY failed\n");

 printf("msgid = %7s\n", strcnv400(errcod.msgid,

 sizeof(errcod.msgid)));

 }

 /* Now access the data */

 if ((file1 = _Ropen("OPENFILE1", "rr riofb=N")) == NULL)

 {

 printf("Error opening file\n");

 exit(1);

 }

 /* Perform any record I/O here... */

 _Rformat(file1, "OPENFILE1 ");

 printf("First name Last name State\n");

 feedback = _Rreadn(file1, (void *) &recBuf, sizeof(recBuf), __DFT);

 while (feedback->num_bytes == sizeof(recBuf))

 {

 recCount++;

 printf("%s ", strcnv400(recBuf.FNAME, sizeof(recBuf.FNAME)));

 printf("%s ", strcnv400(recBuf.LNAME, sizeof(recBuf.LNAME)));

 printf("%s\n", strcnv400(recBuf.STATE, sizeof(recBuf.STATE)));

 feedback = _Rreadn(file1, (void *) &recBuf,

 sizeof(recBuf), __DFT);

 }

 printf("%d records selected\n", recCount);

 /* Close the file */

 _Rclose(file1);

 /* close out the QDT file handle */

 system("RCLRSC");

}

Defining a join query

This QQQQRY API example defines a join query. The following is the equivalent SQL:

SELECT * FROM OPENFILE1 A, OPENFILE2 B

WHERE STATE = ’AK’ AND

 A.ACCTNUM = B.CUSTNUM

APIs 337

/**/

/* PROGRAM: QQAPI7 */

/* */

/* LANGUAGE: ILE C */

/* */

/* DESCRIPTION: THIS PROGRAM DEFINES A JOIN QUERY. */

/* */

/* APIs USED: QQQQRY */

/* */

/**/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <recio.h>

#include <qdbrtvfd.h>

#include <qqqqry.h>

#include "qqapi.h"

/* get the record format from the file */

#pragma mapinc("recfmt","APIQQ/FORMAT1(FORMAT1)","input","p z",,)

#include "recfmt"

/* main - start of the program

 *

 * Flow:

 * - initialize variables

 * - override to set up sharing

 * - build various QDT sections

 * - build QDT with those sections

 * - QQQQRY to run the query

 * - open the data path

 * - read the data and display it

 * - close the data paths

 *

 */

main()

{

 /* record I/O variables */

 _RIOFB_T *feedback;

 _RFILE *file1;

 APIQQ_FORMAT1_FORMAT1_i_t recBuf;

 int recCount = 0;

 /* Query variables */

 QDBUFCB_T ufcbBuf;

 char qdtBuf[QDT_SIZE];

 char formatBuf[FORMAT_SIZE];

 char selectBuf[SELECT_SIZE];

 QDBQH_T *qdtPtr;

 Qdb_Qddfmt_t *formatPtr;

 QDBQS_T *selectPtr;

 QDBQFHDR_T fileHdr;

 QDBQN_T fileSpec[MAX_FILES];

 QDBQJHDR_T joinHdr;

 QDBQJFLD_T joinSpec[MAX_JOINTESTS];

 int formatSize;

 int fileSpecSize;

 int selectSize;

 int joinSize;

 error_code errcod;

 errcod.bytes_provided = 512;

338 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* initialize the pointers */

 qdtPtr = (QDBQH_T *) qdtBuf;

 formatPtr = (Qdb_Qddfmt_t *) formatBuf;

 selectPtr = (QDBQS_T *) selectBuf;

 /* initialize the headers */

 initQDT(qdtPtr, QDBQTEMO, ON, ON, QDBQFINA, 0);

 initFile(&fileHdr, QDBQINNJ, QDBQMFOA);

 initSelection(selectPtr);

 initJoin(&joinHdr);

 /* set up override to allow sharing */

 system("OVRDBF FILE(OPENFILE1) SHARE(*YES) LVLCHK(*NO)");

 /* Note: If level checking is not done

 (ie. no format on initUFCB) then

 the override above must specify LVLCHK(*NO) */

 /* build the individual QDT sections */

 addFile(&fileHdr, fileSpec, "OPENFILE1", NULL, NULL, NULL);

 fileSpecSize = addFile(&fileHdr, fileSpec, "OPENFILE2",

 NULL, NULL, NULL);

 formatSize = getRecordFmt(formatPtr, FORMAT_SIZE, "FORMAT1",

 NULL, NULL);

 joinSize = addJoinTest(&joinHdr, joinSpec, "ACCTNUM", 1,

 "CUSTNUM" , 2, "EQ");

 /* build selection test: STATE = ’AK’ */

 addSelectField(selectPtr, "STATE", 1);

 addSelectLiteral(selectPtr, "’AK’", 4);

 selectSize = addSelectOperator(selectPtr, QDBQEQ);

 /* initialize the UFCB */

 initUFCB(&ufcbBuf, QO_INPUT, NULL);

 /* Now build the real QDT... */

 addQDTsection(qdtPtr, (char *) &fileHdr,

 sizeof(fileHdr), &qdtPtr->qdbqfilo);

 addQDTsection(qdtPtr, (char *) fileSpec, fileSpecSize, NULL);

 addQDTsection(qdtPtr, (char *) formatPtr,

 formatSize, &qdtPtr->qdbqfldo);

 addQDTsection(qdtPtr, (char *) &joinHdr,

 sizeof(joinHdr),&qdtPtr->qdbqjoio);

 addQDTsection(qdtPtr, (char *) joinSpec, joinSize, NULL);

 addQDTsection(qdtPtr, (char *) selectPtr,

 selectSize, &qdtPtr->qdbqselo);

 /* Finally, run the query! */

 QQQQRY("RUNQRY ", (char *) &ufcbBuf, qdtBuf, NULL, NULL,

 &errcod);

 if (errcod.msgid[0])

 {

 printf("API QQQQRY failed\n");

 printf("msgid = %7s\n", strcnv400(errcod.msgid,

 sizeof(errcod.msgid)));

 }

 /* Now access the data */

 if ((file1 = _Ropen("OPENFILE1", "rr riofb=N")) == NULL)

 {

 printf("Error opening file\n");

 exit(1);

 }

 /* Perform any record I/O here... */

 _Rformat(file1, "FORMAT1");

 printf("Last name Item name\n");

 feedback = _Rreadn(file1, (void *) &recBuf, sizeof(recBuf), __DFT);

 while (feedback->num_bytes == sizeof(recBuf))

 {

APIs 339

recCount++;

 printf("%s ", strcnv400(recBuf.LNAME, sizeof(recBuf.LNAME)));

 printf("%s\n", strcnv400(recBuf.ITEMNAME,

 sizeof(recBuf.ITEMNAME)));

 feedback = _Rreadn(file1, (void *) &recBuf,

 sizeof(recBuf), __DFT);

 }

 printf("%d records selected\n", recCount);

 /* Close the file */

 _Rclose(file1);

 /* close out the QDT file handle */

 system("RCLRSC");

}

Defining a join query with selection, grouping, and ordering

This QQQQRY API example defines a join query with selection, grouping, and ordering. The following is

the equivalent SQL:

SELECT LNAME, FNAME, ITEMCODE, ITEMNAME, STATUS

FROM OPENFILE1, OPENFILE2

WHERE STATE = ’AK’ AND CUSTNUM = ACCTNUM

GROUP BY LNAME, FNAME, ITEMCODE, ITEMNAME, STATUS

ORDER BY ITEMNAME

/**/

/* PROGRAM: QQAPI11 */

/* */

/* LANGUAGE: ILE C */

/* */

/* DESCRIPTION: THIS PROGRAM DEFINES A JOIN QUERY WITH SELECTION */

/* GROUPING AND ORDERING. */

/* */

/* APIs USED: QQQQRY */

/* */

/**/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <qdbrtvfd.h>

#include <qqqqry.h>

#include "qqapi.h">

/* main - start of the program

 *

 * Flow:

 * - initialize variables

 * - override to set up sharing

 * - build various QDT sections

 * - build QDT with those sections

 * - QQQQRY to run the query

 * - open the data path

 * - read the data and display it

 * - close the data paths

 *

 */

main()

{

 /* file I/O variables */

#define REC_SIZE 52

 FILE *file1;

340 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

char recBuf[REC_SIZE];

 int recCount = 0, found;

 /* Query variables */

 QDBUFCB_T ufcbBuf;

 char qdtBuf[QDT_SIZE];

 char formatBuf[FORMAT_SIZE];

 char tempFormatBuf[FORMAT_SIZE];

 char selectBuf[SELECT_SIZE];

 QDBQH_T *qdtPtr;

 Qdb_Qddfmt_t *formatPtr;

 Qdb_Qddfmt_t *tempFormatPtr;

 QDBQS_T *selectPtr;

 QDBQFHDR_T fileHdr;

 QDBQN_T fileSpec[MAX_FILES];

 QDBQJHDR_T joinHdr;

 QDBQJFLD_T joinSpec[MAX_JOINTESTS];

 QDBQKH_T orderByHdr;

 QDBQGH_T groupByHdr;

 QDBQKF_T orderByFld[MAX_ORDERBY];

 QDBQGF_T groupByFld[MAX_GROUPBY];

 int formatSize;

 int fileSpecSize;

 int orderBySize;

 int groupBySize;

 int selectSize;

 int joinSize;

 error_code errcod;

 memset((void *) &errcod, (char) 0, sizeof(error_code));

 errcod.bytes_provided = 512;

 /* initialize the pointers */

 qdtPtr = (QDBQH_T *) qdtBuf;

 formatPtr = (Qdb_Qddfmt_t *) formatBuf;

 tempFormatPtr = (Qdb_Qddfmt_t *) tempFormatBuf;

 selectPtr = (QDBQS_T *) selectBuf;

 /* initialize the headers */

 initQDT(qdtPtr, QDBQTEMO, ON, ON, QDBQFINA, 0);

 initFile(&fileHdr, QDBQINNJ, QDBQMFOA);

 initFormat(formatPtr, "JOINFMT01");

 initOrderBy(&orderByHdr);

 initGroupBy(&groupByHdr);

 initSelection(selectPtr);

 initJoin(&joinHdr);

 /* set up override to allow sharing */

 system("OVRDBF FILE(OPENFILE1) SHARE(*YES) LVLCHK(*NO)");

 /* Note: If level checking is not done

 (ie. no format on initUFCB) then

 the override above must specify LVLCHK(*NO) */

 /* build the individual QDT sections */

 addFile(&fileHdr, fileSpec, "OPENFILE1", NULL, NULL, NULL);

 fileSpecSize = addFile(&fileHdr, fileSpec, "OPENFILE2",

 NULL, NULL, NULL);

 /* get the first format and copy some fields */

 getRecordFmt(tempFormatPtr, FORMAT_SIZE, "OPENFILE1",

 NULL, NULL);

 copyField(formatPtr, "LNAME", 1, tempFormatPtr);

 copyField(formatPtr, "FNAME", 1, tempFormatPtr);

 /* clear the old format data */

 memset(tempFormatPtr, 0, FORMAT_SIZE);

 /* get the second format and copy some more fields */

 getRecordFmt(tempFormatPtr, FORMAT_SIZE, "OPENFILE2", NULL, NULL);

 copyField(formatPtr, "ITEMCODE", 2, tempFormatPtr);

 copyField(formatPtr, "ITEMNAME", 2, tempFormatPtr);

APIs 341

formatSize = copyField(formatPtr, "STATUS", 2, tempFormatPtr);

 /* set all the fields to input only */

 setFieldUsage(formatPtr, NULL, 1);

 /* build selection test: STATE = ’AK’ */

 addSelectField(selectPtr, "STATE", 1);

 addSelectLiteral(selectPtr, "’AK’", 4);

 selectSize = addSelectOperator(selectPtr, QDBQEQ);

 joinSize = addJoinTest(&joinHdr, joinSpec, "ACCTNUM", 1,

 "CUSTNUM" , 2, "EQ");

 orderBySize = addOrderBy(&orderByHdr, orderByFld,

 "ITEMNAME", OFF);

 addGroupBy(&groupByHdr, groupByFld, "LNAME", 0);

 addGroupBy(&groupByHdr, groupByFld, "FNAME", 0);

 addGroupBy(&groupByHdr, groupByFld, "ITEMCODE", 0);

 addGroupBy(&groupByHdr, groupByFld, "ITEMNAME", 0);

 groupBySize = addGroupBy(&groupByHdr, groupByFld, "STATUS", 0);

 /* initialize the UFCB */

 initUFCB(&ufcbBuf, QO_INPUT, NULL);

 /* set up for sequential only processing since it is a group by */

 ufcbBuf.qufcb.parameter.seqonly = SEQUPROC;

 ufcbBuf.qufcb.parameter.seqonoff = ON;

 ufcbBuf.qufcb.parameter.numonoff = ON;

 ufcbBuf.qufcb.parameter.numrecs = 1;

 /* Now build the real QDT... */

 addQDTsection(qdtPtr, (char *) &fileHdr,

 sizeof(fileHdr), &qdtPtr->qdbqfilo);

 addQDTsection(qdtPtr, (char *) fileSpec, fileSpecSize, NULL);

 addQDTsection(qdtPtr, (char *) formatPtr,

 formatSize, &qdtPtr->qdbqfldo);

 addQDTsection(qdtPtr, (char *) &joinHdr,

 sizeof(joinHdr),&qdtPtr->qdbqjoio);

 addQDTsection(qdtPtr, (char *) joinSpec, joinSize, NULL);

 addQDTsection(qdtPtr, (char *) selectPtr,

 selectSize, &qdtPtr->qdbqselo);

 addQDTsection(qdtPtr, (char *) &orderByHdr, sizeof(orderByHdr),

 &qdtPtr->qdbqkeyo);

 addQDTsection(qdtPtr, (char *) orderByFld, orderBySize, NULL);

 addQDTsection(qdtPtr, (char *) &groupByHdr, sizeof(groupByHdr),

 &qdtPtr->qdbqgrpo);

 addQDTsection(qdtPtr, (char *) groupByFld, groupBySize, NULL);

 /* Finally, run the query! */

 QQQQRY("RUNQRY ", (char *) &ufcbBuf, qdtBuf,

 NULL, NULL, &errcod);

 if (errcod.msgid[0])

 {

 printf("API QQQQRY failed\n");

 printf("msgid = %7s\n", strcnv400(errcod.msgid,

 sizeof(errcod.msgid)));

 }

 /* Now access the data */

 if ((file1 = fopen("OPENFILE1", "rb")) == NULL)

 {

 printf("Error opening file\n");

 exit(1);

 }

 /* Perform any record I/O here... */

 printf("Last name First name Code \

Item St\n");

 found = fread((void *) &recBuf, REC_SIZE, 1, file1);

 while (found)

 {

 recCount++;

342 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

printf("%s ", strcnv400(recBuf, 15));

 printf("%s ", strcnv400(&recBuf[15], 10));

 printf("%s ", strcnv400(&recBuf[25], 5));

 printf("%s ", strcnv400(&recBuf[30], 20));

 printf("%s\n", strcnv400(&recBuf[50], 2));

 found = fread((void *) &recBuf, REC_SIZE, 1, file1);

 }

 printf("%d records selected\n", recCount);

 /* Close the file */

 fclose(file1);

 /* close out the QDT file handle */

 system("RCLRSC");

}

Example: Deleting old spooled files

The following application program runs using the Delete Old Spooled Files (DLTOLDSPLF) command.

This example has three major parts:

1. The DLTOLDSPLF command calls the delete old spooled files (DLTOLDSPLF) program in one of the

following languages:

v OPM RPG

v OPM COBOL

v ILE C
2. The DLTOLDSPLF program is supplied in OPM RPG, OPM COBOL, and ILE C. It does the following:

a. Creates a user space (QUSCRTUS API).

b. Generates a list of spooled files (QUSLSPL API).

c. Retrieves information from a user space using one of the following:

v QUSRTVUS API

v QUSPTRUS API
d. Retrieves more spooled file attribute information received from the user space (QUSRSPLA API).

e. Calls the CLDLT program to delete the spooled files.

f. Sends a message to the user (QMHSNDM API).

g. Deletes the user space (QUSDLTUS API).
3. The CL delete (CLDLT) program does the following:

a. Deletes the specified spooled files (DLTSPLF command).

b. Sends a message if the spooled file was deleted (SNDPGMMSG command).

Note:

v The programs and source code used as examples in the spooled file portion of this article exist

only in printed form. They are not stored electronically on the iSeries server.

v Read the “Code license and disclaimer information” on page 575 for important legal

information.

DLTOLDSPLF command source

The command source for the DLTOLDSPLF command follows:

 /**/

 /* */

 /* CMD: DLTOLDSPLF */

 /* */

 /* LANGUAGE: CL COMMAND SOURCE */

 /* */

APIs 343

/* DESCRIPTION: COMMAND SOURCE FOR THE DLTOLDSPLF COMMAND WHICH*/

 /* INVOKES THE DLTOLDSPLF PROGRAM. */

 /* */

 /**/

 CMD PROMPT(’DELETE OLD SPOOLED FILES’)

 /* PARAMETERS FOR LIST OF SPOOLED FILES (QUSLSPL) */

 PARM KWD(USRPRFNME) +

 TYPE(*SNAME) +

 LEN(10) +

 MIN(1) +

 SPCVAL(*ALL) +

 PROMPT(’User Profile Name:’)

 PARM KWD(OUTQUEUE) +

 TYPE(QUAL1) +

 MIN(1) +

 PROMPT(’Output Queue:’)

 /* INFORMATION NEEDED FOR PROGRAM */

 PARM KWD(DELETEDATE) +

 TYPE(*DATE) +

 PROMPT(’Last Deletion Date:’)

QUAL1: QUAL TYPE(*NAME) LEN(10) SPCVAL(*ALL)

 QUAL TYPE(*NAME) LEN(10) SPCVAL(*LIBL *CURLIB ’ ’) +

 PROMPT(’Library Name:’)

To create the CL command, specify the following:

CRTCMD CMD(QGPL/DLTOLDSPLF) PGM(QGPL/DLTOLDSPLF) +

 SRCFILE(QGPL/QCMDSRC) ALLOW(*IPGM *BPGM)

To delete old spooled files, you can use one of the application programs provided in the following

languages:

v RPG

v COBOL

v ILE C

RPG DLTOLDSPLF program

To delete old spooled files, use the following RPG program:

 H* ***

 H* ***

 H* *

 H* MODULE: DLTOLDSPLF *

 H* *

 H* LANGUAGE: RPG *

 H* *

 H* FUNCTION: THIS APPLICATION WILL DELETE OLD SPOOLED FILES *

 H* FROM THE SYSTEM, BASED ON THE INPUT PARAMETERS. *

 H* *

 H* APIs USED: *

 H* QUSCRTUS -- Create User Space *

 H* QUSLSPLF -- List Spooled Files *

 H* QUSRTVUS -- Retrieve User Space *

 H* QUSRSPLA -- Retrieve Spooled File Attributes *

 H* QMHSNDPM -- Send Program Message *

 H* QUSDLTUS -- Delete User Space *

 H* *

 H* ***

 H* ***

 E/COPY QRPGSRC,EUSRSPLA

 I ’NUMBER OF SPOOLED - C MSGTXT

 I ’FILES DELETED: ’

 IMSGDTA DS

 I 1 35 MSGDT1

 I 36 400DLTCNT

344 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

ISTRUCT DS

 I B 1 40USSIZE

 I B 5 80GENLEN

 I B 9 120RTVLEN

 I B 13 160STRPOS

 I B 17 200RCVLEN

 I B 21 240SPLF#

 I B 25 280MSGDLN

 I B 29 320MSGQ#

 I 33 38 FIL#

 I 39 42 MSGKEY

 I I ’DLTOLDSPLFQTEMP ’ 43 62 USRSPC

 I I ’*REQUESTER ’ 63 82 MSGQ

 ITGTDAT DS

 I 1 1 TGTCEN

 I 2 3 TGTYR

 I 4 5 TGTMTH

 I 6 7 TGTDAY

 I/COPY QRPGSRC,QUSGEN

 I/COPY QRPGSRC,QUSLSPL

 I/COPY QRPGSRC,QUSRSPLA

 I***

 I* The following is copied from QSYSINC/QRPGSRC member QUSEC

 I* so that the variable length field QUSBNG can be defined

 I* as 100 bytes for exception data. The defined field is

 I* named EXCDTA.

 I***

 IQUSBN DS

 I* Qus EC

 I B 1 40QUSBNB

 I* Bytes Provided

 I B 5 80QUSBNC

 I* Bytes Available

 I 9 15 QUSBND

 I* Exception Id

 I 16 16 QUSBNF

 I* Reserved

 I* 17 17 QUSBNG

 I* Varying length

 I 17 116 EXCDTA

 IDATSTR DS

 I 1 1 DATCEN

 I 2 3 DATYR

 I 4 5 DATMTH

 I 6 7 DATDAY

 C* ***

 C* ***

 C* *

 C* EXECUTABLE CODE STARTS HERE *

 C* *

 C* ***

 C* ***

 C* *

 C *ENTRY PLIST

 C PARM USRNAM 10

 C PARM OUTQ 20

 C PARM DLTDAT 7

 C MOVE DLTDAT TGTDAT

 C Z-ADD0 DLTCNT

 C MOVE *BLANKS QUSBN

 C Z-ADD0 QUSBNB

 C* *

 C* CREATE A USER SPACE TO STORE THE LIST OF SPOOLED FILES. *

 C* *

 C CALL ’QUSCRTUS’

 C PARM USRSPC

 C PARM *BLANKS USEXAT 10

APIs 345

C PARM 1024 USSIZE

 C PARM ’ ’ USINIT 1

 C PARM ’*CHANGE ’USAUTH 10

 C PARM *BLANKS USTEXT 50

 C PARM ’*YES ’USREPL 10

 C PARM QUSBN

 C* *

 C* FILL THE USER SPACE JUST CREATED WITH SPOOLED FILES AS *

 C* DEFINED IN THE CL COMMAND. *

 C* *

 C CALL ’QUSLSPL’

 C PARM USRSPC

 C PARM ’SPLF0100’FMTNM1 8

 C PARM USRNAM

 C PARM OUTQ

 C PARM ’*ALL ’FRMTYP 10

 C PARM ’*ALL ’USRDTA 10

 C PARM QUSBN

 C* *

 C* THE USER SPACE IS NOW FILLED WITH THE LIST OF SPOOLED FILES. *

 C* NOW USE THE QUSRTVUS API TO FIND THE NUMBER OF ENTRIES AND *

 C* THE OFFSET AND SIZE OF EACH ENTRY IN THE USER SPACE. *

 C* *

 C Z-ADD140 GENLEN

 C Z-ADD1 STRPOS

 C* *

 C CALL ’QUSRTVUS’

 C PARM USRSPC

 C PARM STRPOS

 C PARM GENLEN

 C PARM QUSBP

 C PARM QUSBN

 C* *

 C* CHECK THE GENERIC HEADER DATA STRUCTURE FOR NUMBER OF LIST *

 C* ENTRIES, OFFSET TO LIST ENTRIES, AND SIZE OF EACH LIST ENTRY. *

 C* *

 C Z-ADDQUSBPQ STRPOS

 C ADD 1 STRPOS

 C Z-ADDQUSBPT RTVLEN

 C Z-ADD209 RCVLEN

 C Z-ADD1 COUNT 150

 C* *

 C* ***

 C* ***

 C* *

 C* BEGINNING OF LOOP (DO WHILE COUNT <= QUSBPS) *

 C* *

 C* ***

 C* *

 C COUNT DOWLEQUSBPS

 C* *

 C* RETRIEVE THE INTERNAL JOB IDENTIFIER AND INTERNAL SPOOLED FILE*

 C* IDENTIFIER FROM THE ENTRY IN THE USER SPACE. THIS INFORMATION*

 C* WILL BE USED TO RETRIEVE THE ATTRIBUTES OF THE SPOOLED FILE. *

 C* THIS WILL BE DONE FOR EACH ENTRY IN THE USER SPACE. *

 C* *

 C CALL ’QUSRTVUS’

 C PARM USRSPC

 C PARM STRPOS

 C PARM RTVLEN

 C PARM QUSFT

 C PARM QUSBN

 C* *

 C* NOW RETRIEVE THE SPOOLED FILE ATTRIBUTES USING THE QUSRSPLA *

 C* API. *

 C* *

 C MOVE *BLANKS JOBINF

346 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C MOVEL’*INT’ JOBINF 26

 C MOVE QUSFTH QUSFXD

 C MOVE QUSFTJ QUSFXF

 C MOVEL’*INT’ SPLFNM 10

 C MOVE *BLANKS SPLF#

 C* *

 C CALL ’QUSRSPLA’

 C PARM QUSFX

 C PARM RCVLEN

 C PARM ’SPLA0100’FMTNM2 8

 C PARM JOBINF

 C PARM QUSFXD

 C PARM QUSFXF

 C PARM SPLFNM

 C PARM SPLF#

 C PARM QUSBN

 C* *

 C* CHECK QUSFX DATA STRUCTURE FOR DATE FILE OPENED. *

 C* DELETE SPOOLED FILES THAT ARE OLDER THAN THE TARGET DATE *

 C* SPECIFIED ON THE COMMAND. A MESSAGE IS SENT FOR EACH SPOOLED *

 C* FILE DELETED. *

 C* *

 C* *

 C MOVE QUSFX7 DATSTR

 C DATCEN IFLT TGTCEN

 C EXSR CLDLT

 C ELSE

 C DATCEN IFEQ TGTCEN

 C DATYR IFLT TGTYR

 C EXSR CLDLT

 C ELSE

 C DATYR IFEQ TGTYR

 C DATMTH IFLT TGTMTH

 C EXSR CLDLT

 C ELSE NOT LT MTH

 C DATMTH IFEQ TGTMTH

 C DATDAY IFLE TGTDAY

 C EXSR CLDLT

 C END FOR LE DAY

 C END FOR EQ MTH

 C END FOR ELSE MTH

 C END FOR EQ YR

 C END FOR ELSE YR

 C END FOR EQ CEN

 C END FOR ELSE CEN

 C* *

 C* GO BACK AND PROCESS THE REST OF THE ENTRIES IN THE USER *

 C* SPACE. *

 C QUSBPT ADD STRPOS STRPOS

 C 1 ADD COUNT COUNT

 C END

 C* *** *

 C* *** *

 C* *

 C* END OF LOOP *

 C* *

 C* *** *

 C* *** *

 C* *

 C* AFTER ALL SPOOLED FILES HAVE BEEN DELETED THAT MET THE *

 C* REQUIREMENTS, SEND A FINAL MESSAGE TO THE USER. *

 C* DELETE THE USER SPACE OBJECT THAT WAS CREATED. *

 C* *

APIs 347

C MOVELMSGTXT MSGDT1

 C CALL ’QMHSNDM’

 C PARM *BLANKS MSGID 7

 C PARM *BLANKS MSGFIL 20

 C PARM MSGDTA

 C PARM 40 MSGDLN

 C PARM ’*INFO ’MSGTYP 10

 C PARM MSGQ

 C PARM 1 MSGQ#

 C PARM *BLANKS RPYMQ 10

 C PARM MSGKEY

 C PARM QUSBN

 C* *

 C* DELETE THE USER SPACE OBJECT THAT WAS CREATED. *

 C* *

 C CALL ’QUSDLTUS’

 C PARM USRSPC

 C PARM QUSBN

 C* *

 C* *

 C* *** *

 C* *** *

 C* *

 C* END OF PROGRAM *

 C* *

 C* *** *

 C RETRN

 C*

 C* *** *

 C* *

 C* CLDLT SUBROUTINE *

 C* *

 C* THIS SUBROUTINE CALLS A CL PROGRAM THAT WILL DELETE A SPOOLED *

 C* FILE AND SEND A MESSAGE THAT THE SPOOLED FILE WAS DELETED. *

 C* *

 C* *** *

 C* *

 C CLDLT BEGSR

 C* *

 C* KEEP A COUNTER OF HOW MANY SPOOLED FILES ARE DELETED. *

 C* *

 C ADD 1 DLTCNT

 C MOVE QUSFXL FIL#

 C CALL ’CLDLT’

 C PARM QUSFXK

 C PARM QUSFXJ

 C PARM QUSFXH

 C PARM QUSFXG

 C PARM FIL#

 C PARM QUSFXM

 C PARM QUSFXN

 C ENDSR

To create the RPG program, specify the following:

CRTRPGPGM PGM(QGPL/DLTOLDSPLF) SRCFILE(QGPL/QRPGSRC)

COBOL DLTOLDSPLF program

To delete spooled files, you can use this COBOL DLTOLDSPLF program:

 * *

 * PROGRAM: DLTOLDSPLF *

 * *

 * LANGUAGE: COBOL *

 * *

348 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

* DESCRIPTION: DELETE OLD SPOOLED FILES *

 * *

 * APIs USED: QUSCRTUS, QUSLSPL, QUSRTVUS, QUSRSPLA, QUSDLTUS,*

 * AND QMHSNDM. *

 IDENTIFICATION DIVISION.

 PROGRAM-ID. DLTOLDSPLF.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 DATA DIVISION.

 FILE SECTION.

 WORKING-STORAGE SECTION.

 COPY QUSGEN OF QSYSINC-QLBLSRC.

 COPY QUSLSPL OF QSYSINC-QLBLSRC.

 COPY QUSRSPLA OF QSYSINC-QLBLSRC.

 * VALUES USED FOR ERROR CODE *

 * The following is copied from QSYSINC/QLBLSRC member QUSEC

 * so that the variable length field EXCEPTION-DATA can be defined

 * as 100 bytes for exception data.

 01 QUS-EC.

 05 BYTES-PROVIDED PIC S9(00009) BINARY.

 05 BYTES-AVAILABLE PIC S9(00009) BINARY.

 05 EXCEPTION-ID PIC X(00007).

 05 RESERVED PIC X(00001).

 * 05 EXCEPTION-DATA PIC X(00001).

 *

 * Varying length

 05 EXCEPTION-DATA PIC X(100).

 * VALUES USED FOR THE QUSCRTUS PROGRAM *

 01 CRTUS-INFO.

 05 CRT-SPCNAME PIC X(20)

 VALUE "DLTOLDSPLFQTEMP ".

 05 CRT-EXTATTR PIC X(10) VALUE SPACE.

 05 CRT-SPCSIZE PIC S9(9) BINARY VALUE 1024.

 05 CRT-INITSPACE PIC X VALUE " ".

 05 CRT-AUTHORITY PIC X(10) VALUE "*CHANGE ".

 05 CRT-DESCRIPTION PIC X(50) VALUE SPACE.

 05 CRT-USRRPL PIC X(10) VALUE "*YES ".

 * VALUES USED FOR THE QUSRTVUS PROGRAM *

 01 RTV-START-POS PIC S9(9) BINARY VALUE 1.

 01 RTV-LENGTH PIC S9(9) BINARY VALUE 140.

 01 RTVSPLA-JOB-ID PIC X(26) VALUE "*INT".

 * VALUES USED FOR THE QUSLSPL AND QUSRSPLA PROGRAM *

 01 RSPLA-DATE.

 05 R-CENTURY PIC X.

 05 R-YEAR PIC X(2).

 05 R-MONTH PIC X(2).

 05 R-DAY PIC X(2).

 01 LSPLA-FORMAT PIC X(8) VALUE "SPLF0100".

 01 LSPLA-USERDATA PIC X(10) VALUE "*ALL ".

APIs 349

01 LSPLA-FORMTYPE PIC X(10) VALUE "*ALL ".

 01 RSPLA-JOB-NAME PIC X(26) VALUE "*INT".

 01 RSPLA-NAME PIC X(10) VALUE "*INT".

 01 RSPLA-NUMBER PIC S9(9) BINARY VALUE -1.

 01 RSPLA-FORMAT PIC X(10) VALUE "SPLA0100 ".

 01 SPLA-VAR-LENGTH PIC S9(9) BINARY VALUE 800.

 01 DLT-COUNT PIC 9(15) VALUE 0.

 01 DLT-SPL-NUMBER PIC 9(6).

 * VALUES USED FOR THE QMHSNDM PROGRAM *

 01 MSG-ID PIC X(7) VALUE SPACE.

 01 MSG-FL-NAME PIC X(20) VALUE SPACE.

 01 MSG-DATA.

 05 DATA-MD PIC X(34)

 VALUE "NUMBER OF SPOOLED FILES DELETED : ".

 05 DLT-NUM-MD PIC X(20) VALUE SPACE.

 01 MSG-DATA-LEN PIC S9(9) BINARY VALUE 54.

 01 MSG-TYPE PIC X(10) VALUE "*INFO ".

 01 MSG-QUEUE PIC X(20)

 VALUE "*REQUESTER ".

 01 MSG-Q-NUM PIC S9(9) BINARY VALUE 1.

 01 RPY-MSG PIC X(10) VALUE SPACE.

 01 MSG-KEY PIC X(4) VALUE SPACE.

 * PARAMETERS THAT ARE PASSED TO THIS PROGRAM FROM THE COMMAND *

 LINKAGE SECTION.

 01 PARM-USERNAME PIC X(10).

 01 PARM-OUTQ PIC X(20).

 01 PARM-DATE.

 05 P-CENTURY PIC X.

 05 P-YEAR PIC X(2).

 05 P-MONTH PIC X(2).

 05 P-DAY PIC X(2).

 * BEGINNING OF EXECUTABLE CODE. *

 PROCEDURE DIVISION USING PARM-USERNAME,

 PARM-OUTQ,

 PARM-DATE.

 MAIN-PROGRAM.

 * **

 * * INITIALIZE ERROR CODE STRUCTURE. *

 * **

 MOVE 116 TO BYTES-PROVIDED.

 MOVE 0 TO BYTES-AVAILABLE.

 MOVE SPACES TO EXCEPTION-ID.

 MOVE SPACES TO RESERVED OF QUS-EC.

 MOVE SPACES TO EXCEPTION-DATA.

 * **

 * * CREATE THE USER SPACE USING INPUT PARMS FOR THE CALL *

 * **

 CALL "QUSCRTUS" USING CRT-SPCNAME,

 CRT-EXTATTR,

 CRT-SPCSIZE,

 CRT-INITSPACE,

 CRT-AUTHORITY,

 CRT-DESCRIPTION,

350 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

CRT-USRRPL,

 QUS-EC.

 * **

 * * LIST THE SPOOLED FILES TO THE USER SPACE OBJECT. *

 * **

 CALL "QUSLSPL" USING CRT-SPCNAME,

 LSPLA-FORMAT,

 PARM-USERNAME,

 PARM-OUTQ,

 LSPLA-FORMTYPE,

 LSPLA-USERDATA,

 QUS-EC.

 * **

 * * RETRIEVE ENTRY INFORMATION FROM THE USER SPACE. *

 * **

 CALL "QUSRTVUS" USING CRT-SPCNAME,

 RTV-START-POS,

 RTV-LENGTH,

 QUS-GENERIC-HEADER-0100,

 QUS-EC.

 * **

 * * IF ANY SPOOLED FILES WERE FOUND MATCHING THE SEARCH *

 * * CRITERIA, RETRIEVE DETAILED INFORMATION AND DECIDE *

 * * WHETHER TO DELETE THE FILE OR NOT. *

 * **

 IF NUMBER-LIST-ENTRIES OF QUS-GENERIC-HEADER-0100

 GREATER THAN ZERO THEN

 ADD 1 TO OFFSET-LIST-DATA OF QUS-GENERIC-HEADER-0100

 GIVING RTV-START-POS.

 PERFORM CHECK-AND-DELETE THROUGH

 CHECK-AND-DELETE-END NUMBER-LIST-ENTRIES

 OF QUS-GENERIC-HEADER-0100 TIMES.

 * **

 * * CALL THE QUSDLTUS API TO DELETE THE USER SPACE *

 * * WE CREATED, AND TO SEND A MESSAGE TELLING HOW MANY *

 * * SPOOLED FILES WERE DELETED. *

 * **

 CALL "QUSDLTUS" USING CRT-SPCNAME,

 QUS-EC.

 MOVE DLT-COUNT TO DLT-NUM-MD.

 CALL "QMHSNDM" USING MSG-ID,

 MSG-FL-NAME,

 MSG-DATA,

 MSG-DATA-LEN,

 MSG-TYPE,

 MSG-QUEUE,

 MSG-Q-NUM,

 RPY-MSG,

 MSG-KEY,

 QUS-EC.

 STOP RUN.

 * **

 * * CHECK THE DATE OF THE SPOOLED FILE. IF IT IS OLDER *

 * * OR EQUAL TO THE DATE PASSED IN, CALL THE PROCEDURE *

 * * TO DELETE THE SPOOLED FILE. *

 * **

APIs 351

CHECK-AND-DELETE.

 CALL "QUSRTVUS" USING CRT-SPCNAME,

 RTV-START-POS,

 SIZE-EACH-ENTRY OF

 QUS-GENERIC-HEADER-0100,

 QUS-SPLF0100,

 QUS-EC.

 * **

 * * ADVANCE TO NEXT SPOOLED FILE FOR PROCESSING THE CHECK *

 * * AND DELETE. *

 * **

 ADD SIZE-EACH-ENTRY OF QUS-GENERIC-HEADER-0100 TO

 RTV-START-POS GIVING RTV-START-POS.

 * **

 * * RETRIEVE THE ATTRIBUTES FOR THE SPOOLED FILE TO GET *

 * * THE CREATE DATE FOR THE SPOOLED FILE. *

 * **

 CALL "QUSRSPLA" USING QUS-SPLA0100,

 SPLA-VAR-LENGTH,

 RSPLA-FORMAT,

 RSPLA-JOB-NAME,

 INT-JOB-ID OF QUS-SPLF0100,

 INT-SPLF-ID OF QUS-SPLF0100,

 RSPLA-NAME,

 RSPLA-NUMBER,

 QUS-EC.

 MOVE DATE-FILE-OPEN OF QUS-SPLA0100 TO RSPLA-DATE.

 * **

 * * COMPARE THE CREATE DATE WITH THE DATE THAT WAS PASSED *

 * * IN AS PARAMETER. *

 * **

 IF R-CENTURY IS LESS THAN P-CENTURY THEN

 PERFORM DLT-SPLF THROUGH DLT-SPLF-END

 ELSE

 IF R-CENTURY IS EQUAL TO P-CENTURY THEN

 IF R-YEAR IS LESS THAN P-YEAR THEN

 PERFORM DLT-SPLF THROUGH DLT-SPLF-END

 ELSE

 IF R-YEAR IS EQUAL TO P-YEAR THEN

 IF R-MONTH IS LESS THAN P-MONTH THEN

 PERFORM DLT-SPLF THROUGH DLT-SPLF-END

 ELSE

 IF R-MONTH IS EQUAL TO P-MONTH THEN

 IF R-DAY IS LESS THAN OR EQUAL TO P-DAY THEN

 PERFORM DLT-SPLF THROUGH DLT-SPLF-END.

 CHECK-AND-DELETE-END.

 * **

 * * THIS IS THE PROCEDURE TO DELETE THE SPOOLED FILE. *

 * * ALL OF THE SPOOLED FILES WITH CREATE DATE OLDER OR *

 * * EQUAL TO THE DATE PASSED IN AS PARAMETER WILL BE *

 * * DELETED. *

 * **

 DLT-SPLF.

 ADD 1 TO DLT-COUNT.

 MOVE SPLF-NUMBER OF QUS-SPLA0100 TO DLT-SPL-NUMBER.

352 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

CALL "CLDLT" USING SPLF-NAME OF QUS-SPLA0100,

 JOB-NUMBER OF QUS-SPLA0100,

 USR-NAME OF QUS-SPLA0100,

 JOB-NAME OF QUS-SPLA0100,

 DLT-SPL-NUMBER,

 FORM-TYPE OF QUS-SPLA0100,

 USR-DATA OF QUS-SPLA0100.

 DLT-SPLF-END.

To create the COBOL program, specify the following:

CRTCBLPGM PGM(QGPL/DLTOLDSPLF) SRCFILE(QGPL/QCBLSRC)

ILE C DLTOLDSPLF program

To delete spooled files, you can use this ILE C DLTOLDSPLF program:

/***/

/* PROGRAM: DLTOLDSPLF */

/* */

/* LANGUAGE: ILE C */

/* */

/* DESCRIPTION: THIS IS AN EXAMPLE PROGRAM FOR THE USE OF */

/* USER SPACES WRITTEN IN ILE C. */

/* THE FLOW OF THIS PROGRAM IS AS FOLLOWS: */

/* (1) CREATE A USER SPACE USING QUSCRTUS */

/* (2) GET LIST OF SPOOLED FILES IN THE USER SPACE */

/* USING QUSLSPL */

/* (3) KEEP POINTER TO ENTRY LIST IN THE USER SPACE */

/* (4) ENTER LOOP */

/* RETRIEVE LIST ENTRY */

/* RETRIEVE MORE INFORMATION USING QUSRSPLA */

/* IF SPOOLED FILE IS TOO OLD */

/* DELETE SPOOLED FILE */

/* INCREMENT DELETE COUNTER */

/* END LOOP */

/* (5) DELETE USER SPACE */

/* */

/* APIs USED: QUSCRTUS, QUSLSPL, QUSRSPLA, QUSPTRUS, QUSDLTUS, */

/* QMHSNDPM, AND QMHSNDM. */

/* */

/***/

#include <string.h> /*strcpy, strncpy, strcmp */

#include <stdio.h>

#include <qusec.h> /*Error code structures */

#include <qusgen.h> /*General user space structures */

#include <quscrtus.h> /*Linkage info, structures for QUSCRTUS */

#include <quslspl.h> /*Linkage info, structures for QUSLSPL */

#include <qusptrus.h> /*Linkage info, structures for QUSPTRUS */

#include <qusrspla.h> /*Linkage info, structures for QUSRSPLA */

#include <qusdltus.h> /*Linkage info, structures for QUSDLTUS */

#include <qmhsndm.h> /*Linkage info, structures for QMHSNDM */

#include <qmhsndpm.h> /*Linkage info, structures for QMHSNDPM */

#pragma linkage(CLDLT,OS)

 void CLDLT (char file_name[10],

 char job_number[6],

 char usr_name[10],

 char job_name[10],

 char file_number[6],

 char form_type[10],

 char usr_data[10]);

 void error_check (void);

APIs 353

Qus_Generic_Header_0100_t *space;

char *list_section;

Qus_SPLF0100_t *entry_list;

Qus_SPLA0100_t *Rcv_Spl_Var;

/***/

/* PARMS FOR CLDLT */

/***/

char job_nmbr[6];

char usr_nm[10];

char job_nm[10];

char sp_job_name[10];

char sp_spl_number[6];

char File_Number[] = "*LAST ";

/***/

/* PARMS FOR QUSLSPL */

/***/

char frmt[8];

char usr[10];

char OutQ_Nm[20];

char ls_frm_typ[10];

char Usr_dat[10];

/***/

/* PARMS FOR QUSRSPLA */

/***/

char Rcv_Var[724];

int Rcv_lgth = 724;

char Rtv_Fmt[8];

char Qal_Jb_Nam[] = "*INT ";

char Splf_Name[] = "*INT ";

int Splf_Number = -1;

/***/

/* PARMS FOR QUSCRTUS */

/***/

char spc_name[20];

char ext_atr[10];

int initial_size;

char initial_value[1];

char auth[10];

char desc[50];

char replace[10];

/***/

/* PARMS FOR QMHSNDPM AND QMHSNDM */

/***/

char msg_id[7];

char msg_fl_name[20];

char msg_data[50];

int msg_data_len;

char msg_type[10];

char pgm_queue[10];

int pgm_stk_cnt;

char msg_key[4];

/***/

/* PARMS FOR QMHSNDM */

/***/

int msg_q_num;

char msg_queue[20];

char rpy_mq[10];

/***/

/* MISCELLANEOUS VARIABLES */

/***/

char pack_dlt_count[15];

int dlt_cnt;

int count;

char tmp_spl_number[7];

char dlt_date[7];

char spc_date[7];

354 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

int api_code;

Qus_EC_t err_code;

/***/

/* PROCEDURE TO CHECK THE ERRCODE RETURNED FROM CALLS TO APIs */

/***/

void error_check(void)

{

if (err_code.Bytes_Available != 0){

 strncpy(msg_id,"CPF9898",7);

 strncpy(msg_fl_name,"QCPFMSG *LIBL ",20);

 strncpy(msg_data,"An error has occurred calling ",29);

 switch (api_code){

 case 1 : strncat(msg_data,"QUSCRTUS.",9);

 case 2 : strncat(msg_data,"QUSLSPL. ",9);

 case 3 : strncat(msg_data,"QUSPTRUS.",9);

 case 4 : strncat(msg_data,"QUSRSPLA.",9);

 case 5 : strncat(msg_data,"QUSDLTUS.",9);

 case 6 : strncat(msg_data,"QMHSNDM. ",9);

 default : strncat(msg_data,"UNKNOWN. ",9);

 }

 msg_data_len = 38;

 strncpy(msg_type,"*ESCAPE ",10);

 strncpy(pgm_queue,"* ",10);

 pgm_stk_cnt = 1;

 QMHSNDPM(msg_id,msg_fl_name,msg_data,msg_data_len,msg_type,

 pgm_queue,pgm_stk_cnt,msg_key,&err_code);

 }

}

/**/

/* START OF MAINLINE */

/**/

main(argc,argv)

int argc;

char *argv[];

{

/**/

/* Read in and assign the command-line arguments to respective */

/* variables */

/**/

strncpy(usr,argv[1],10);

strncpy(OutQ_Nm,argv[2],20);

strncpy(dlt_date,argv[3],7);

/**/

/* Assign value to specific variables in the program */

/**/

strcpy(spc_name,"DLTOLDSPLFQTEMP ");

memset(ext_atr,’ ’,10);

initial_size = 1024;

strcpy(initial_value," ");

strcpy(auth,"*CHANGE ");

memset(desc,’ ’,50);

strcpy(frmt,"SPLF0100");

strcpy(replace,"*YES ");

strcpy(ls_frm_typ,"*ALL ");

strcpy(Usr_dat,"*ALL ");

strcpy(Rtv_Fmt,"SPLA0100");

/**/

/* Call external program to create a user space */

/**/

err_code.Bytes_Provided = 0;

APIs 355

api_code = 1;

QUSCRTUS(spc_name,ext_atr,initial_size,initial_value,auth,desc,replace,

 &err_code);

/**/

/* Call external program to list spooled files into user space */

/**/

api_code = 2;

QUSLSPL(spc_name,frmt,usr,OutQ_Nm,ls_frm_typ,Usr_dat,&err_code);

/**/

/* Call external program to get a pointer to the user space */

/* and get addressability to the list data section. */

/**/

api_code = 3;

QUSPTRUS(spc_name,&space,&err_code);

list_section = (char *)space;

list_section = list_section + space->Offset_List_Data;

entry_list = (Qus_SPLF0100_t *) list_section;

dlt_cnt = 0;

count = 1;

/**/

/* Loop through the entry list and delete old spooled files */

/**/

while (count <= space->Number_List_Entries) {

/**/

/* Call external program to retrieve more spool information */

/**/

 api_code = 4;

 QUSRSPLA(Rcv_Var,Rcv_lgth,Rtv_Fmt,Qal_Jb_Nam,

 entry_list->Int_Job_ID,entry_list->Int_Splf_ID,

 Splf_Name,Splf_Number,&err_code);

 Rcv_Spl_Var = (Qus_SPLA0100_t *)Rcv_Var;

 strncpy(spc_date,Rcv_Spl_Var->Date_File_Open,7);

/**/

/* If spooled file is too old delete it */

/**/

 if (strncmp(spc_date,dlt_date,7) <= 0) {

 strncpy(job_nm,Rcv_Spl_Var->Job_Name,10);

 strncpy(job_nmbr,Rcv_Spl_Var->Job_Number,6);

 strncpy(usr_nm,Rcv_Spl_Var->Usr_Name,10);

 strncpy(sp_job_name,Rcv_Spl_Var->Splf_Name,10);

/**/

/* Convert the spooled file number to character. */

/**/

 memcpy (sp_spl_number," ",6);

 sprintf(tmp_spl_number,"%d",Rcv_Spl_Var->Splf_Number);

 memcpy(sp_spl_number,tmp_spl_number,strlen(tmp_spl_number));

/**/

/* Delete the spooled file. */

/**/

 CLDLT(sp_job_name,job_nmbr,usr_nm,

 job_nm,sp_spl_number,ls_frm_typ,Usr_dat);

 dlt_cnt++;

 } /*IF*/

 strcpy(spc_date," ");

 count++;

 entry_list++;

} /*WHILE*/

/**/

/* Remove the user space */

/**/

api_code = 5;

QUSDLTUS(spc_name, &err_code);

/**/

/* Send final message to user indicating number of spooled files */

/* deleted. */

356 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/**/

api_code = 6;

strncpy(msg_id," ",7);

strncpy(msg_fl_name," ",20);

sprintf(msg_data,"Number of spooled files deleted: %d", dlt_cnt);

msg_data_len = strlen(msg_data);

strncpy(msg_type,"*INFO ",10);

strncpy(msg_queue,"*REQUESTER ",20);

msg_q_num = 1;

strncpy(rpy_mq," ",10);

QMHSNDM(msg_id,msg_fl_name,msg_data,msg_data_len,msg_type,

 msg_queue,msg_q_num,rpy_mq,msg_key, &err_code);

}

To create an ILE C program, specify the following:

CRTBNDC PGM(QGPL/DLTOLDSPLF) SRCFILE(QGPL/QCSRC)

CL Delete (CLDLT) program

The DLTOLDSPLF program, written in OPM RPG, OPM COBOL, or ILE C, calls a CL program named

CLDLT. The CLDLT program deletes the spooled files and the user space. The following is the CL source

for the CLDLT program.

/***/

/* */

/* PROGRAM: CLDLT */

/* */

/* LANGUAGE: CL */

/* */

/* DESCRIPTION: THIS PROGRAM WILL DELETE A SPECIFIC SPOOLED FILE */

/* USING THE DLTSPLF COMMAND AND SEND A MESSAGE WHEN */

/* THE FILE IS DELETED. */

/* */

/* */

/***/

/* */

PGM (&FILNAM &JOBNUM &USRNAM &JOBNAM &FILNUM &FRMTYP &USRDTA)

/* */

/* *** */

/* */

/* DECLARE SECTION */

/* */

/***/

/* */

 DCL &FILNAM *CHAR 10

 DCL &JOBNUM *CHAR 6

 DCL &USRNAM *CHAR 10

 DCL &JOBNAM *CHAR 10

 DCL &FILNUM *CHAR 6

 DCL &FRMTYP *CHAR 10

 DCL &USRDTA *CHAR 10

 MONMSG CPF0000

/* */

/***/

/* */

/* EXECUTABLE CODE */

/* */

/***/

/* */

 DLTSPLF FILE(&FILNAM) +

 JOB(&JOBNUM/&USRNAM/&JOBNAM) +

 SPLNBR(&FILNUM) +

 SELECT(&USRNAM *ALL &FRMTYP &USRDTA)

 SNDPGMMSG MSG(’Spooled file ’ *CAT &FILNAM *CAT +

APIs 357

’ number ’ *CAT &FILNUM *CAT ’ job ’ +

 *CAT &JOBNUM *CAT ’/’ +

 *CAT &USRNAM *CAT ’/’ *CAT &JOBNAM *CAT +

 ’ deleted.’) +

 TOUSR(*REQUESTER) ENDPGM

To create the CL program, specify the following:

CRTCLPGM PGM(QGPL/CLDLT) SRCFILE(QGPL/QCLSRC)

Example: Diagnostic reporting

This example program illustrates the use of the Send Nonprogram Message API, QMHSNDM, the

Receive Program Message API, QMHRCVPM, and the Change Exception Message API, QMHCHGEM.

The program produces a diagnostic report of errors that occur when the QMHSNDM API is used to send

a message to more than one message queue.

The program calls the QMHSNDM API to send a message to message queues that do not exist. The

QMHSNDM API returns a generic exception message, CPF2469. This message indicates that the API also

returned one or more diagnostic messages describing the errors. After the program receives the exception

message and verifies that it is message CPF2469, it uses the QMHCHGEM API to handle the exception

message. The QMHRCVPM API is used to receive the diagnostic messages. The program prints the

exception message, the diagnostic messages, and the message help.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Diagnostic Report (DIAGRPT) program

/**/

/* */

/* MODULE NAME: DIAGRPT - Diagnostic Report */

/* LANGUAGE: ILE C for OS/400 */

/* */

/* FUNCTION: This module will produce a diagnostic report that */

/* could be used in diagnosing the errors that */

/* occurred using the QMHSNDM API to send a message */

/* to multiple message queues. */

/* */

/* This program purposely causes the QMHSNDM API to */

/* try to send a message to message queues that do */

/* not exist. As a result, the generic CPF2469 */

/* exception is returned indicating that one or more */

/* diagnostic messages were returned identifying the */

/* error(s) on the send operation. */

/* */

/* The program looks for and handles the CPF2469 */

/* exception. It then receives and prints out the */

/* exception and the previous diagnostics. */

/* */

/* Dependency: A print file must be created before calling */

/* program DIAGRPT. The print file should be created */

/* using the following command: */

/* */

/* CRTPRTF FILE(PRTDIAG) CTLCHAR(*FCFC) */

/* CHLVAL((1 (13))) */

/**/

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

#include <string.h>

#include <except.h>

#include <qmhchgem.h> /* From QSYSINC/H */

#include <qmhrcvpm.h> /* From QSYSINC/H */

#include <qmhsndm.h> /* From QSYSINC/H */

#include <qusec.h> /* From QSYSINC/H */

358 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

#define DIAG_TYPE "02"

#define BUF_SIZE 80

/***/

/* Type definition for error code structure */

/***/

typedef struct error_code_struct

 {

 Qus_EC_t ec_fields;

 char Exception_Data[100];

 } error_code_struct;

/***/

/* Type definition for qualified name structure */

/***/

typedef struct qual_name_struct

 {

 char name[10];

 char libr[10];

 } qual_name_struct;

/***/

/* Type definition for message information structure used on the */

/* receive. F is the fixed portion of the record and V is the */

/* variable length portion of the record. */

/***/

typedef struct msg_info_struct

 {

 Qmh_Rcvpm_RCVM0200_t F;

 char V[1200];

 } msg_info_struct;

FILE *prtf;

char buf[80];

char received[7];

int exception_count;

/***/

/* Function to handle errors received on the API calls. */

/***/

static void excp_handler(_INTRPT_Hndlr_Parms_T *excp_info)

 {

 error_code_struct Error_Code;

 /* If the exception is CPF2469, increment the exception counter, */

 /* and mark the exception as handled by the QMHCHGEM API */

 if (strncmp(excp_info->Msg_Id,"CPF2469",7) == 0) {

 memcpy(received,(excp_info->Msg_Id),7);

 exception_count++;

 QMHCHGEM(&(excp_info->Target), 0,

 (char *)(&(excp_info->Msg_Ref_Key)),

 "*HANDLE ", "", 0, &Error_Code);

 }

 }

/**/

/* BuildQList: Routine to build the message queue list. */

/**/

void BuildQList(qual_name_struct *QueueList, int NumQueue)

{

 int i;

 strncpy(QueueList[0].name,"QPGMR ",10);

APIs 359

strncpy(QueueList[1].name,"SNOOPY ",10);

 strncpy(QueueList[2].name,"QSECOFR ",10);

 strncpy(QueueList[3].name,"PEANUTS ",10);

 strncpy(QueueList[4].name,"QUSER ",10);

 for (i = 0; i < NumQueue ; i++)

 {

 strncpy(QueueList[i].libr,"*LIBL ",10);

 }

}

/**/

/* PrintError: Routine to print error information and exit. */

/**/

void PrintError(char *errstring, char exception[7])

{

 memset(buf,’ ’,BUF_SIZE);

 buf[0] = ’0’;

 strncpy(buf+1,errstring,strlen(errstring));

 fwrite(buf,1,BUF_SIZE,prtf);

 memset(buf,’ ’,BUF_SIZE);

 buf[0] = ’0’;

 strncpy(buf+1,"Exception received->",20);

 strncpy(buf+21,exception,strlen(exception));

 fwrite(buf,1,BUF_SIZE,prtf);

 fclose(prtf);

 exit(1);

 }

/**/

/* PrintData: Routine to print varying length character string data.*/

/**/

void PrintData(char *strname, void *strptr, int strlgth)

{

 char *strdata = strptr;

 int i,lgth,remain;

 /* Write the description and the data that will fit on one line */

 memset(buf,’ ’,BUF_SIZE);

 buf[0] = ’0’;

 lgth = strlen(strname);

 strncpy(buf+1,strname,lgth);

 lgth++;

 /* remain = MIN(strlgth,80 - lgth) */

 remain = (strlgth < 80 - lgth) ? strlgth : 80 - lgth;

 strncpy(buf+lgth,strdata,remain);

 fwrite(buf,1,BUF_SIZE,prtf);

 /* Now write the remainder of the data */

 if (strlgth > (80 - lgth))

 {

 /* Adjust pointer to data not printed yet */

 strdata = strdata + (80 - lgth);

 for (i = 0; i < strlgth; i = i + 70, strdata = strdata + 70)

 {

 /* lgth = MIN(strlgth-i,70) */

 lgth = (strlgth-i < 70) ? strlgth-i : 70;

 memset(buf,’ ’,BUF_SIZE);

 strncpy(buf,"0 ",10);

 memcpy(buf+10,strdata,lgth);

360 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

fwrite(buf,1,BUF_SIZE,prtf);

 }

 }

}

/**/

/* PrintMessage: Routine to print the message data and text. */

/**/

void PrintMessage(msg_info_struct *Msg)

{

 char *DataPtr; /* Pointer to the varying length character data*/

 int DataLen; /* Length of the varying length character data */

 char CharType[10]; /* Message type as a string */

 PrintData("Message ID->",Msg->F.Message_Id,7);

 /* Convert Message Type to a character string to be printed out */

 if (memcmp(Msg->F.Message_Type,"02",2)==0)

 strncpy(CharType,"DIAGNOSTIC", 10);

 else if (memcmp(Msg->F.Message_Type,"15",2)==0)

 strncpy(CharType,"ESCAPE ",10);

 PrintData("Message Type->",CharType,10);

 /* First point to the beginning of the message data */

 /* in the structure and get the length of data returned. */

 DataPtr = Msg->V;

 DataLen = Msg->F.Length_Data_Returned;

 /* If there is non-blank data, print it out */

 if ((DataLen > 0) && (strspn(DataPtr," ") < DataLen))

 PrintData("Message data received->",DataPtr,DataLen);

 /* Point to the beginning of the message text field and get the */

 /* length of message text returned. */

 DataPtr += DataLen;

 DataLen = Msg->F.Length_Message_Returned;

 /* If there is non-blank text, print it out */

 if ((DataLen > 0) && (strspn(DataPtr," ") < DataLen))

 PrintData("Message text received->",DataPtr,DataLen);

 /* Now update to point to the beginning of the message */

 /* help text field and get the length of message help text */

 /* returned. */

 DataPtr += DataLen;

 DataLen = Msg->F.Length_Help_Returned;

 /* If there is non-blank message help text, print it out */

 if ((DataLen > 0) && (strspn(DataPtr," ") < DataLen))

 PrintData("Message help text received->",DataPtr,DataLen);

 strncpy(buf,"- ",43);

 fwrite(buf,1,BUF_SIZE,prtf);

}

 /***/

 /* */

 /* Start of main program. */

 /* */

 /***/

main()

{

 error_code_struct ErrorCode;

 qual_name_struct MsgQList[5];

 qual_name_struct MsgFile;

APIs 361

qual_name_struct RpyMsgQ;

 msg_info_struct MsgInfo;

 char MsgData[128];

 char MsgText[512];

 char MsgHelp[512];

 char PgmMsgQ[10];

 char MsgType[10];

 char MsgAction[10];

 char Format[8];

 char MsgId[7];

 char MsgKey[4];

 int MsgTextLen;

 int MsgInfoLen;

 int NumMsgQ;

 int PgmCount;

 int WaitTime;

 int morediag;

 /* Initialize variables */

 exception_count = 0;

 memcpy(ErrorCode.ec_fields.Exception_Id," ",7);

 ErrorCode.ec_fields.Bytes_Provided = 0;

 memcpy(MsgId," ",7);

 memcpy(MsgFile.name," ",10);

 memcpy(MsgFile.libr," ",10);

 strcpy(MsgText,"This is an immediate, informational message");

 MsgTextLen = strlen(MsgText);

 memcpy(MsgType,"*INFO ",10);

 memcpy(RpyMsgQ.name," ",10);

 memcpy(RpyMsgQ.libr," ",10);

 /* Build the list of message queues to send the message to */

 NumMsgQ = 5;

 BuildQList(MsgQList,NumMsgQ);

 /* Enable the exception handler around the call to QMHSNDM */

 #pragma exception_handler(excp_handler, 0, 0, _C2_MH_ESCAPE)

 /* Send the message to the list of message queues. */

 QMHSNDM(MsgId,

 &MsgFile,

 MsgText,

 MsgTextLen,

 MsgType,

 &MsgQList,

 NumMsgQ,

 &RpyMsgQ,

 &MsgKey,

 &ErrorCode);

 /* Disable the exception handler */

 #pragma disable_handler

 /* If an error occurred on the send, produce an exception report */

 /* identifying what errors occurred. */

 if (exception_count != 0)

 {

 /* Open printer file using first character forms control and */

 /* write the header information. */

 prtf = fopen ("PRTDIAG", "wb type=record recfm=FA lrecl=80");

362 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

memset(buf,’ ’,BUF_SIZE);

 strncpy(buf,"1 DIAGNOSTIC REPORT",43);

 fwrite(buf,1,BUF_SIZE,prtf);

 strncpy(buf," -----------------",43);

 fwrite(buf,1,BUF_SIZE,prtf);

 strncpy(buf,"- ",43);

 fwrite(buf,1,BUF_SIZE,prtf);

 /* Do the setup to first receive the exception signalled. */

 memcpy(Format,"RCVM0200",8);

 memcpy(PgmMsgQ,"* ",10);

 memcpy(MsgType,"*EXCP ",10);

 memcpy(MsgKey," ",4);

 memcpy(MsgAction,"*OLD ",10);

 PgmCount = 0;

 WaitTime = 0;

 MsgInfoLen = 1276;

 /* Now change bytes_provided to 116 so that if any errors occur */

 /* on the receive, the error information will be returned in the*/

 /* error code structure instead of generating more exceptions */

 /* which will clutter up the program message queue. */

 ErrorCode.ec_fields.Bytes_Provided = 116;

 /* Receive the last exception type message on the program */

 /* message queue */

 QMHRCVPM(&MsgInfo,

 MsgInfoLen,

 Format,

 PgmMsgQ,

 PgmCount,

 MsgType,

 MsgKey,

 WaitTime,

 MsgAction,

 &ErrorCode);

 /* Test for any errors on the receive */

 if (ErrorCode.ec_fields.Bytes_Available > 0)

 {

 PrintError("QMHRCVPM - Did not complete successfully",

 ErrorCode.ec_fields.Exception_Id);

 }

 /* An exception message was received successfully. Now see if */

 /* the message received is the same exception that was signalled*/

 /* If not, there is an error. */

 if (strncmp(MsgInfo.F.Message_Id,received,7) != 0)

 {

 PrintError("QMHRCVPM - Wrong exception received",

 MsgInfo.F.Message_Id);

 }

 /* The exception message was received successfully. */

 /* Print the message data and text for the exception message. */

 PrintMessage(&MsgInfo);

 /* If the message was the generic CPF2469, there are one or */

 /* more diagnostic messages to go with the CPF2469 on the queue.*/

 /* Receive the diagnostic messages previous to the CPF2469 until*/

 /* a non-diagnostic message is received or there are no more */

 /* messages. */

 if (strncmp(MsgInfo.F.Message_Id,"CPF2469",7) == 0)

 {

 memcpy(MsgType,"*PRV ",10);

 memcpy(MsgKey,MsgInfo.F.Message_Key,4);

APIs 363

morediag = 1;

 while(morediag)

 {

 /* Receive the previous diagnostic */

 QMHRCVPM(&MsgInfo,

 MsgInfoLen,

 Format,

 PgmMsgQ,

 PgmCount,

 MsgType,

 MsgKey,

 WaitTime,

 MsgAction,

 &ErrorCode);

 /* Test for error on the receive */

 if (ErrorCode.ec_fields.Bytes_Available > 0)

 {

 PrintError("QMHRCVPM - Did not complete successfully",

 ErrorCode.ec_fields.Exception_Id);

 }

 /* If bytes available = 0 OR the next message is not a */

 /* diagnostic message, we are done. */

 if ((MsgInfo.F.Bytes_Available == 0) ||

 (strncmp(MsgInfo.F.Message_Type,DIAG_TYPE,2) != 0))

 {

 morediag = 0;

 }

 else /* A diagnostic was received */

 {

 /* Print the message data and text for the diagnostic */

 /* message */

 PrintMessage(&MsgInfo);

 /* Now copy the message key of the diagnostic message */

 /* received to the MsgKey parameter to use on the next */

 /* call to QMHRCVPM. */

 memcpy(MsgKey,MsgInfo.F.Message_Key,7);

 }

 } /* End of while morediag = 1 */

 } /* End of if CPF2469 received */

 /* Write trailer */

 memset(buf,’ ’,BUF_SIZE);

 strncpy(buf,"- END OF DIAGNOSTIC REPORT",48);

 fwrite(buf,1,BUF_SIZE,prtf);

 /* Close the print file */

 fclose(prtf);

 } /* End of if error on send */

} /* End mainline */

Printed diagnostic report

The DIAGRPT program produces a report like this:

Message ID->CPF2469

Message Type->ESCAPE

Message text received->Error occurred when sending message.

Message help text received->Recovery . . . : See messages

 previously listed for a description of the error.

364 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Correct the error, and then try the

 command again.

Message ID->CPF2403

Message Type->DIAGNOSTIC

Message data received->PEANUTS *LIBL

Message text received->Message queue PEANUTS in *LIBL not found.

Message help text received->Cause : The message queue you

 specified was not found in the library you specified. One

 of the following occurred: -- The queue name was not

 entered correctly. -- The queue does not exist in the

 specified library. -- You specified the wrong library name.

 Recovery . . . : Do one of the following and try the

 request again: -- Correct or change the message queue

 name or library name used in the message queue (MSGQ)

 parameter or the to-message queue (TOMSGQ) parameter.

 -- Create the message queue using the Create Message

 Queue (CRTMSGQ) command.

Message ID->CPF2403

Message Type->DIAGNOSTIC

Message data received->SNOOPY *LIBL

Message text received->Message queue SNOOPY in *LIBL not found.

Message help text received->Cause : The message queue

 you specified was not found in the library you specified.

 One of the following occurred: -- The queue name was not

 entered correctly. -- The queue does not exist in the

 specified library. -- You specified the wrong library

 name. Recovery . . . : Do one of the following and

 try the request again: -- Correct or change the message

 queue name or library name used in the message queue

 (MSGQ) parameter or the to-message queue (TOMSGQ)

 parameter. -- Create the message queue using the Create

 Message Queue (CRTMSGQ) command.

 End of Diagnostic Report

Example: Generating and sending an alert

The following ILE RPG program uses both alert APIs.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 H

 D***

 D***

 D*

 D* Program Name: ALERTS

 D*

 D* Programming Language: ILE RPG

 D*

 D* Description: This program uses alert APIs. First, it

 D* calls the Generate Alert (QALGENA) API to

 D* generate an alert without sending a message

 D* to QSYSOPR or QHST message queue. Then it

 D* uses the Send Alert (QALSNDA) API to send

 D* the alert to the alert manager.

 D*

 D* Header Files Included: QUSEC - Error Code Parameter

 D*

 D***

 D***

 D*

 D* Error Code parameter include

 D*

 D/COPY QSYSINC/QRPGLESRC,QUSEC

 D*

APIs 365

D*

 D* Miscellaneous data structure

 D*

 DRCVVAR S 512

 DRCVLEN S 9B 0 INZ(%SIZE(RCVVAR))

 DALERT_SIZE S 9B 0

 DMSG_FILE S 20 INZ(’QCPFMSG QSYS’)

 DMSG_ID S 7 INZ(’CPA2601’)

 DMSG_DATA S 100

 DMSG_SIZE S 9B 0 INZ(0)

 DALERT_TYPE S 1 INZ(’L’)

 DORIGIN S 10 INZ(’ALERTS’)

 C*

 C* Beginning of mainline

 C*

 C* Set error handling

 C*

 C EVAL QUSBPRV = %SIZE(QUSEC)

 C*

 C* Start by generating an alert for a specific message

 C*

 C CALL ’QALGENA’

 C PARM RCVVAR

 C PARM RCVLEN

 C PARM ALERT_SIZE

 C PARM MSG_FILE

 C PARM MSG_ID

 C PARM MSG_DATA

 C PARM MSG_SIZE

 C PARM QUSEC

 C*

 C* If no error reported, send the generated alert

 C*

 C QUSBAVL IFEQ 0

 C CALL ’QALSNDA’

 C PARM RCVVAR

 C PARM ALERT_SIZE

 C PARM ALERT_TYPE

 C PARM ORIGIN

 C PARM QUSEC

 C*

 C* If error on send, then display the error message

 C*

 C QUSBAVL IFNE 0

 C QUSEI DSPLY

 C END

 C*

 C* If error on generation, then display the error message

 C*

 C ELSE

 C QUSEI DSPLY

 C END

 C*

 C EVAL *INLR = ’1’

 C RETURN

 C*

 C* End of MAINLINE

 C*

Example: List directories

This program lists a directory to a spooled file. You should call this program with only one parameter,

the parameter that represents the directory you want to list.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

366 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/**/

/**/

/* FUNCTION: This program lists a directory to a spooled file. */

/* */

/* LANGUAGE: ILE C */

/* */

/* */

/* APIs USED: QHFOPNDR, QHFRDDR, QHFCLODR, QHFLSTFS, QUSCRTUS, */

/* QUSRTVUS */

/* */

/**/

/**/

/**/

/* INCLUDE FILES */

/**/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <qhfopndr.h>

#include <qhfrddr.h>

#include <qhfclodr.h>

#include <qhflstfs.h>

#include <quscrtus.h>

#include <qusrtvus.h>

#include <qusec.h>

/**/

/* STRUCTURE AND VARIABLE DECLARATIONS */

/**/

/**/

/* Parameters for QHFOPNDR */

/**/

char dir_handle[16]; /* Directory handle */

int namelen; /* Length of path name */

char openinfo[6]; /* Open information */

typedef struct {

 Qhf_Attr_Selec_Tbl_t fixed;

 int offset2;

 int offset3;

 int att_len1;

 char att_name1[8];

 int att_len2;

 char att_name2[8];

 int att_len3;

 char att_name3[8];

} selection_struct;

selection_struct select;

int selectionlen;

/**/

/* Error Code Structure */

/* */

/* This shows how the user can define the variable length portion */

/* of error code for the exception data. */

/* */

/**/

typedef struct {

 Qus_EC_t ec_fields;

 char Exception_Data[100];

 } error_code_t;

error_code_t error_code;

APIs 367

/**/

/* Parameters for QHFRDDR */

/**/

/* The directory handle is the same as for QHFOPNDR */

typedef struct {

 Qhf_Data_Buffer_t fixed;

 int num_att;

 int offsets[4];

 char attinfo[276];

} read_buffer;

read_buffer buffer;

int result_count;

int bytes_returned;

/**/

/* Parameters for QHFCLODR */

/**/

/* No additional ones need to be declared */

/**/

/* Parameters for QUSCRTUS */

/**/

int size;

char text[50];

/**/

/* Parameters for QHFLSTFS */

/**/

/* No additional ones need to be declared */

/**/

/* Parameters for QUSRTVUS */

/**/

int startpos;

int len;

char charbin4[4];

char FSname[10];

/**/

/* Other declarations */

/**/

int entrypos;

int numentries;

int entrylen;

char *att;

char name[100];

char attname[30];

char attval[30];

int attnamelen;

int attvallen;

char newname[30];

int filesize;

char fileatt[10];

typedef struct {

 char century;

 char year[2];

 char month[2];

 char day[2];

 char hour[2];

 char minute[2];

 char second[2];

} charval;

charval chartime;

368 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

int bytes_used;

int i;

main(int argc, char *argv[])

{

 char write_string[100];

 FILE *stream;

 error_code.ec_fields.Bytes_Provided = 0;

 /**/

 /* Make sure we received the correct number of parameters. The */

 /* argc parameter will contain the number of parameters that */

 /* was passed to this program. This number also includes the */

 /* program itself, so we need to evaluate argc-1. */

 /**/

 if (((argc - 1) < 1) || ((argc - 1 > 1)))

 /**/

 /* We did not receive all of the required parameters, or */

 /* received too many. Exit from the program. */

 /**/

 {

 exit(1);

 }

 /**/

 /* Open QPRINT file so that data can be written to it. If the */

 /* file cannot be opened, print a message and exit. */

 /**/

 if((stream = fopen("QPRINT", "wb")) == NULL)

 {

 printf("File could not be opened\n");

 exit(1);

 }

 memset(name, ’ ’, 100);

 memcpy(name, argv[1], 100);

 if(!memcmp(name, " ", 1))

 {

 memcpy(name,"ROOT",4);

 fprintf(stream,"Directory listing for path %.100s\n", name);

 size = 1;

 memcpy(text, "temporary user space used by program DIR ",

 50);

 /**/

 /* Create the user space for QHFLSTFS to use. */

 /**/

 QUSCRTUS("FSLST QTEMP ", "TEMPSPACE ", size, " ",

 "*USE ", text, "*YES ", &error_code);

 /**/

 /* List the file systems into that space. */

 /**/

 QHFLSTFS("FSLST QTEMP ", "HFSL0100", &error_code);

 /**/

 /* Get the starting point for the file system entries. */

 /**/

 startpos = 125;

 len = 4;

 QUSRTVUS("FSLST QTEMP ", startpos, len, charbin4,

 &error_code);

 entrypos = *(int *)charbin4;

APIs 369

/**/

 /* Get the number of entries in the user space. */

 /**/

 startpos = 133;

 len = 4;

 QUSRTVUS("FSLST QTEMP ", startpos, len, charbin4,

 &error_code);

 numentries = *(int *)charbin4;

 /**/

 /* Find the length of the entries. */

 /**/

 startpos = 137;

 len = 4;

 QUSRTVUS("FSLST QTEMP ", startpos, len, charbin4,

 &error_code);

 entrylen = *(int *)charbin4;

 /**/

 /* Loop through the entries and get the names of the file */

 /* systems. */

 /**/

 for(i=0;i<numentries;++i)

 {

 startpos = entrypos + 1;

 len = 10;

 QUSRTVUS("FSLST QTEMP ", startpos, len, FSname,

 &error_code);

 /***/

 /* List the names into the spooled file. */

 /***/

 sprintf(write_string," %.10s <DIR>", FSname);

 fprintf(stream, write_string);

 entrypos = entrypos + entrylen;

 }

 }

 else

 {

 fprintf(stream,"Directory listing for path %.100s\n", name);

 /**/

 /* Build the attribute selection table for QHFOPNDR. */

 /**/

 select.fixed.Number_Attributes = 3;

 select.fixed.Offset_First_Attr = 16;

 select.offset2 = 28;

 select.offset3 = 40;

 select.att_len1 = 8;

 memcpy(select.att_name1, "QFILSIZE", 8);

 select.att_len2 = 8;

 memcpy(select.att_name2, "QCRTDTTM", 8);

 select.att_len3 = 8;

 memcpy(select.att_name3, "QFILATTR", 8);

 selectionlen = 52;

 memcpy(openinfo, "10 ", 6);

 /**/

 /* Find the length of the directory name. */

 /**/

 for(i=0;i<100;i++)

 {

 if((name[i] == ’ ’) || (name[i] == ’\x00’))

 break;

370 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

}

 namelen = i;

 /**/

 /* Open the directory. */

 /**/

 QHFOPNDR(dir_handle, name, namelen, openinfo, &select, selectionlen,

 &error_code);

 /**/

 /* Read one entry from the directory. */

 /**/

 QHFRDDR(dir_handle, &buffer, 300, 1, &result_count, &bytes_returned,

 &error_code);

 while(result_count > 0)

 {

 memcpy(attname," ",30);

 memcpy(attval," ",30);

 att = buffer.attinfo;

 bytes_used = 20;

 /**/

 /* Loop for the number of attributes in the entry. */

 /**/

 for(i=0;i<buffer.num_att;i++)

 {

 memcpy(charbin4, att, 4);

 attnamelen = *(int *)charbin4;

 att += 4;

 bytes_used += 4;

 memcpy(charbin4, att, 4);

 attvallen = *(int *)charbin4;

 att += 8;

 bytes_used += 8;

 memcpy(attname, att, attnamelen);

 att += attnamelen;

 bytes_used += attnamelen;

 memcpy(attval, att, attvallen);

 att += attvallen;

 bytes_used += attvallen;

 /**/

 /* Update att so that its first character is the first */

 /* character of the next attribute entry. */

 /**/

 if ((bytes_used == buffer.offsets[i+1]) &&

 ((i+1) == buffer.num_att))

 att += (buffer.offsets[i] - bytes_used);

 /**/

 /* If the attribute is QNAME, then set newname. */

 /**/

 if(!memcmp(attname, "QNAME", 5))

 {

 memset(newname, ’ ’, 12);

 memcpy(newname, attval, attvallen);

 }

 /**/

 /* If the attribute is QFILSIZE, then set filesize. */

 /**/

 else if(!memcmp(attname, "QFILSIZE", 8))

 {

 memcpy(charbin4, attval, 4);

 filesize = *(int *)charbin4;

 }

APIs 371

/**/

 /* If it was QCRTDTTM, then set the time. */

 /**/

 else if(!memcmp(attname, "QCRTDTTM", 8))

 memcpy(&chartime, attval, 13);

 /**/

 /* Else the attribute was QFILATTR, so set fileatt. */

 /**/

 else

 memcpy(fileatt, attval, 10);

 }

 /**/

 /* If the entry was a directory, list its name and <DIR>. */

 /**/

 if(fileatt[3] == ’1’)

 {

 sprintf(write_string," %s <DIR>", newname);

 fprintf(stream, write_string);

 }

 /**/

 /* If the entry is not a hidden file, list its name and size. */

 /**/

 else if(fileatt[1] == ’0’)

 {

 sprintf(write_string," %s %d", newname, filesize);

 fprintf(stream, write_string);

 }

 /**/

 /* If the entry is not a hidden file or directory, list its */

 /* date of creation. */

 /**/

 if(fileatt[1] == ’0’)

 {

 sprintf(write_string," %.2s-%.2s-%.2s", chartime.month,

 chartime.day, chartime.year);

 fprintf(stream, write_string);

 sprintf(write_string," %.2s:%.2s:%.2s\n", chartime.hour,

 chartime.minute, chartime.second);

 fprintf(stream, write_string);

 }

 QHFRDDR(dir_handle, &buffer, 200, 1, &result_count, &bytes_returned,

 &error_code);

 } /* while */

 } /* else */

 /**/

 /* Close the directory. */

 /**/

 QHFCLODR(dir_handle, &error_code);

 fclose(stream);

} /* main */

Example: Listing subdirectories

This program lists the subdirectories of the path passed to the program to a spooled file. You should call

this program with only one parameter, the parameter that represents the directory you want to list.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

372 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/**/

/**/

/* FUNCTION: */

/* */

/* LANGUAGE: ILE C */

/* */

/* */

/* APIs USED: QHFOPNDR, QHFRDDR, QHFCLODR */

/* */

/**/

/**/

/**/

/* INCLUDE FILES */

/**/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <qhfopndr.h>

#include <qhfrddr.h>

#include <qhfclodr.h>

#include <qusec.h>

char write_string[100];

FILE *stream;

void print_subdir(char name[100], int numtabs)

{

/**/

/* Parameters for QHFOPNDR */

/**/

char dir_handle[16]; /* Directory handle */

int namelen; /* Length of path name */

char openinfo[6]; /* Open information */

typedef struct {

 Qhf_Attr_Selec_Tbl_t fixed;

 int att_len;

 char att_name[8];

} selection_struct;

selection_struct select;

int selectionlen;

/**/

/* Error Code Structure */

/* */

/* This shows how the user can define the variable length */

/* portion of error code for the exception data. */

/* */

/**/

typedef struct {

 Qus_EC_t ec_fields;

 char Exception_Data[100];

 } error_code_t;

error_code_t error_code;

/**/

/* Parameters for QHFRDDR */

/**/

/* The directory handle is the same as for QHFOPNDR */

typedef struct {

 Qhf_Data_Buffer_t fixed;

 int num_att;

APIs 373

int offsets[2];

 char attinfo[180];

} read_buffer;

read_buffer buffer;

int result_count;

int bytes_returned;

/**/

/* Parameters for QHFCLODR */

/**/

/* No additional ones need to be declared */

/**/

/* Other declarations */

/**/

char *att;

char attname[30];

char attval[30];

int attnamelen;

int attvallen;

char newname[30];

int newnamelen;

int filesize;

char fileatt[10];

char tab[5];

int bytes_used;

int i, j;

char charbin4[4];

char tempname[100];

 error_code.ec_fields.Bytes_Provided = 0;

 /**/

 /* Build the attribute selection table for QHFOPNDR. */

 /**/

 select.fixed.Number_Attributes = 1;

 select.fixed.Offset_First_Attr = 8;

 select.att_len = 8;

 memcpy(select.att_name, "QFILATTR", 8);

 selectionlen = 20;

 memcpy(openinfo, "10 ", 6);

 memcpy(tab," ", 5);

 /**/

 /* Find the length of the directory name. */

 /**/

 for(i=0;i<100;i++)

 {

 if((name[i] == ’ ’) || (name[i] == ’\x00’))

 break;

 }

 namelen = i;

 /**/

 /* Open the directory. */

 /**/

 QHFOPNDR(dir_handle, name, namelen, openinfo, &select, selectionlen,

 &error_code);

 /**/

 /* Read one entry from the directory. */

 /**/

 QHFRDDR(dir_handle, &buffer, 200, 1, &result_count, &bytes_returned,

 &error_code);

 fprintf(stream,"\n");

374 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

for(i=0;i<numtabs;i++)

 fprintf(stream, tab);

 fprintf(stream, name);

 while(result_count > 0)

 {

 memcpy(attname," ",30);

 memcpy(attval," ",30);

 att = buffer.attinfo;

 bytes_used = 12;

 /**/

 /* Loop for the number of attributes in the entry. */

 /**/

 for(i=0;i<buffer.num_att;i++)

 {

 memcpy(charbin4, att, 4);

 attnamelen = *(int *)charbin4;

 att += 4;

 bytes_used += 4;

 memcpy(charbin4, att, 4);

 attvallen = *(int *)charbin4;

 att += 8;

 bytes_used += 8;

 memcpy(attname, att, attnamelen);

 att += attnamelen;

 bytes_used += attnamelen;

 memcpy(attval, att, attvallen);

 att += attvallen;

 bytes_used += attvallen;

 /**/

 /* Update att so that its first character is the first */

 /* character of the next attribute entry. */

 /**/

 if ((bytes_used == buffer.offsets[i+1]) &&

 ((i+1) == buffer.num_att))

 att += (buffer.offsets[i] - bytes_used);

 /**/

 /* If the attribute is QNAME, then set newname and */

 /* newnamelen just in case the entry is a directory. */

 /**/

 if(!memcmp(attname, "QNAME", 5))

 {

 memcpy(newname, attval, attvallen);

 newnamelen = attvallen;

 }

 /**/

 /* Else the attribute was QFILATTR, so set fileatt. */

 /**/

 else

 memcpy(fileatt, attval, 10);

 }

 /**/

 /* If the entry was a directory, construct new path name and */

 /* print_subdir to print the subdirectory. */

 /**/

 if(fileatt[3] == ’1’)

 {

 memcpy(tempname, name, 100);

 strcat(name, "/");

 strcat(name, newname);

 memcpy(newname, name, namelen + newnamelen + 1);

 print_subdir(newname, numtabs + 1);

APIs 375

memcpy(name, tempname, 100);

 }

 QHFRDDR(dir_handle, &buffer, 200, 1, &result_count, &bytes_returned,

 &error_code);

 } /* while */

 /**/

 /* Close the directory. */

 /**/

 QHFCLODR(dir_handle, &error_code);

}/* print_subdir */

main(int argc, char *argv[])

{

 char dir_name[100];

 /**/

 /* Make sure we received the correct number of parameters. The */

 /* argc parameter will contain the number of parameters that */

 /* was passed to this program. This number also includes the */

 /* program itself, so we need to evaluate argc-1. */

 /**/

 if (((argc - 1) < 1) || ((argc - 1 > 1)))

 /**/

 /* We did not receive all of the required parameters, or */

 /* received too many. Exit from the program. */

 /**/

 {

 exit(1);

 }

 /**/

 /* Open QPRINT file so that data can be written to it. If the */

 /* file cannot be opened, print a message and exit. */

 /**/

 if((stream = fopen("QPRINT", "wb")) == NULL)

 {

 printf("File could not be opened\n");

 exit(1);

 }

 memset(dir_name, ’ ’, 100);

 memcpy(dir_name, argv[1], 100);

 if(!memcmp(dir_name, " ", 1))

 {

 fprintf(stream,"No directory specified");

 }

 else

 {

 fprintf(stream,"Directory substructure starting at %.100s", dir_name);

 print_subdir(dir_name, 0);

 }

 fclose(stream);

} /* main */

Example: Saving to multiple devices

This example program shows how to save a large library using more than one device at the same time.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

376 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/***/

/* PROGRAM: SaveBigLib */

/* */

/* LANGUAGE: ILE C */

/* */

/* DESCRIPTION: This is an example program for the use of */

/* a media definition in a save operation. */

/* It saves library BIGLIB in parallel format to */

/* two media files, using tape media library */

/* TAPMLB01. */

/* */

/* The flow of this program is as follows: */

/* (1) Build media definition input. */

/* (2) Create a media definition using */

/* QsrCreateMediaDefinition. */

/* (3) Save library BIGLIB using the media */

/* definition. */

/* */

/* APIs USED: QsrCreateMediaDefinition, QCMDEXC */

/* */

/***/

#include <qcmdexc.h>

#include <qsrlib01.h>

#include <qusec.h>

#include <string.h>

/***/

/* Variables for QsrCreateMediaDefinition */

/***/

char Data_Buffer[1000];

Qsr_TAPE0100_t *Input_Data;

Qsr_TAPE0100_Device_t *Device;

Qsr_TAPE0100_File_t *Media_File;

char *Next_Free;

char *Volid;

Qus_EC_t Err_Code;

int Data_Length;

char Text[50];

/***/

/* Variables for QCMDEXC */

/***/

char Cmd_String[100];

decimal(15,5) Cmd_Length;

/***/

/* Start of main() */

/***/

int main (int argc, char *argv[]) {

/***/

/* Specify input data for QsrCreateMediaDefinition. */

/***/

/*---*/

/* Build general media definition input data. */

/* Use one device with two parallel device resources. */

/*---*/

memset(Data_Buffer,0,sizeof(Data_Buffer));

Input_Data = (Qsr_TAPE0100_t*)Data_Buffer;

Next_Free = (char*)(Input_Data + 1);

Input_Data->Maximum_Resources = 2;

Input_Data->Minimum_Resources = 2;

Input_Data->Offset_First_Device = Next_Free - Data_Buffer;

Input_Data->Device_Count = 1;

APIs 377

/*---*/

/* Build input data for the first device. */

/* Use device TAPMLB01 with two media files. */

/*---*/

Device = (Qsr_TAPE0100_Device_t*)Next_Free;

Next_Free = (char*)(Device + 1);

memcpy(Device->Device_Name,"TAPMLB01 ",10);

Device->Offset_First_File = Next_Free - Data_Buffer;

Device->File_Count = 2;

/*---*/

/* Build input data for the first media file for device TAPMLB01. */

/* Use the default sequence number, and volumes VOL11 and VOL12. */

/*---*/

Media_File = (Qsr_TAPE0100_File_t*)Next_Free;

Next_Free = (char*)(Media_File + 1);

Media_File->Sequence_Number = 0;

Media_File->Offset_First_Volume_Id = Next_Free - Data_Buffer;

Media_File->Volume_Id_Count = 2;

Media_File->Volume_Id_Length = 6;

Media_File->Starting_Volume = 1;

Data_Length = Media_File->Volume_Id_Count

 * Media_File->Volume_Id_Length;

Volid = Next_Free;

memcpy(Volid,"VOL11 VOL12 ",Data_Length);

if (Data_Length % 4) /* Ensure that Next_Free */

 Data_Length += (4 - (Data_Length % 4)); /* is incremented by a */

Next_Free += Data_Length; /* multiple of 4. */

Media_File->Offset_Next_File = Next_Free - Data_Buffer;

/*--*/

/* Build input data for the second media file for device TAPMLB01. */

/* Use the default sequence number, and volumes VOL21 and VOL22. */

/*--*/

Media_File = (Qsr_TAPE0100_File_t*)Next_Free;

Next_Free = (char*)(Media_File + 1);

Media_File->Sequence_Number = 0;

Media_File->Offset_First_Volume_Id = Next_Free - Data_Buffer;

Media_File->Volume_Id_Count = 2;

Media_File->Volume_Id_Length = 6;

Media_File->Starting_Volume = 1;

Data_Length = Media_File->Volume_Id_Count

 * Media_File->Volume_Id_Length;

Volid = Next_Free;

memcpy(Volid,"VOL21 VOL22 ",Data_Length);

if (Data_Length % 4) /* Ensure that Next_Free */

 Data_Length += (4 - (Data_Length % 4)); /* is incremented by a */

Next_Free += Data_Length; /* multiple of 4. */

/**/

/* Create the media definition. */

/**/

Data_Length = Next_Free - Data_Buffer;

memset(Text,’ ’,sizeof(Text));

memcpy(Text,"Save BIGLIB",11);

QsrCreateMediaDefinition(

 "SAVEBIGLIBQTEMP ", /* Media definition */

 name, library */

 Data_Buffer, /* Input data */

 Data_Length, /* Length of data */

 "TAPE0100", /* Format name */

 "*USE ", /* Public authority */

 Text, /* Text description */

 1, /* Replace if it exists */

 &Err_Code); /* Error code */

/**/

378 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* Save library BIGLIB using the media definition. */

/**/

strcpy(Cmd_String,

 "SAVLIB LIB(BIGLIB) DEV(*MEDDFN) MEDDFN(QTEMP/SAVEBIGLIB)");

Cmd_Length = strlen(Cmd_String);

QCMDEXC(Cmd_String,Cmd_Length);

return 0;

}

Example: Saving and restoring system-level environment variables

This two-part example illustrates how to save the current set of system-level environment variables and

restore them later.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Saving system-level environment variables

This program stores the system-level environment variables and the associated CCSIDs in a file for

restoring later.

Use the Create C Module (CRTCMOD) and the Create Program (CRTPGM) commands to create this

program.

Call this program with one parameter (the file to store the variable list and the CCSIDs).

/**/

/**/

/* */

/* FUNCTION: Save the system-level environment variable list */

/* and the CCSIDs in a file */

/* */

/* LANGUAGE: ILE C */

/* */

/* APIs USED: Qp0zGetAllSysEnv() */

/* */

/**/

/**/

#include <fcntl.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/stat.h>

#include <stdlib.h>

#include <errno.h>

#include <qp0z1170.h>

int main(int argc, char *argv[])

{

 int fd, bw, rc;

 int listBufSize, ccsidBufSize, *ccsidBuf;

 char *listBuf;

 int numvar, sl, sc;

 if(argc != 2)

 {

 printf("Usage: call %s <filename>\n",argv[0]);

 printf("Example: call %s ’/tmp/sev’\n",argv[0]);

 return -1;

 }

 sl = listBufSize = 1000;

APIs 379

sc = ccsidBufSize = 1000;

 listBuf = (char *)malloc(listBufSize);

 ccsidBuf = (int *)malloc(ccsidBufSize);

 /* Create a file of specified name */

 /* If it exists, it is cleared out */

 /* Opened for writing */

 fd = open(argv[1], O_CREAT | O_WRONLY | O_TRUNC, S_IRWXU);

 if(fd == -1)

 {

 printf("open() failed. errno = %d\n", errno);

 return -1;

 }

 rc = Qp0zGetAllSysEnv(listBuf, &listBufSize, ccsidBuf,

 &ccsidBufSize, NULL);

 if(rc != 0)

 {

 /* If there are no variables to save, write a */

 /* zero into the file and return success */

 if(rc == ENOENT)

 {

 numvar = 0;

 bw = write(fd, &numvar, sizeof(int));

 close(fd);

 printf("No system-level environment variables to save");

 return 0;

 }

 if(rc != ENOSPC)

 {

 printf("Error using Qp0zGetAllSysEnv(), errno = %d\n", rc);

 return -1;

 }

 /* rc = ENOSPC. size of buffer is not enough */

 /* change buffer size and try again */

 /* If listBuf is not large enough, */

 /* allocate more space */

 if(listBufSize > sl)

 {

 listBuf = (char *)realloc(listBuf, listBufSize);

 }

 /* If ccsidBuf is too small, allocate */

 /* more space */

 if(ccsidBufSize > sc)

 {

 ccsidBuf = (int *)realloc(ccsidBuf, ccsidBufSize);

 }

 rc = Qp0zGetAllSysEnv(listBuf, &listBufSize,

 ccsidBuf, &ccsidBufSize, NULL);

 if(rc != 0)

 {

 printf("Error using Qp0zGetAllSysEnv(), errno = %d\n", rc);

 return -1;

 }

 }

 /* Write the contents of the buffer into the file */

 /* First write the total number of ccsid values */

 /* This is the total number of variables */

380 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

numvar = ccsidBufSize/sizeof(int);

 bw = write(fd, &numvar, sizeof(int));

 if(bw == -1)

 {

 printf("write() of total number of ccsids failed. errno = %d\n", errno);

 return -1;

 }

 /* Next write the ccsid values */

 bw = write(fd, ccsidBuf, ccsidBufSize);

 if(bw == -1)

 {

 printf("write() of ccsid values failed. errno = %d\n", errno);

 return -1;

 }

 /* Now write the size (in bytes) of the listBuf */

 bw = write(fd, &listBufSize, sizeof(int));

 if(bw == -1)

 {

 printf("write() of listBufSize failed. errno = %d\n", errno);

 return -1;

 }

 /* Finally write the listBuf containing the variable strings*/

 bw = write(fd, listBuf, listBufSize);

 if(bw == -1)

 {

 printf("write() of listBuf failed. errno = %d\n", errno);

 return -1;

 }

 /* Close the file */

 rc = close(fd);

 if(rc != 0)

 {

 printf("close() failed. errno = %d\n", errno);

 return -1;

 }

 printf("System-level environment variables saved\n");

 return 0;

}

Restoring system-level environment variables

This program reads the system-level environment variable list from a file and then sets the system-level

environment variables.

Use the Create C Module (CRTCMOD) and the Create Program (CRTPGM) commands to create this

program.

Call this program with one parameter (the name of the file in which the system-level environment

variables were stored).

/**/

/**/

/* */

/* FUNCTION: Restore the system-level environment variable list */

/* and the associated CCSIDs stored in a file */

APIs 381

/* */

/* LANGUAGE: ILE C */

/* */

/* APIs USED: Qp0zPutSysEnv() */

/* */

/**/

/**/

#include <fcntl.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/stat.h>

#include <stdlib.h>

#include <errno.h>

#include <qp0z1170.h>

int main(int argc, char *argv[])

{

 int fd, rc, br, i, numvar;

 int ccsidBufSize = 0, listBufSize = 0, *ccsidBuf;

 char *listBuf;

 if (argc != 2)

 {

 printf("Usage: call %s <filename>\n",argv[0]);

 printf("Example: call %s ’/tmp/sev’\n",argv[0]);

 return -1;

 }

 /* Open the file specified */

 fd = open(argv[1], O_RDONLY);

 if(fd == -1)

 {

 printf("open() failed. errno = %d\n", errno);

 return -1;

 }

 /* Get the number of variables */

 br = read(fd, &numvar, sizeof(int));

 if(br == -1)

 {

 printf("read() failed. errno = %d\n", errno);

 return -1;

 }

 /* Could delete the existing system-level environment */

 /* variables and have only the restored values. */

 /* If so desired, could call Qp0zDltSysEnv() to do so */

 /* If there aren’t any elements in the file, skip the rest of */

 /* the reads and go to the end */

 if(numvar > 0)

 {

 ccsidBufSize = numvar*sizeof(int);

 ccsidBuf = (int *)malloc(ccsidBufSize);

 /* Read the ccsid values and put it in ccsidBuf */

 br = read(fd, ccsidBuf, ccsidBufSize);

 if(br == -1)

 {

 printf("read() failed. errno = %d\n", errno);

 return -1;

 }

382 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* Read the size of the list buffer and put it in listBufSize */

 br = read(fd, &listBufSize, sizeof(int));

 if(br == -1)

 {

 printf("read() failed. errno = %d\n", errno);

 return -1;

 }

 listBuf = (char *)malloc(listBufSize);

 /* Finally read the strings themselves */

 br = read(fd, listBuf, listBufSize);

 if(br == -1)

 {

 printf("read() failed. errno = %d\n", errno);

 return -1;

 }

 }

 /* Walk through the buffer and get the */

 /* name=value strings one by one */

 /* Use Qp0zPutSysEnv() to set the values */

 for(i = 0; i < numvar; i++)

 {

 rc = Qp0zPutSysEnv(listBuf, ccsidBuf[i], NULL);

 if(rc != 0)

 {

 printf("Qp0zPutSysEnv() failed. rc=%d\n",rc);

 return -1;

 }

 listBuf += strlen(listBuf) + 1;

 }

 close(fd);

 printf("System-level environment variables restored\n");

 return 0;

}

Examples: Scanning string patterns

These examples use the QCLSCAN API. A typical use of the QCLSCAN API is to allow the work station

user to retrieve all records that contain a specified pattern.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Example 1

Assume a 20-character database field containing only uppercase characters and the pattern ’ABC’ is

scanned for. The user program calls the QCLSCAN API for each database record read. The parameters

would be as follows:

 Field Name Result

STRING The 20-byte field to be scanned

STRLEN 20

STRPOS 1

PATTERN ’ABC’

PATLEN 3

APIs 383

Field Name Result

TRANSLATE ’0’

TRIM ’0’

WILD ’ ’

RESULT A value returned to your program

The following describes some fields and the results of the scan:

Scan String Result Comments

 1 ABCDEFGHIJKLMNOPQRST 001

 2 XXXXABCXXXXXXXXXXXXX 005

 3 abcXXXXXXXXXXXXXXXXX 000 Translation not requested

 4 XXXABCXXXXXABCXXXXXX 004 First occurrence found; see note

 5 ABABABABBCACCBACBABA 000 Not found

 6 ABABABCABCABCABCABCA 005

Note: In scan 4, the string has two places where the pattern could have been found. Since the STRPOS

value is 1, the first value (position 004) was found. If the value of STRPOS had been 4, the result

would still have been 004. If the STRPOS value had been in a range of 5 through 12, the result

would have been 012.

Example 2

Assume a 25-character database field containing only uppercase characters and a user program that will

prompt for the pattern to be scanned, which will not exceed 10 characters. The work station user is

allowed to enter 1 through 10 characters to search with and trailing blanks will be trimmed from the

pattern. The program would call the QCLSCAN program for each database record read. The program

parameters would be as follows:

 Field Name Result

STRING The 25-byte field to be scanned

STRLEN 25

STRPOS 1

PATTERN Varies

PATLEN 10

TRANSLATE ’0’

TRIM ’1’

WILD ’ ’

RESULT A value returned to your program

The following describes some fields and the results of the scan:

Scan String Pattern Result Comments

 1 ABCDEFGHIJKLMNOPQRSTUVWXY ’CDE ’ 003

 2 ABCDEFGHIJKLMNOPQRSTUVWXY ’CDEFGH ’ 003

 3 ABCDEFGHIJKLMNOPQRSTUVWXY ’CDEFGHIJKL ’ 003

 4 XXXXABCXXXXXXXXXXXXXXXXXX ’ABCD ’ 000 Not found

 5 abcXXXXXXXXXXXXXXXXXXXXXX ’ABC ’ 000 Not translated

 6 ABCXXXXXABC EXXXXXXXXXXXX ’ABC E ’ 009

 7 XXXABCXXXXXABCXXXXXXXXXXX ’ABC ’ 004 See note

Note: In scan 7, the string has two places where the pattern could be found. Since the STRPOS value is 1,

only the first value (position 004) is found. If the value of STRPOS were 4, the result would still be

004. If the STRPOS value were in the range of 5 through 12, the result would be 012.

384 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Example 3

Assume a 25-character database field containing either uppercase or lowercase characters. The user

program prompts for the pattern to be scanned, which does not exceed 5 characters. The work station

user can enter 1 through 5 characters to be found. The system trims trailing blanks from the pattern. If

the user enters an asterisk (*) in the pattern, the asterisk is handled as a wild character. The program calls

the QCLSCAN program for each database record read. The parameters are as follows:

 Field Name Result

STRING The 25-byte field to be scanned

STRLEN 25

STRPOS 1

PATTERN Varies

PATLEN 5

TRANSLATE ’1’ (See note 1)

TRIM ’1’

WILD ’*’

RESULT A value returned to your program

The following describes some fields and the results of the scan:

Scan String Pattern Result Comments

 1 ABCDEFGHIJKLMNOPQRSTUVWXY ’CDE ’ 003

 2 ABCDEFGHIJKLMNOPQRSTUVWXY ’C*E ’ 003

 3 abcdefghijklmnopqrstuvwxy ’C***G ’ 003 See note 1

 4 abcdefghijklmnopqrstuvwxy ’ABCD ’ 001

 5 abcXXXXXXXXXXXXXXXXXXXXXX ’C*E ’ 000 Not found

 6 XXXAbcXXXXXabcXXXXXXXXXXX ’ABC ’ 004 See note 2

 7 ABCDEFGHIJKLMNOPQRSTUVWXY ’*BC ’ -003 See note 3

 8 ABCDEFGHIJKLMNOPQRSTUVWXY ’ ’ -004 See note 4

Notes:

1. When field translation is specified (the TRANSLATE parameter is specified as ’1’), the string is

translated to uppercase characters before scanning occurs; the data in the string is not changed.

2. In scan 6, the string has two places where the pattern could have been found. Since the STRPOS value

is 1, the first value (position 004) was found.

3. In scan 7, the wild character (*) is the first character in the trimmed pattern. Wild characters cannot be

the first character in a pattern.

4. In scan 8, the trimmed pattern is blank.

Example: Using COBOL program to call APIs

This example illustrates using COBOL programs to call APIs.

This example COBOL program uses the example error handler in “Error handler for example COBOL

program” on page 387.

Note:

v In order for this example to run successfully, the error program, ACERRF24 (shown in “Error

handler for example COBOL program” on page 387), must exist in a library called UTCBL.

v Read the “Code license and disclaimer information” on page 575 for important legal

information.

APIs 385

IDENTIFICATION DIVISION.

 PROGRAM-ID. ACF24.

 **

 **

 *

 * FUNCTION: SHOWS HOW TO CALL THE VARIOUS APIs, WHILE

 * TESTING THAT THEY WORK PROPERLY.

 *

 * LANGUAGE: COBOL

 *

 * APIs USED: QLRRTVCE, QLRCHGCM, QLRSETCE

 *

 **

 **

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 old.

 05 oldname PIC X(10).

 05 oldlibr PIC X(10).

 77 scope PIC X VALUE "P".

 01 errparm.

 05 input-l PIC S9(6) BINARY VALUE ZERO.

 05 output-l PIC S9(6) BINARY VALUE ZERO.

 05 exception-id PIC X(7).

 05 reserved PIC X(1).

 05 exception-data PIC X(50).

 01 new.

 05 newname PIC X(10) VALUE "ACERRF24".

 05 newlibr PIC X(10) VALUE "UTCBL".

 77 newlib PIC X(10).

 PROCEDURE DIVISION.

 main-proc.

 DISPLAY "in ACF24".

 PERFORM variation-01 THRU end-variation.

 STOP RUN.

 variation-01.

 **

 * *

 * This variation addresses the situation where there is no *

 * pending COBOL main, so no pending error handler can exist. *

 * *

 **

 DISPLAY "no pending so expect nothing but error LBE7052".

 MOVE SPACES TO old exception-id.

 **

 * By setting error parm > 8, expect escape message *

 * LBE7052 to be returned in error parameter. *

 **

 MOVE LENGTH OF errparm TO input-l.

 CALL "QLRRTVCE" USING old scope errparm.

 IF exception-id IS NOT = "LBE7052" THEN

 DISPLAY "** error - expected LBE7052"

 ELSE

 DISPLAY "LBE7052 was found"

 END-IF.

 **

 * Reset input-l to ZERO, thus any further errors will cause *

 * COBOL program to stop. *

 **

 MOVE 0 TO input-l.

 MOVE SPACES TO old exception-id.

 variation-02.

 **

386 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

* *

 * This variation creates a pending run unit. It then makes *

 * sure that no pending error handler has been set. *

 * *

 **

 DISPLAY "create pending run unit".

 CALL "QLRCHGCM" USING errparm.

 **

 * *

 * No pending error handler exists so *NONE should be *

 * returned. *

 * *

 **

 CALL "QLRRTVCE" USING old scope errparm.

 DISPLAY "Retrieved Error Handler is=" old.

 IF oldname IS NOT = "*NONE" THEN

 DISPLAY "** error - expected *NONE for error handler"

 END-IF.

 MOVE 0 TO input-l.

 MOVE SPACES TO old exception-id.

 variation-03.

 **

 * *

 * This variation sets an error handler for the pending *

 * run unit and then does another check to make sure it *

 * was really set. *

 * *

 **

 CALL "QLRSETCE" USING new scope newlib old errparm.

 IF oldname IS NOT = "*NONE"

 DISPLAY "** error in oldname "

 END-IF.

 IF newlib IS NOT = "UTCBL"

 DISPLAY "** error in new library "

 END-IF.

 **

 * Call the retrieve API to check to make sure that the *

 * set API worked. *

 **

 MOVE SPACES TO old exception-id.

 CALL "QLRRTVCE" USING old scope errparm.

 DISPLAY "Retrieved Error Handler is=" old.

 IF oldname IS NOT = "ACERRF24" OR oldlibr IS NOT = "UTCBL"

 DISPLAY "** error - expected ACERRF24 error handler"

 END-IF.

 end-variation.

Error handler for example COBOL program

This example error handler works with “Example: Using COBOL program to call APIs” on page 385.

 IDENTIFICATION DIVISION.

 PROGRAM-ID. ACERRF24.

 **

 **

 *

 * FUNCTION: Error handler for preceding example COBOL program

 *

 * LANGUAGE: COBOL

 *

 * APIs USED: None

 *

 **

 **

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-AS400.

APIs 387

OBJECT-COMPUTER. IBM-AS400.

 SPECIAL-NAMES. SYSTEM-CONSOLE IS SYSCON.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 77 scope PIC X VALUE "P".

 01 errparm.

 05 FILLER PIC X(30).

 LINKAGE SECTION.

 77 cobol-id PIC X(7).

 77 valid-responses PIC X(6).

 01 progr.

 05 progname PIC X(10).

 05 proglibr PIC X(10).

 77 system-id PIC X(7).

 77 len-text PIC S9(9) COMP-4.

 01 subtext.

 03 subchars PIC X OCCURS 1 TO 230 TIMES

 DEPENDING ON len-text.

 77 retcode PIC X(1).

 PROCEDURE DIVISION USING cobol-id, valid-responses,

 progr, system-id, subtext, len-text, retcode.

 main-proc.

 **

 * check for typical messages and take appropriate action *

 **

 EVALUATE cobol-id

 WHEN "LBE7604"

 **

 * stop literal, let the user see the message *

 **

 MOVE SPACE TO retcode

 WHEN "LBE7208"

 **

 * accept/display, recoverable problem answer G to continue

 **

 MOVE "G" TO retcode

 WHEN OTHER

 **

 * for all other messages signal system operator and *

 * end the current run unit *

 **

 DISPLAY "COBOL Error Handler ACERRF24 "

 "Found message " cobol-id

 " Issued from program " progr

 UPON syscon

 DISPLAY " Ended current run unit"

 UPON syscon

 MOVE "C" TO retcode

 END-EVALUATE.

 GOBACK.

Example: Using the control device (QTACTLDV) API

This example shows how the QTACTLDV (Control Device) API could be used to send a diagnostic

command to a tape device.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
/* Usage example 1 for QTACTLDV API */

/* */

/* */

 #include <string.h>

 #include <stdio.h>

 #include <qtactldv.h>

 #include <qusec.h>

388 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/**/

 /* Typedef structure for QTACTLDV */

 /**/

 typedef struct { /* QTACTLDV command data */

 Qta_CTLD0100_t data; /* command data */

 char cmd_str[6]; /* command string */

 } cmd_struct;

 /**/

 /* Typedef structure for Error code */

 /**/

 typedef struct { /* Error code structure */

 Qus_EC_t Edata; /* Error code data */

 /* CPF67C8 excp data */

 char dev_nam[10]; /* Device name */

 char reason_cd[3]; /* Reason code */

 char resv1[3]; /* Reserved */

 } EC_struct;

 /**/

 /* Constants */

 /**/

 #define SNDRSNS "\x03\x00\x00\x00\x12\x00" /* Request sense */

 /* command string */

 #define SNDDIAG "\x1D\x04\x00\x00\x00\x00" /* Send diagnostic */

 /* command string */

 main(int argc,char *argv[])

 {

 /**/

 /* */

 /* START OF MAINLINE */

 /* */

 /**/

 /**/

 /* Variables for QTACTLDV */

 /**/

 char device[10]; /* device name */

 char send_buff[256]; /* send buffer */

 int send_buff_len; /* length of send buffer */

 char recv_buff[256]; /* receive buffer */

 int recv_buff_len; /* length of recv buffer */

 int cmd_data_len; /* length of command data */

 int i; /* counter variable */

 EC_struct EC; /* error code structure */

 cmd_struct Cmd; /* struct for QTACTLDV */

 memcpy(device,argv[1],10); /* copy device name */

 /**/

 /* OPEN connection */

 /**/

 send_buff_len = 0; /* no send buffer */

 recv_buff_len = 0; /* no receive buffer */

 cmd_data_len = 0; /* no command data */

 EC.Edata.Bytes_Provided = 32; /* No exceptions */

 QTACTLDV(device, /* device name */

 FUNOPEN, /* requested function */

 send_buff, /* send buffer */

 send_buff_len, /* length of send buffer */

 recv_buff, /* receive buffer */

 recv_buff_len, /* length of receive buffer */

APIs 389

CTLD0100, /* command format */

 &Cmd, /* command data */

 cmd_data_len, /* length of command data */

 &EC); /* Error Code */

 if (EC.Edata.Bytes_Available>0) /* If there was an error */

 {

 /* Handle the error */

 }

 /**/

 /* Send Diagnostic command */

 /**/

 send_buff_len = 0; /* no send buffer */

 recv_buff_len = 0; /* no recv buffer */

 cmd_data_len = sizeof(Cmd); /* size of command struct */

 EC.Edata.Bytes_Provided = 32; /* No exceptions */

 Cmd.data.Data_transfer_direction = XFRNONE; /* No data transfer */

 Cmd.data.Requested_transfer_length = 0; /* 0 transfer length */

 Cmd.data.Ignore_length_errors = RPTLERR; /* report length errs */

 Cmd.data.Command_timeout = 600; /* 10 minute timeout */

 Cmd.data.Type_of_command = CMDSCSI; /* SCSI command */

 Cmd.data.Offset_to_command_string = 32; /* offset 32 */

 Cmd.data.Length_of_command_string = 6; /* 6 byte command */

 Cmd.data.Reserved1=0; /* reserved */

 memcpy(&Cmd.cmd_str, SNDDIAG, 6); /* command string */

 QTACTLDV(device, /* device name */

 FUNCMD, /* requested function */

 send_buff, /* send buffer */

 send_buff_len, /* length of send buffer */

 recv_buff, /* receive buffer */

 recv_buff_len, /* length of receive buffer */

 CTLD0100, /* command format */

 &Cmd, /* command data */

 cmd_data_len, /* length of command data */

 &EC); /* Error code */

 if (EC.Edata.Bytes_Available>0) /* If there was an error */

 {

 /* See what message was returned */

 if (strncmp(EC.Edata.Exception_Id,"CPF67C8",7)==0) /* Command

 failed msg */

 {

 /**/

 /* Check the data returned with CPF67C8 */

 /**/

 if (strncmp(EC.reason_cd,"\x02\xC0", 2) == 0) /* Device detected

 error */

 {

 /* Check the SCSI completion status */

 if (EC.reason_cd[2]==’\x02’) /* Check condition status */

 {

 /**/

 /* Send Request Sense command */

 /**/

 send_buff_len = 0; /* no send buffer */

 recv_buff_len = 18; /* length of recv buffer */

 cmd_data_len = sizeof(Cmd); /* size of command struct */

 Cmd.data.Data_transfer_direction = XFRRECV; /* receive */

 Cmd.data.Requested_transfer_length = 18; /* 18 bytes */

 Cmd.data.Ignore_length_errors = IGNLERR; /* ignore length

 errors */

 Cmd.data.Command_timeout = 60; /* 60 sec timeout */

 Cmd.data.Type_of_command = CMDSCSI; /* SCSI command */

 Cmd.data.Offset_to_command_string = 32; /* offset 32 */

390 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Cmd.data.Length_of_command_string = 6; /* 6 byte cmd */

 Cmd.data.Reserved1=0; /* reserved */

 memcpy(&Cmd.cmd_str, SNDRSNS, 6); /* command string */

 EC.Edata.Bytes_Provided = 32; /* No exceptions */

 QTACTLDV(device, /* device name */

 FUNCMD, /* requested function */

 send_buff, /* send buffer */

 send_buff_len, /* length of send buffer */

 recv_buff, /* receive buffer */

 recv_buff_len, /* length of receive buffer */

 CTLD0100, /* command format */

 &Cmd, /* command data */

 cmd_data_len, /* length of command data */

 &EC); /* Error code */

 if (EC.Edata.Bytes_Available>0) /* If there was an error */

 {

 /* Handle error on request sense command */

 }

 else

 {

 /* Parse the request sense data to determine what action */

 /* to take. */

 }

 }

 else if (EC.reason_cd[2]==’\x08’) /* Busy status */

 {

 /* Try the command again later */

 }

 else /* Unexpected completion status */

 {

 /* Send error message for unexpected completion status */

 }

 }

 else if (strncmp(EC.reason_cd,"\x02\xC1\x00", 3) == 0)

 /* Selection timeout */

 {

 /* Send message that device might be powered off */

 }

 /* Add else if for the other reason codes here */

 else

 {

 /* Send error message for unexpected reason code */

 }

 }

 else

 {

 /* Handle other messages */

 }

 }

 else

 {

 /* No error */

 }

 /**/

 /* CLOSE connection */

 /**/

 send_buff_len = 0; /* no send buffer */

 recv_buff_len = 0; /* no receive buffer */

 cmd_data_len = 0; /* no command data */

APIs 391

EC.Edata.Bytes_Provided = 32; /* No exceptions */

 QTACTLDV(device, /* device name */

 FUNCLOS, /* requested function */

 send_buff, /* send buffer */

 send_buff_len, /* length of send buffer */

 recv_buff, /* receive buffer */

 recv_buff_len, /* length of receive buffer */

 CTLD0100, /* command format */

 &Cmd, /* command data */

 cmd_data_len, /* length of command data */

 &EC.Edata); /* Error code */

 if (EC.Edata.Bytes_Available>0) /* If there was an error */

 {

 /* Handle the error */

 }

 }

This example shows how the QTACTLDV (Control Device) API could be used to display the tape device

firmware level.

/* Usage example 2 for QTACTLDV API */

/* */

/* */

#include // Control Device API

#include // Error code header

#include // String Header File

#include // Standard I/O Header

#include // Standard Library Header

#include // Exception & cancel declares

/***/

/* Type definitions */

/***/

// Define the command structure for sending commands using QTACTLDV API.

typedef struct { // Command Structure

 Qta_CTLD0100_t hdr; // Header

 char cmd_str[6]; // Command String

} ctldv_cmd_t;

/**/

/* Entry point to program. */

/**/

int main (int argc, char *argv[])

{

 char device[10]; // Device name to get FM level

 int deviceLen; // Length of device name to cop

 char send_buff[1]; // Send buffer

 int send_buff_len; // Length of send buffer

 char recv_buff[50]; // Receive buffer

 int recv_buff_len; // Length of receive buffer

 ctldv_cmd_t ctldv_cmd; // Command variable

 int ctldv_cmd_len; // Length of command string

 char tempChar; // Used to conver ASCII to EBCD

 Qus_EC_t EC; // Error code for qtactldv

 char code[4]; // EBCDIC code level

 int i; // Iterator to move ASCII to EB

 EC.Bytes_Provided = 0; // Return errors to user

 memset(device, ’ ’, sizeof(device)); // Set to blanks

 deviceLen=strlen(argv[1]);

 if (deviceLen>10)

 deviceLen=10;

 memcpy(device, argv[1], deviceLen); // Copy up to 10 chars

392 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

memset(code, ’ ’, sizeof(code)); // Clear code level

 /**/

 /* Open the pipe. */

 /**/

 send_buff_len = 0; // No send buffer

 recv_buff_len = 0; // No receive buffer

 ctldv_cmd_len = 0; // No command

 #pragma exception_handler(PipeFailed, 0, 0, _C2_MH_ESCAPE, _CTLA_HANDLE)

 QTACTLDV(device, // Device name

 FUNOPEN, // Function requested

 send_buff, // Send buffer

 send_buff_len, // Send buffer length

 recv_buff, // Receive buffer

 recv_buff_len, // Receive buffer length

 CTLD0100, // Command structure

 &cldv_cmd, // Command data

 ctldv_cmd_len, // Command data length

 &EC); // Error structure

 #pragma disable_handler

 /**/

 /* Get the drive VPD */

 /**/

 recv_buff_len = 16; // Receive buffer for VPD

 send_buff_len = 0; // No send buffer

 ctldv_cmd_len = 32 + 6; // Reserve command size

 ctldv_cmd.hdr.Command_timeout = 600; // 10 minute timeout

 ctldv_cmd.hdr.Type_of_command = 0; // SCSI Command

 ctldv_cmd.hdr.Offset_to_command_string = sizeof(ctldv_cmd.hdr); // Offset 32

 ctldv_cmd.hdr.Length_of_command_string = 6; // 6 byte command

 ctldv_cmd.hdr.Reserved1 = 0; // Reserved

 ctldv_cmd.hdr.Data_transfer_direction=XFRRECV; // Receiving inquiry data

 ctldv_cmd.hdr.Requested_transfer_length=16; // Number of bytes to transfer

 ctldv_cmd.hdr.Ignore_length_errors = RPTLERR; // Report length errors

 memset(ctldv_cmd.cmd_str, 0x00, 6); // clear command

 ctldv_cmd.cmd_str[0] = 0x12; // set to Inquiry command

 ctldv_cmd.cmd_str[1] = 0x01; // set EVPD mode

 ctldv_cmd.cmd_str[2] = 0x03; // Set code page - VPD

 ctldv_cmd.cmd_str[4] = 0x10; // Allocation length

 #pragma exception_handler(PipeClose, 0, 0, _C2_MH_ESCAPE, _CTLA_HANDLE)

 QTACTLDV(device, // Device name

 FUNCMD, // Function requested

 send_buff, // Send buffer

 send_buff_len, // Send buffer length

 recv_buff, // Receive buffer

 recv_buff_len, // Receive buffer length

 CTLD0100, // Command structure

 &cldv_cmd, // Command data

 ctldv_cmd_len, // Command data length

 &EC); // Error structure

 #pragma disable_handler

 /**/

 /* Convert the level to EBSDIC */

 /**/

 for (i = 0; (i < sizeof(code)); i++)

 {

 tempChar = recv_buff[12+i]; // Code offest in VPD data

 if (tempChar < 0x41) // is it a number?

 tempChar = tempChar - 0x30 + 0xF0; // ASCII to EBCDII 0-9

 else {

 tempChar = tempChar & 0xDF; // Convert to ASCII uppercase

 if (tempChar < 0x4A) // is char < J ?

APIs 393

tempChar = tempChar - 0x41 + 0xC1; // ASCII to EBCDII A-I

 else if (tempChar < 0x53) // is char < S

 tempChar = tempChar - 0x4A + 0xD1; // ASCII to EBCDII J-R

 else

 tempChar = tempChar - 0x53 + 0xE2; // ASCII to EBCDII S-Z

 }

 code[i] = tempChar; // Output the EBCDIC char

 }

 printf("The code level is: %s\n", code);

 /***/

 /* Close the pipe. */

 /***/

 PipeClose:

 send_buff_len = 0; // No send buffer

 recv_buff_len = 0; // No receive buffer

 ctldv_cmd_len = 0; // No command

 #pragma exception_handler(PipeFailed, 0, 0, _C2_MH_ESCAPE, _CTLA_HANDLE)

 QTACTLDV(device, // Device name

 FUNCLOS, // Function requested

 send_buff, // Send buffer

 send_buff_len, // Send buffer length

 recv_buff, // Receive buffer

 recv_buff_len, // Receive buffer length

 CTLD0100, // Command structure

 &cldv_cmd, // Command data

 ctldv_cmd_len, // Command data length

 &EC); // Error structure

 #pragma disable_handler

 PipeFailed:

 return 0; // return to user

}

Examples: Using a data queue

These examples explain three methods to process data queue files.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Example 1: Waiting up to 2 hours to receive data from data queue

In the following example, program B specifies to wait up to 2 hours (7200 seconds) to receive an entry

from the data queue. Program A sends an entry to data queue DTAQ1 in library QGPL. If program A

sends an entry within 2 hours, program B receives the entries from this data queue. Processing begins

immediately. If 2 hours elapse without program A sending an entry, program B processes the time-out

condition because the field length returned is 0. Program B continues receiving entries until this time-out

condition occurs. The programs are written in CL; however, either program could be written in any

high-level language.

The data queue is created with the following command:

CRTDTAQ DTAQ(QGPL/DTAQ1) MAXLEN(80)

In this example, all data queue entries are 80 bytes long.

In program A, the following statements relate to the data queue:

PGM

DCL &FLDLEN *DEC LEN(5 0) VALUE(80)

DCL &FIELD *CHAR LEN(80)

.

.(determine data to be sent to the queue)

.

394 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

CALL QSNDDTAQ PARM(DTAQ1 QGPL &FLDLEN &FIELD)

.

.

.

In program B, the following statements relate to the data queue:

PGM

 DCL &FLDLEN *DEC LEN(5 0) VALUE(80)

 DCL &FIELD *CHAR LEN(80)

 DCL &WAIT *DEC LEN(5 0) VALUE(7200) /* 2 hours */

 .

 .

 .

LOOP: CALL QRCVDTAQ PARM(DTAQ1

 QGPL &FLDLEN &FIELD &WAIT)

IF (&FLDLEN *NE 0) DO /* Entry received */

 .

 . (process data from data queue)

 .

 GOTO LOOP /* Get next entry from data queue */

 ENDDO

 .

 . (no entries received for

 2 hours; process time-out condition)

 .

Example 2: Waiting for input from a display file and an ICF file

The following example is different from the usual use of data queues because there is only one job. The

data queue serves as a communications object within the job rather than between two jobs.

In this example, a program is waiting for input from a display file and an ICF file. Instead of alternately

waiting for one and then the other, a data queue is used to allow the program to wait on one object (the

data queue). The program calls QRCVDTAQ and waits for an entry to be placed on the data queue that

was specified on the display file and the ICF file. Both files specify the same data queue. Two types of

entries are put on the queue by display data management and ICF data management support when the

data is available from either file. ICF file entries start with *ICFF and display file entries start with *DSPF.

The display file or ICF file entry that is put on the data queue is 80 characters in length and contains the

field attributes described in the following table. Therefore, the data queue that is specified using the

APIs 395

CRTDSPF, CHGDSPF, OVRDSPF, CRTICFF, CHGICFF, and OVRICFF commands must have a length of at

least 80 characters.

 Position (and Data Type) Description

1 through 10 (character) The type of file that placed the entry on the data queue.

This field will have one of two values:

*ICFF for ICF file

*DSPF for display file

If the job receiving the data from the data queue has

only one display file or one ICF file open, then this is the

only field needed to determine what type of entry has

been received from the data queue.

11 through 12 (binary) The unique identifier for the file. The value of the

identifier is the same as the value in the open feedback

area for the file. This field should be used by the

program receiving the entry from the data queue only if

there is more than one file with the same name placing

entries on the data queue.

13 through 22 (character) The name of the display file or ICF file. This is the name

of the file actually opened, after all overrides have been

processed, and is the same as the file name found in the

open feedback area for the file. This field should be used

by the program receiving the entry from the data queue

only if there is more than one display file or ICF file that

is placing entries on the data queue.

23 through 32 (character) The library where the file is located. This is the name of

the library, after all overrides have been processed, and is

the same as the library name found in the open feedback

area for the file. This field should be used by the

program receiving the entry from the data queue only if

there is more than one display file or ICF file that is

placing entries on the data queue.

33 through 42 (character) The program device name, after all overrides have been

processed. This name is the same as that found in the

program device definition list of the open feedback area.

For file type *DSPF, this is the name of the display

device where the command or Enter key was pressed.

For file type *ICFF, this is the name of the program

device where data is available. This field should be used

by the program receiving the entry from the data queue

only if the file that placed the entry on the data queue

has more than one device or session invited prior to

receiving the data queue entry.

43 through 80 (character) Reserved.

The following example shows coding logic that the application program previously described might use:

 .

 .

 .

 .

 OPEN DSPFILE ...

 /* Open the Display file. DTAQ parameter specified on*/

 /* CRTDSPF, CHGDSPF, or OVRDSPF for the file. */

 OPEN ICFFILE ...

396 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* Open the ICF file. DTAQ parameter specified on */

 /* CRTICFF, CHGICFF, or OVRICFF for the file. */

 .

 .

 DO

 WRITE DSPFILE

 /* Write with Invite for the Display file */

 WRITE ICFFILE

 /* Write with Invite for the ICF file */

 CALL QRCVDTAQ

 /* Receive an entry from the data queue specified */

 /* on the DTAQ parameters for the files. Entries */

 /* are placed on the data queue when the data is */

 /* available from any invited device or session */

 /* on either file. */

 /* After the entry is received, determine which file */

 /* has data available, read the data, process it, */

 /* invite the file again and return to process the */

 /* next entry on the data queue. */

 IF ’ENTRY TYPE’ FIELD = ’*DSPF ’ THEN

 /* Entry is from display */

 DO /* file. Since this entry*/

 /* does not contain the */

 /* data received, the data*/

 /* must be read from the */

 /* file before it can be */

 READ DATA FROM DISPLAY FILE /* processed. */

 PROCESS INPUT DATA FROM DISPLAY FILE

 WRITE TO DISPLAY FILE /* Write with Invite */

 END

 ELSE /* Entry is from ICF */

 /* file. Since this entry*/

 /* does not contain the */

 /* data received, the data*/

 /* must be read from the */

 /* file before it can be */

 /* processed. */

 READ DATA FROM ICF FILE

 PROCESS INPUT DATA FROM ICF FILE

 WRITE TO ICF FILE /* Write with Invite */

 LOOP BACK TO RECEIVE ENTRY FROM DATA QUEUE

 .

 .

 .

 END

Example 3: Waiting for input from a display file and a data queue

In the following example, the program in Job B is waiting for input from a display file that it is using

and for input to arrive on the data queue from Job A. Instead of alternately waiting for the display file

and then the data queue, the program waits for one object, the data queue.

APIs 397

The program calls QRCVDTAQ and waits for an entry to be placed on the data queue that was specified

on the display file. Job A is also placing entries on the same data queue. There are two types of entries

put on this queue, the display file entry and the user-defined entry. The display file entry is placed on the

data queue by display data management when data is available from the display file. The user-defined

entry is placing on the data queue by Job A.

The structure of the display file entry is described in the previous example.

The structure of the entry placed on the queue by Job A is defined by the application programmer.

The following example shows coding logic that the application program in Job B might use:

 .

 .

 .

 .

 OPEN DSPFILE ...

 /* Open the Display file. DTAQ parameter specified on*/

 /* CRTDSPF, CHGDSPF, or OVRDSPF for the file. */

 .

 .

 DO

 WRITE DSPFILE /* Write with Invite for the Display file */

 CALL QRCVDTAQ

 /* Receive an entry from the data queue specified */

 /* on the DTAQ parameter for the file. Entries */

 /* are placed on the data queue either by Job A or */

 /* by display data management when data is */

 /* available from any invited device on the display */

 /* file. */

 /* After the entry is received, determine what type */

 /* of entry it is, process it, and return to receive */

 /* the next entry on the data queue. */

 IF ’ENTRY TYPE’ FIELD = ’*DSPF ’ THEN

 /* Entry is from display */

 DO /* file. Since this entry*/

398 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* does not contain the */

 /* data received, the data*/

 /* must be read from the */

 /* file before it can be */

 READ DATA FROM DISPLAY FILE /* processed. */

 PROCESS INPUT DATA FROM DISPLAY FILE

 WRITE TO DISPLAY FILE

 /* Write with Invite */

 END

 ELSE /* Entry is from Job A. */

 /* This entry contains */

 /* the data from Job A, */

 /* so no read is required*/

 /* before processing the */

 /* data. */

 PROCESS DATA QUEUE ENTRY FROM JOB A

 LOOP BACK TO RECEIVE ENTRY FROM DATA QUEUE

 .

 .

 .

 END

Example: Using environment variables

This program displays the value of an environment variable and then sets the environment variable to a

new value.

Use the Create C Module (CRTCMOD) and the Create Program (CRTPGM) commands to create this

program.

Call this program with one parameter to display the environment variable specified by that parameter.

Call this program with two parameters to set the environment variable specified by the first parameter to

the value specified by the second parameter.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
/**/

/**/

/* */

/* FUNCTION: Display the value of an environment variable and */

/* then set the environment variable to a new value. */

/* */

/* LANGUAGE: ILE C */

/* */

/* APIs USED: getenv(), putenv() */

/* */

/**/

/**/

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <string.h>

#define BUFLEN 1024

int main(int argc, char *argv[])

{

 int num=0; /* counter */

 int rc; /* API return code */

 int l1, l2; /* lengths of the two parameters */

 char *envvar=NULL; /* pointer to an environment variable*/

 char **envvaridx=NULL; /* pointer to an envvar pointer */

 char envstring[BUFLEN];

 /* buffer to construct putenv request*/

APIs 399

/* Show a small usage message. */

 if ((argc != 2) && (argc != 3)) {

 printf("Usage: %s <ENV_VAR> <new_value>\n OR \n"

 "Usage: %s <ENV_VAR>\n", argv[0], argv[0]);

 printf("Sets an environment variable to a user requested\n"

 "value\n"

 "OR\nDisplays the value of a single environment variable\n");

 exit(1);

 }

 if (argc == 2) {

 /* Called just to display the environment variables. */

 envvar = getenv(argv[1]);

 if (envvar == NULL) {

 printf("No environment variable %s set\n",

 argv[1]);

 }

 else {

 printf("Environment variable: %s\n", envvar);

 }

 return 0;

 }

 /* ELSE, called to set an environment variable. */

 /* Check the size of the parameters and construct a string of */

 /* the form "VAR=string" which is valid input to putenv. */

 l1 = strlen(argv[1]);

 l2 = strlen(argv[2]);

 if (l1+l2+2 >= BUFLEN) {

 printf("Only 1024 characters total allowed for this test\n");

 exit(1);

 }

 memcpy(envstring, argv[1], l1);

 envstring[l1] = ’=’;

 memcpy(&envstring[l1+1], argv[2], l2);

 envstring[l1+l2+1]=’\0’;

 /* Now that the string is built, let’s see if the environment */

 /* variable was already set. */

 envvar = getenv(argv[1]);

 if (envvar == NULL) {

 printf("Setting NEW environment variable %s\n",

 envstring);

 }

 else {

 printf("Resetting OLD environment variable from: %s\n to %s\n",

 envvar, envstring);

 }

 /* Now actually set the environment variable. */

 rc = putenv(envstring);

 if (rc < 0) {

 printf("putenv failed, errno = %d\n", errno);

 return -1;

 }

 printf("Environment variable set\n");

 return 0;

}

Examples: Using ILE Common Execution Environment data APIs

These examples show how to call the ILE Common Execution Environment (CEE) data APIs for ILE

COBOL and ILE RPG.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

400 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

PROCESS NOMONOPRC.

 **

 *

 * This sample ILE COBOL program demonstrates how to call the

 * Common Execution Environment (CEE) Date APIs. The program

 * accepts two parameters. The first is the date in character

 * form and the second the format of the date. For instance

 * CALL CEEDATES (’10131955’ ’MMDDYYYY’) causes the program

 * to treat the date as October 13 1955).

 *

 * The program then displays on the console the numeric day of

 * the week for that date (Sunday = 1) and the named day of

 * week for that date.

 *

 **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CEEDATES.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SPECIAL-NAMES.

 LINKAGE TYPE PROCEDURE FOR "CEEDAYS" USING ALL DESCRIBED,

 LINKAGE TYPE PROCEDURE FOR "CEEDYWK" USING ALL DESCRIBED,

 LINKAGE TYPE PROCEDURE FOR "CEEDATE" USING ALL DESCRIBED.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 Lilian-Date PIC S9(9) BINARY.

 01 Day-of-Week-Numeric PIC S9(9) BINARY.

 01 Day-of-Week-Alpha PIC X(10).

 01 Day-of-Week-Format PIC X(10) VALUE "Wwwwwwwwwz".

 LINKAGE SECTION.

 01 Sample-Date PIC X(8).

 01 Date-Format PIC X(8).

 PROCEDURE DIVISION USING Sample-Date, Date-Format.

 SAMPLE.

 *

 * Convert formatted date to Lilian date

 *

 CALL "CEEDAYS" USING Sample-Date

 Date-Format

 Lilian-Date

 OMITTED.

 *

 * Get numeric day of week from Lilian date

 *

 CALL "CEEDYWK" USING Lilian-Date

 Day-of-Week-Numeric

 OMITTED.

 *

 * Get day of week from Lilian date

 *

 CALL "CEEDATE" USING Lilian-Date

 Day-of-Week-Format

 Day-of-Week-Alpha

 OMITTED.

 DISPLAY "Day of week = " Day-of-Week-Numeric UPON CONSOLE.

 DISPLAY "Day of week = " Day-of-Week-Alpha UPON CONSOLE.

 STOP RUN.

 D**

 D*

 D* This sample ILE RPG program demonstrates how to call the

 D* Common Execution Environment (CEE) Date APIs. The program

 D* accepts two parameters. The first is the date in character

 D* form and the second the format of the date. For instance

 D* CALL CEEDATES (’10131955’ ’MMDDYYYY’) causes the program

 D* to treat the date as October 13 1955).

APIs 401

D*

 D* The program must be compiled with DFTACTGRP(*NO)

 D*

 D* The program then displays on the console the numeric day of

 D* the week for that date (Sunday = 1) and the named day of

 D* week for that date.

 D*

 D**

 DLilianDate s 10i 0

 DDayOfWkN s 10i 0

 DDayOfWkA s 10

 DDayOfWkFmt s 10 inz(’Wwwwwwwwwz’)

 C *entry plist

 C parm SampleDate 8

 C parm DateFormat 8

 C*

 C* Convert formatted date to Lilian date

 C*

 C callb(d) ’CEEDAYS’

 C parm SampleDate

 C parm DateFormat

 C parm LilianDate

 C parm *OMIT

 C*

 C* Get numeric day of week from Lilian date

 C*

 C callb(d) ’CEEDYWK’

 C parm LilianDate

 C parm DayOfWkN

 C parm *OMIT

 C*

 C* Get day of week from Lilian date

 C*

 C callb(d) ’CEEDATE’

 C parm LilianDate

 C parm DayOfWkFmt

 C parm DayOfWkA

 C parm *OMIT

 C*

 C DayOfWkN dsply

 C DayOfWkA dsply

 C eval *inlr = ’1’

 C return

Examples: Using the generic terminal APIs

These two examples illustrate programs that implement a generic terminal and a simple interpreter.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Terminal program

This program starts and runs a generic terminal.

This program demonstrates the use of the generic terminal functions Qp0zStartTerminal(),

Qp0zRunTerminal(), Qp0zEndTerminal(), and Qp0zGetTerminalPid().

Use the Create Bound C Program (CRTBNDC) command to create this program (see “Creating the

terminal and interpreter programs” on page 405).

Call this program with no parameters (see “Calling the terminal program” on page 406).

/* Includes */

#include <qp0ztrml.h>

#include <qp0z1170.h>

402 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

#include <stdlib.h>

#include <stdio.h>

/* Constants */

#define NUM_PREDEFINED_ENVS 2

/* Global Variables */

extern char **environ;

int main (int argc, char *argv[])

{

 char *args[2]; /* Argument array */

 int envCount; /* Count of currently defined env vars */

 int index; /* Loop index */

 char **envp; /* For walking environ array */

 char **envs; /* Environment variable array */

 Qp0z_Terminal_T handle; /* Terminal handle */

 Qp0z_Terminal_Attr_T ta; /* Terminal attributes */

 pid_t pid; /* Process ID of interpreter */

 int rc; /* Return code */

 /**/

 /* Build the argument array. */

 /**/

 args[0] = "/QSYS.LIB/QGPL.LIB/ECHOINT.PGM";

 args[1] = NULL;

 /**/

 /* Build the environment variable array. */

 /**/

 /* Make sure environ is set in this activation group. */

 Qp0zInitEnv();

 /* Count the number of environment variables currently defined in this

 process. Qp0zStartTerminal() will make sure the interpreter

 process does not have too many environment variables. */

 for (envCount = 0, envp = environ; *envp != NULL; ++envp, ++envCount);

 /* Allocate storage for the environment variable array. */

 envs = (char **)malloc(sizeof(char *) *

 (envCount + NUM_PREDEFINED_ENVS));

 if (envs == NULL) {

 perror("malloc() failed");

 exit(1);

 }

 /* Copy the current environment variables to the array. */

 for (index = 0; environ[index] != NULL; ++index) {

 envs[index] = environ[index];

 }

 /* Set QIBM_USE_DESCRIPTOR_STDIO variable for using descriptors. This

 will override the current value of the variable. */

 envs[index++] = "QIBM_USE_DESCRIPTOR_STDIO=Y";

 /* Null terminate array of environment variables. */

 envs[index] = NULL;

 /**/

 /* Set the terminal attributes. */

 /**/

 memset(&ta, ’\0’, sizeof(Qp0z_Terminal_Attr_T));

 ta.Buffer_Size = 8196;

 ta.Inherit.pgroup = SPAWN_NEWPGROUP;

APIs 403

ta.Title = "Echo Interpreter";

 ta.Cmd_Key_Line1 = "F3=Exit F9=Retrieve";

 ta.Cmd_Key_Line2 = "F17=Top F18=Bottom";

 /**/

 /* Start and run the terminal. */

 /**/

 /* Start the terminal. */

 if (Qp0zStartTerminal(

handle, args, envs, ta) != 0) {

 perror("Qp0zStartTerminal() failed");

 exit(1);

 }

 /* Get the PID of the interpreter process. */

 if (Qp0zGetTerminalPid(handle, &pid) != 0) {

 perror("Qp0zGetTerminalPid() failed");

 exit(1);

 }

 /* Run the terminal. */

 rc = Qp0zRunTerminal(handle);

 switch (rc) {

 case QP0Z_TERMINAL_F12:

 case QP0Z_TERMINAL_F3:

 case QP0Z_TERMINAL_ENDED:

 /* Do nothing */

 break;

 default:

 perror("Qp0zRunTerminal() failed");

 exit(1);

 break;

 }

 /* End the terminal. */

 Qp0zEndTerminal(handle);

 return 0;

}

Interpreter program

This program is a simple echo interpreter that is used by the terminal program (see “Terminal program”

on page 402).

Use the Create Bound C Program (CRTBNDC) command to create this program (see “Creating the

terminal and interpreter programs” on page 405).

/* Echo interpreter */

#include <stdio.h>

#include <signal.h>

#include <stdlib.h>

static void SignalHandler(int);

int main (int argc, char *argv[])

{

 char buffer[8192]; /* Buffer for reading input */

 struct sigaction sigact; /* Signal action */

 /* Set up a signal handler for SIGHUP. The terminal

 sends this signal when the user presses F3 to exit. */

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

404 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

sigact.sa_handler = SignalHandler;

 if (sigaction(SIGHUP, &sigact, NULL) != 0) {

 perror("sigaction(SIGHUP) failed.");

 exit(2);

 }

 /* Set up a signal handler for SIGINT. The terminal sends

 this signal when the user presses SysReq 2. */

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = SignalHandler;

 if (sigaction(SIGINT, &sigact, NULL) != 0) {

 perror("sigaction(SIGINT) failed.");

 exit(2);

 }

 /* Switch stdout to use line-mode buffering. */

 setvbuf(stdout, NULL, _IOLBF, 128);

 printf("Echo interpreter starting ...\n");

 printf("Enter text:\n");

 /* Do forever. */

 while (1) {

 /* Read a line from stdin. */

 gets(buffer);

 /* End and clean up any allocated

 resources when stdin is closed. */

 if (feof(stdin)) {

 printf("Echo interpreter ending ...\n");

 exit(0);

 }

 /* Echo the line to stdout. */

 printf("%s\n", buffer);

 } /* End of while */

 return 0;

}

void

SignalHandler(int signo)

{

 printf("Ending for signal %d\n", signo);

 exit(1);

}

Creating the terminal and interpreter programs

The following examples show how to create the example programs (“Terminal program” on page 402 and

“Interpreter program” on page 404). These examples assume that the source for the terminal program is

member TERMINAL in the file QGPL/QCSRC and that the source for the interpreter program is member

INTERPRET in the file QGPL/QCSRC.

Create the terminal program:

CRTBNDC PGM(QGPL/TERMINAL)

 SRCFILE(QGPL/QCSRC)

 SRCMBR(TERMINAL)

 SYSIFCOPT(*IFSIO)

 TEXT(’Example Terminal program’)

Create the interpreter program:

APIs 405

CRTBNDC PGM(QGPL/INTERPRET)

 SRCFILE(QGPL/QCSRC)

 SRCMBR(INTERPRET)

 SYSIFCOPT(*IFSIO)

 TEXT(’Example Interpreter program’)

Calling the terminal program

The following example shows how to start the example program:

CALL PGM(QGPL/TERMINAL)

Example: Using profile handles

This example illustrates how to generate, change, and release profile handles in a CL program.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
/***/

/***/

/* */

/* FUNCTION: Illustrates how to generate, change, and release */

/* profile handles in a CL program. */

/* */

/* LANGUAGE: CL */

/* */

/* APIs USED: QSYGETPH - Get Profile Handle */

/* QWTSETP - Set Profile */

/* QSYRLSPH - Release Profile Handle */

/* */

/***/

/***/

PGM (&USERID &PWD &PWDLEN)

/*--*/

/* Parameters: */

/*--*/

/* 10 Character user ID */

DCL VAR(&USERID) TYPE(*CHAR) LEN(10)

/* Password (up to 50 bytes) */

/* This password is case sensitive */

DCL VAR(&PWD) TYPE(*CHAR) LEN(50)

/* Length of the password in binary(4) form (example-- a */

/* 5 byte password length would be X’00000005) */

DCL VAR(&PWDLEN) TYPE(*CHAR) LEN(4)

/*--*/

/* Variables needed by this program: */

/*--*/

/* Password CCSID value of -1. The current password level */

/* for the system is used to determine the CCSID of the */

/* password. */

DCL VAR(&PWDCCSID) TYPE(*CHAR) LEN(4) +

 VALUE(X’FFFFFFFF’)

/* Exceptions will be signalled */

DCL VAR(&ERRCODE) TYPE(*CHAR) LEN(8) +

 VALUE(X’0000000000000000’)

/* Password for *CURRENT user ID. When *CURRENT is */

/* specified for the user ID, the password field will be */

406 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* ignored. */

DCL VAR(&CURPWD) TYPE(*CHAR) LEN(10) +

 VALUE(’ ’)

/* Profile handles returned */

DCL VAR(&PRFHNDL1) TYPE(*CHAR) LEN(12)

DCL VAR(&PRFHNDL2) TYPE(*CHAR) LEN(12)

/*--*/

/* Generate profile handles for the user ID this program */

/* is currently running under and for the user ID passed */

/* to this program: */

/*--*/

CALL PGM(QSYGETPH) PARM(’*CURRENT ’ +

 &CURPWD /* Password ignored +

 when *CURRENT is +

 specified */+

 &PRFHNDL1)

CALL PGM(QSYGETPH) PARM(&USERID +

 &PWD +

 &PRFHNDL2 +

 &ERRCODE /* Exceptions will +

 be signalled */ +

 &PWDLEN /* Length of pwd */ +

 &PWDCCSID) /* Password CCSID */

/*--*/

/* Change the user for this job to the user ID passed to */

/* this program: */

/*--*/

CALL PGM(QWTSETP) PARM(&PRFHNDL2)

/*--*/

/* This program is now running under the user ID passed to */

/* this program. */

/*--*/

/*--*/

/* Now change the user ID for this job back to the user ID */

/* it was originally running under */

/*--*/

CALL PGM(QWTSETP) PARM(&PRFHNDL1)

/*--*/

/* The profile handles generated in this program can now */

/* be released: */

/*--*/

CALL PGM(QSYRLSPH) PARM(&PRFHNDL1)

CALL PGM(QSYRLSPH) PARM(&PRFHNDL2)

ENDPGM

Example: Using registration facility APIs

This example shows how to use the registration facility in one of your programs. The example does not

include any of the programs that are being called, nor does it show anything but an excerpt of the calling

program.

The first thing to do, after deciding in what program object the exit point is to be placed, is to register

that exit point. It is also important to remember that the exit point format defines what the exit program

data looks like. Here is an example ILE C program that registers an exit point named

QIBM_QXIC_TSTXPOINTA.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

APIs 407

/**/

/* PROGRAM: RegisterPoint */

/* */

/* LANGUAGE: ILE C */

/* */

/* DESCRIPTION: This program registers an exit point in an */

/* application. */

/* */

/* APIs USED: QusRegisterExitPoint */

/* */

/**/

#include <string.h>

#include <qusec.h>

#include <qusrgfa1.h>

/**/

/* Structure for the control block */

/**/

typedef _Packed struct Control_x{

 int Num_Vlen_Recs;

 Qus_Vlen_Rec_4_t Vlen_Rec_1;

 char Description[50];

} Control_Rec;

int main () {

 Qus_EC_t Error_Code = {0};

 char EPnt_Name[20] = "QIBM_QXIC_TSTXPOINTA";

 char EPnt_F_Name[8] = "USUSOOOO";

 int EProg_Number = -1;

 Control_Rec EPnt_Controls = {0};

/***

*** INITIALIZING ALL STRUCTURES:: ***

***/

 Error_Code.Bytes_Provided = sizeof(Error_Code);

 EPnt_Controls.Num_Vlen_Recs = 1;

 EPnt_Controls.Vlen_Rec_1.Length_Vlen_Record = 62;

 EPnt_Controls.Vlen_Rec_1.Control_Key = 8;

 EPnt_Controls.Vlen_Rec_1.Length_Data = 50;

 memcpy(EPnt_Controls.Description , "Example Exit Point" , 17);

 QusRegisterExitPoint (EPnt_Name,

 EPnt_F_Name,

 &EPnt_Controls,

 &Error_Code);

 if (Error_Code.Bytes_Available) {

 printf("\nEXCEPTION : %s",Error_Code.Exception_Id);

 exit (1);

 }

 return(0);

}

After an exit point has been registered, exit programs must be added to that point, indicating the possible

calls based on run-time conditions. The following is an example in ILE C, of how to add an exit program

to a registered exit point. The exit program named TSTXITPROGQGPL is added to the exit point

registered in the previous example named QIBM_QXIC_TSTXPOINTA.

/**/

/* PROGRAM: AddProgram */

/* */

/* LANGUAGE: ILE C */

408 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* */

/* DESCRIPTION: This program adds an exit program to a registered */

/* exit point. */

/* */

/* APIs USED: QusAddExitProgram */

/* */

/**/

#include <qusec.h>

#include <qusrgfa1.h>

/**/

/* Structure for the Exit Program Attributes */

/**/

typedef _Packed struct Xit_Att{

 int Num_Vlen_Recs;

 Qus_Vlen_Rec_4_t ADPG_Vlen;

 int CCSID;

 char Reserved;

} Xit_Attributes;

int main () {

 Qus_EC_t Error_Code = {0};

 char EPnt_Name[20] = "QIBM_QXIC_TSTXPOINTA";

 char EPnt_F_Name[8] = "USUSOOOO";

 int EProg_Number = -1;

 char Q_EProg_Name[20] = "TSTXITPROGQGPL ";

 char EProg_Data[10] = "EXAMPLE ";

 int Len_EProg_Data = sizeof(EProg_Data);

 Xit_Attributes EProg_Attributes;

 Error_Code.Bytes_Provided=sizeof(Error_Code);

 EProg_Attributes.Num_Vlen_Recs=1;

 EProg_Attributes.ADPG_Vlen.Length_Vlen_Record=16;

 EProg_Attributes.ADPG_Vlen.Control_Key=3;

 EProg_Attributes.ADPG_Vlen.Length_Data=4;

 EProg_Attributes.CCSID = 37;

 QusAddExitProgram (EPnt_Name,

 EPnt_F_Name,

 EProg_Number,

 Q_EProg_Name,

 EProg_Data,

 Len_EProg_Data,

 &EProg_Attributes,

 &Error_Code);

 if (Error_Code.Bytes_Available) {

 printf("\nEXCEPTION : %s",Error_Code.Exception_Id);

 exit (1);

 }

 return(0);

}

When you have registered an exit point and have added the exit programs to that exit point, you can do

exit program calls from within your application. The information needed to do the calls is obtained from

the Retrieve Exit Information API. In the following sample a conditional call is made based on the exit

point information.

/**/

/* PROGRAM: RetrieveAndProcess */

/* */

/* LANGUAGE: ILE C */

APIs 409

/* */

/* DESCRIPTION: This is an excerpt of a program that retrieves */

/* information on an exit point, and does processing */

/* based on that information. */

/* */

/* APIs USED: QusRetrieveExitInformation */

/* */

/**/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <qusec.h>

#include <qusrgfa2.h>

/**/

/* Structure for Selection Criteria on the Retrieve */

/**/

typedef _Packed struct RTVEI_Select_C_x {

 Qus_Selcrtr_t Crit;

 Qus_Select_Entry_t Select_Entry;

 char RTV_String[10];

} RTVEI_Select_C;

/**/

/* Conv_Lib converts the library name to a null terminated string */

/**/

char * Conv_Lib(char in_lib[], char *tmp) {

 int x = 0;

 while ((in_lib[x] != ’ ’) && x!=10) {

 *tmp=in_lib[x++];

 tmp++;

 }

 return(tmp);

}

int main() {

 Qus_EXTI0200_t *EXTI0200;

 Qus_EXTI0200_Entry_t *EXTI0200_Entry;

 char *Pgm_Data;

 Qus_EC_t Error_Code= {0};

 char EPnt_Name[20] = "QIBM_QXIC_TSTXPOINTA";

 char EPnt_F_Name[8] = "USUSOOOO";

 int EProg_Number = -1;

 int Counter;

 char *tmp_str;

 char *lib;

 char Handle[16] = " ";

 int Length_Of_R_Var;

 char RTVEI_Format_Name[8];

 RTVEI_Select_C EProg_Select_C = {0};

/***

* Initializing Structures *

***/

 Error_Code.Bytes_Provided = sizeof(Error_Code);

 tmp_str=(char *)malloc(sizeof(char));

 lib=(char *)malloc(sizeof(char));

410 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

EXTI0200=(Qus_EXTI0200_t *) malloc ((sizeof(Qus_EXTI0200_t) +

 sizeof(Qus_EXTI0200_Entry_t) + MAX_PGM_DATA_SIZE) * 2);

 EProg_Select_C.Crit.Number_Sel_Criteria = 1;

 EProg_Select_C.Select_Entry.Size_Entry = 26;

 EProg_Select_C.Select_Entry.Comp_Operator = 1;

 EProg_Select_C.Select_Entry.Start_Pgm_Data = 0;

 EProg_Select_C.Select_Entry.Length_Comp_Data = 10;

 memcpy(EProg_Select_C.RTV_String , "EXAMPLE " , 10);

 Length_Of_R_Var = (sizeof(Qus_EXTI0200_t) +

 sizeof(Qus_EXTI0200_Entry_t) +

 MAX_PGM_DATA_SIZE) *2;

 memcpy(RTVEI_Format_Name , "EXTI0200" , 8);

 QusRetrieveExitInformation (Handle,

 EXTI0200,

 Length_Of_R_Var,

 RTVEI_Format_Name,

 EPnt_Name,

 EPnt_F_Name,

 EProg_Number,

 &EProg_Select_C,

 &Error_Code);

 if (Error_Code.Bytes_Available) {

 printf("\nEXCEPTION : %s",Error_Code.Exception_Id);

 exit (1);

 }

/**

* Call all of the preprocessing exit programs returned *

**/

 Counter=EXTI0200->Number_Programs_Returned;

 while (Counter--) {

 EXTI0200_Entry = (Qus_EXTI0200_Entry_t *) EXTI0200;

 EXTI0200_Entry = (Qus_EXTI0200_Entry_t *)((char *)EXTI0200 +

 EXTI0200->Offset_Program_Entry);

 Pgm_Data = (char *) EXTI0200_Entry;

 Pgm_Data += EXTI0200_Entry->Offset_Exit_Data;

 Conv_Lib(EXTI0200_Entry->Program_Library,lib);

 sprintf(tmp_str , "CALL %s/%.10s %.*s" ,

 lib,

 EXTI0200_Entry->Program_Name,

 EXTI0200_Entry->Length_Exit_Data,

 Pgm_Data);

 system(tmp_str);

/**

* This is where Error Handling on the exit program *

* would be done. *

**/

 if (Counter) {

 memcpy(EXTI0200->Continue_Handle,Handle,16);

 QusRetrieveExitInformation(Handle,

 EXTI0200,

 Length_Of_R_Var,

 RTVEI_Format_Name,

 EPnt_Name,

 EPnt_F_Name,

 EProg_Number,

 &EProg_Select_C,

 &Error_Code);

 if (Error_Code.Bytes_Available) {

 printf("\nEXCEPTION : %s",Error_Code.Exception_Id);

 exit (1);

APIs 411

}

 }

 }

 return(0);

}

Examples: Using semaphores and shared memory

These two examples illustrate programs that support the client/server model.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Server program

This program acts as a server to the client program (see “Client program” on page 415). The buffer is a

shared memory segment. The process synchronization is done using semaphores.

Use the Create C Module (CRTCMOD) and the Create Program (CRTPGM) commands to create this

program.

Call this program with no parameters before calling the client program.

/***/

/***/

/* */

/* FUNCTION: This program acts as a server to the client program. */

/* */

/* LANGUAGE: ILE C */

/* */

/* APIs USED: semctl(), semget(), semop(), */

/* shmat(), shmctl(), shmdt(), shmget() */

/* ftok() */

/* */

/***/

/***/

#include <stdio.h>

#include <string.h>

#include <sys/ipc.h>

#include <sys/sem.h>

#include <sys/shm.h>

#define SEMKEYPATH "/dev/null" /* Path used on ftok for semget key */

#define SEMKEYID 1 /* Id used on ftok for semget key */

#define SHMKEYPATH "/dev/null" /* Path used on ftok for shmget key */

#define SHMKEYID 1 /* Id used on ftok for shmget key */

#define NUMSEMS 2 /* Num of sems in created sem set */

#define SIZEOFSHMSEG 50 /* Size of the shared mem segment */

#define NUMMSG 2 /* Server only doing two "receives"

 on shm segment */

int main(int argc, char *argv[])

{

 int rc, semid, shmid, i;

 key_t semkey, shmkey;

 void *shm_address;

 struct sembuf operations[2];

 struct shmid_ds shmid_struct;

 short sarray[NUMSEMS];

 /* Generate an IPC key for the semaphore set and the shared */

 /* memory segment. Typically, an application specific path and */

412 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* id would be used to generate the IPC key. */

 semkey = ftok(SEMKEYPATH,SEMKEYID);

 if (semkey == (key_t)-1)

 {

 printf("main: ftok() for sem failed\n");

 return -1;

 }

 shmkey = ftok(SHMKEYPATH,SHMKEYID);

 if (shmkey == (key_t)-1)

 {

 printf("main: ftok() for shm failed\n");

 return -1;

 }

 /* Create a semaphore set using the IPC key. The number of */

 /* semaphores in the set is two. If a semaphore set already */

 /* exists for the key, return an error. The specified permissions*/

 /* give everyone read/write access to the semaphore set. */

 semid = semget(semkey, NUMSEMS, 0666 | IPC_CREAT | IPC_EXCL);

 if (semid == -1)

 {

 printf("main: semget() failed\n");

 return -1;

 }

 /* Initialize the first semaphore in the set to 0 and the */

 /* second semaphore in the set to 0. */

 /* */

 /* The first semaphore in the sem set means: */

 /* ’1’ -- The shared memory segment is being used. */

 /* ’0’ -- The shared memory segment is freed. */

 /* The second semaphore in the sem set means: */

 /* ’1’ -- The shared memory segment has been changed by */

 /* the client. */

 /* ’0’ -- The shared memory segment has not been */

 /* changed by the client. */

 sarray[0] = 0;

 sarray[1] = 0;

 /* The ’1’ on this command is a no-op, because the SETALL command*/

 /* is used. */

 rc = semctl(semid, 1, SETALL, sarray);

 if(rc == -1)

 {

 printf("main: semctl() initialization failed\n");

 return -1;

 }

 /* Create a shared memory segment using the IPC key. The */

 /* size of the segment is a constant. The specified permissions */

 /* give everyone read/write access to the shared memory segment. */

 /* If a shared memory segment already exists for this key, */

 /* return an error. */

 shmid = shmget(shmkey, SIZEOFSHMSEG, 0666 | IPC_CREAT | IPC_EXCL);

 if (shmid == -1)

 {

 printf("main: shmget() failed\n");

 return -1;

 }

 /* Attach the shared memory segment to the server process. */

 shm_address = shmat(shmid, NULL, 0);

 if (shm_address==NULL)

 {

APIs 413

printf("main: shmat() failed\n");

 return -1;

 }

 printf("Ready for client jobs\n");

 /* Loop only a specified number of times for this example. */

 for (i=0; i < NUMMSG; i++)

 {

 /* Set the structure passed into the semop() to first wait */

 /* for the second semval to equal 1, then decrement it to */

 /* allow the next signal that the client writes to it. */

 /* Next, set the first semaphore to equal 1, which means */

 /* that the shared memory segment is busy. */

 operations[0].sem_num = 1;

 /* Operate on the second sem */

 operations[0].sem_op = -1;

 /* Decrement the semval by one */

 operations[0].sem_flg = 0;

 /* Allow a wait to occur */

 operations[1].sem_num = 0;

 /* Operate on the first sem */

 operations[1].sem_op = 1;

 /* Increment the semval by 1 */

 operations[1].sem_flg = IPC_NOWAIT;

 /* Do not allow to wait */

 rc = semop(semid, operations, 2);

 if (rc == -1)

 {

 printf("main: semop() failed\n");

 return -1;

 }

 /* Print the shared memory contents. */

 printf("Server Received : \"%s\"\n", (char *) shm_address);

 /* Signal the first semaphore to free the shared memory. */

 operations[0].sem_num = 0;

 operations[0].sem_op = -1;

 operations[0].sem_flg = IPC_NOWAIT;

 rc = semop(semid, operations, 1);

 if (rc == -1)

 {

 printf("main: semop() failed\n");

 return -1;

 }

 } /* End of FOR LOOP */

 /* Clean up the environment by removing the semid structure, */

 /* detaching the shared memory segment, and then performing */

 /* the delete on the shared memory segment ID. */

 rc = semctl(semid, 1, IPC_RMID);

 if (rc==-1)

 {

 printf("main: semctl() remove id failed\n");

 return -1;

 }

 rc = shmdt(shm_address);

 if (rc==-1)

 {

 printf("main: shmdt() failed\n");

 return -1;

 }

414 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

rc = shmctl(shmid, IPC_RMID, &shmid_struct);

 if (rc==-1)

 {

 printf("main: shmctl() failed\n");

 return -1;

 }

return 0;

}

Client program

This program acts as a client to the server program (see “Server program” on page 412). The program is

run after the message Ready for client jobs appears from the server program.

Use the CRTCMOD and CRTPGM commands to create this program.

Call this program with no parameters after calling the server program.

/***/

/***/

/* */

/* FUNCTION: This program acts as a client to the server program. */

/* */

/* LANGUAGE: ILE C */

/* */

/* APIs USED: semget(), semop(), */

/* shmget(), shmat(), shmdt() */

/* ftok() */

/* */

/***/

/***/

#include <stdio.h>

#include <string.h>

#include <sys/ipc.h>

#include <sys/sem.h>

#include <sys/shm.h>

#define SEMKEYPATH "/dev/null" /* Path used on ftok for semget key */

#define SEMKEYID 1 /* Id used on ftok for semget key */

#define SHMKEYPATH "/dev/null" /* Path used on ftok for shmget key */

#define SHMKEYID 1 /* Id used on ftok for shmget key */

#define NUMSEMS 2

#define SIZEOFSHMSEG 50

int main(int argc, char *argv[])

{

 struct sembuf operations[2];

 void *shm_address;

 int semid, shmid, rc;

 key_t semkey, shmkey;

 /* Generate an IPC key for the semaphore set and the shared */

 /* memory segment. Typically, an application specific path and */

 /* id would be used to generate the IPC key. */

 semkey = ftok(SEMKEYPATH,SEMKEYID);

 if (semkey == (key_t)-1)

 {

 printf("main: ftok() for sem failed\n");

 return -1;

 }

 shmkey = ftok(SHMKEYPATH,SHMKEYID);

 if (shmkey == (key_t)-1)

 {

 printf("main: ftok() for shm failed\n");

APIs 415

return -1;

 }

 /* Get the already created semaphore ID associated with key. */

 /* If the semaphore set does not exist, then it will not be */

 /* created, and an error will occur. */

 semid = semget(semkey, NUMSEMS, 0666);

 if (semid == -1)

 {

 printf("main: semget() failed\n");

 return -1;

 }

 /* Get the already created shared memory ID associated with key. */

 /* If the shared memory ID does not exist, then it will not be */

 /* created, and an error will occur. */

 shmid = shmget(shmkey, SIZEOFSHMSEG, 0666);

 if (shmid == -1)

 {

 printf("main: shmget() failed\n");

 return -1;

 }

 /* Attach the shared memory segment to the client process. */

 shm_address = shmat(shmid, NULL, 0);

 if (shm_address==NULL)

 {

 printf("main: shmat() failed\n");

 return -1;

 }

 /* First, check to see if the first semaphore is a zero. If it */

 /* is not, it is busy right now. The semop() command will wait */

 /* for the semaphore to reach zero before running the semop(). */

 /* When it is zero, increment the first semaphore to show that */

 /* the shared memory segment is busy. */

 operations[0].sem_num = 0;

 /* Operate on the first sem */

 operations[0].sem_op = 0;

 /* Wait for the value to be=0 */

 operations[0].sem_flg = 0;

 /* Allow a wait to occur */

 operations[1].sem_num = 0;

 /* Operate on the first sem */

 operations[1].sem_op = 1;

 /* Increment the semval by one */

 operations[1].sem_flg = 0;

 /* Allow a wait to occur */

 rc = semop(semid, operations, 2);

 if (rc == -1)

 {

 printf("main: semop() failed\n");

 return -1;

 }

 strcpy((char *) shm_address, "Hello from Client");

 /* Release the shared memory segment by decrementing the in-use */

 /* semaphore (the first one). Increment the second semaphore to */

 /* show that the client is finished with it. */

 operations[0].sem_num = 0;

 /* Operate on the first sem */

 operations[0].sem_op = -1;

 /* Decrement the semval by one */

416 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

operations[0].sem_flg = 0;

 /* Allow a wait to occur */

 operations[1].sem_num = 1;

 /* Operate on the second sem */

 operations[1].sem_op = 1;

 /* Increment the semval by one */

 operations[1].sem_flg = 0;

 /* Allow a wait to occur */

 rc = semop(semid, operations, 2);

 if (rc == -1)

 {

 printf("main: semop() failed\n");

 return -1;

 }

 /* Detach the shared memory segment from the current process. */

 rc = shmdt(shm_address);

 if (rc==-1)

 {

 printf("main: shmdt() failed\n");

 return -1;

 }

return 0;

}

Example: Using SNA/Management services transport APIs

This example shows a source and target application using network management transport APIs to send

and receive management services data. The example compiles in ILE C.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Source application program

This source application program sends a request to a target application.

/***/

/***/

/* */

/* FUNCTION: */

/* This is a source application that uses the management services */

/* transport APIs. It does the following: */

/* 1. Prompts for the network ID and CP name of the remote system */

/* where target application MSTTARG has been started. */

/* 2. Prompts for data to be sent to MSTTARG. */

/* 3. Prompts for whether or not a reply is required. */

/* 4. Sends a management services transport request to MSTTARG. */

/* 5. Repeats steps 2-4 until QUIT is entered. */

/* */

/* Note: MSTTARG may be ended by this application by sending it the */

/* string "ENDRMTAPP". */

/* */

/* LANGUAGE: ILE C */

/* */

/* APIs USED: QNMSTRAP, QNMENDAP, QNMRCVDT, */

/* QNMSNDRQ, QNMCHGMN, QNMENDAP */

/* */

/***/

/***/

/* Includes */

/***/

#include <stdio.h>

#include <string.h>

APIs 417

#include <stdlib.h>

#define NOERROR "NOERROR"

#define RQSONLY "*RQS "

#define RQSRPY "*RQSRPY "

/*---*/

/* Type definitions */

/*---*/

typedef int HANDLE; /* typedef for handle */

typedef char APPLNAME[8]; /* typedef for application name */

typedef char NETID[8]; /* typedef for network ID */

typedef char CPNAME[8]; /* typedef for control point name*/

typedef char MODENAME[8]; /* typedef for mode name */

typedef char SENSECODE[8]; /* typedef for SNA sense code (in

 character format) */

typedef char LIBNAME[10]; /* typedef for library name */

typedef char QNAME[10]; /* typedef for data queue name */

typedef char MSGID[7]; /* typedef for message ID */

typedef char EXCPDATA[48]; /* typedef for exception data */

typedef char CATEGORY[8]; /* typedef for category */

typedef char APPLTYPE[10]; /* typedef for application type */

typedef char REPLREG[10]; /* typedef for replace

 registration */

typedef char DATARCVD[10]; /* typedef for data received */

typedef char REQTYPE[10]; /* typedef for request type */

typedef char POSTRPL[10]; /* typedef for post reply */

typedef char REQUESTID[53]; /* typedef for request ID */

typedef char SRBUFFER[500]; /* typedef for send/receive

 buffer. This program limits

 the amount of data to be sent

 or received to 500 bytes. The

 maximum size of a management

 services transport buffer is

 31739. */

typedef struct { /* Library-qualified data queue

 name */

 QNAME data_queue_name; /* data queue name */

 LIBNAME library_name; /* library name */

 } QUALQNAME;

typedef struct { /* Error code structure */

 int bytes_provided; /* number of bytes provided */

 int bytes_available; /* number of bytes available */

 MSGID exception_ID; /* exception ID */

 char reserved_area; /* reserved */

 EXCPDATA exception_data; /* exception data */

 } ERRORCODE;

typedef struct { /* Notification record structure */

 char record_type[10]; /* Record type */

 char function[2]; /* Function */

 HANDLE handle; /* Handle */

 REQUESTID req_id; /* Request ID */

 char reserved[11]; /* Reserved area */

 } NOTIFRCD;

typedef struct { /* Receiver variable structure */

 int bytes_provided; /* number of bytes provided */

 int bytes_available; /* number of bytes available */

 SRBUFFER received_data; /* received data */

 } RECEIVERVAR;

typedef struct { /* Qualified application name */

 NETID network_id; /* Network ID */

 CPNAME cp_name; /* Control point name */

 APPLNAME app_name; /* Application name */

418 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

} QUALAPPL;

/*---*/

/* External program declarations */

/*---*/

#pragma linkage(QNMSTRAP, OS) /* Start application API */

extern void QNMSTRAP (HANDLE *handle, /* pointer to handle */

 APPLNAME *applname, /* pointer to appl name */

 QUALQNAME *qualqname, /* pointer to data queue

 name */

 ERRORCODE *errorcode); /* pointer to error code

 parameter */

#pragma linkage(QNMENDAP, OS) /* End application API */

extern void QNMENDAP (HANDLE *handle, /* pointer to handle */

 ERRORCODE *errorcode); /* pointer to error code

 parameter */

#pragma linkage(QNMRCVDT, OS) /* Receive data API */

extern void QNMRCVDT (HANDLE *handle, /* pointer to handle */

 RECEIVERVAR *rcvvar, /* pointer to receiver

 variable */

 int *rcvvarln, /* pointer to receiver variable

 length */

 REQUESTID *reqid, /* pointer to request ID */

 QUALAPPL *qualappl, /* pointer to remote

 application name */

 DATARCVD *datarcvd, /* pointer to type of data

 received */

 int *waittim, /* pointer to wait time */

 ERRORCODE *errorcode); /* pointer to error code

 parameter */

#pragma linkage(QNMSNDRQ, OS) /* Send request API */

extern void QNMSNDRQ (HANDLE *handle, /* pointer to handle */

 QUALAPPL *qualappl, /* pointer to remote

 application name */

 REQUESTID *reqid, /* pointer to request ID */

 SRBUFFER *sndbuf, /* pointer to send buffer */

 int *sndbufln, /* pointer to send buffer length*/

 REQTYPE *reqtype, /* pointer to request type */

 POSTRPL *postrpl, /* pointer to post reply */

 int *waittim, /* pointer to wait time */

 ERRORCODE *errorcode); /* pointer to error code

 parameter */

#pragma linkage(QNMCHGMN, OS) /* Change mode name API */

extern void QNMCHGMN (HANDLE *handle, /* pointer to handle */

 MODENAME *modename, /* pointer to mode name */

 ERRORCODE *errorcode); /* pointer to error code

 parameter */

void check_error_code (char func_name[8]); /* Used to check error code

 */

void get_network_id (void); /* Get network ID of destination

 node */

void get_cp_name (void); /* Get CP name of destination

 node */

void process_replies(void); /* Process replies received from

 destination application */

/*---*/

/* Global declarations */

/*---*/

 HANDLE appl_handle; /* Handle of application */

 ERRORCODE error_code_struc = /* Error code parameter */

 {sizeof(error_code_struc), /* Initialize bytes provided */

APIs 419

0, /* initialize bytes available */

 NOERROR}; /* initialize error code */

 char input_line[80]; /* Input data */

 QUALAPPL qual_appl = /* Qualified application name */

 {" "," "," "};

 REQUESTID req_id; /* Returned request ID */

 int wait_time = -1; /* Wait time = wait forever */

/*---*/

/* Start of main. */

/*---*/

int main ()

{

 APPLNAME appl_name = "MSTSOURC"; /* Application name to be used */

 QUALQNAME data_queue_parm = /* Data queue name to be used */

 {"*NONE ", " "}; /* Initialize structure */

 NOTIFRCD notif_record; /* Area to contain notification

 record */

 CATEGORY category = "*NONE "; /* SNA/Management Services function

 set group */

 APPLTYPE appl_type = "*FPAPP "; /* Application type */

 REPLREG replace_reg = "*YES "; /* Replace registration = *YES */

 int sys_result; /* Result of system function */

 char end_msg[] = "ENDRMTAPPL"; /* If this data is received then

 the application will end */

 char incoming_data[] = "01"; /* Incoming data constant */

 SRBUFFER send_buffer; /* Send buffer */

 int data_length; /* Length of send data */

 char input_char; /* Input character */

 REQTYPE req_type; /* Request type */

 POSTRPL post_reply = "*NO "; /* Don’t post any received replies

 */

 MODENAME mode_name = "#INTER "; /* Mode name = #INTER */

/*---*/

/* Start of code */

/*---*/

 QNMSTRAP (&appl_handle,

 &appl_name,

 &data_queue_parm,

 &error_code_struc); /* Start application */

 check_error_code("QNMSTRAP"); /* Check error code */

 QNMCHGMN (&appl_handle,

 &mode_name,

 &error_code_struc); /* Change mode name */

 check_error_code("QNMCHGMN"); /* Check error code */

 get_network_id(); /* Get network ID */

 get_cp_name(); /* Get CP name */

 memcpy(qual_appl.app_name,

 "MSTTARG ",

 sizeof(qual_appl.app_name)); /* Copy application name */

 printf ("Enter message to send to remote application or "

 "QUIT to end\n");

 gets(input_line);

 while (memcmp(input_line,

 "QUIT",

 sizeof("QUIT")) != 0) /* While an ending string

 has not been entered */

 {

 data_length = strlen(input_line); /* Get length of message */

 memcpy(send_buffer,

 input_line,

 data_length); /* Put message in send buffer */

 printf("Reply necessary? (Y or N)\n"); /* Prompt for reply

 indicator */

 gets(input_line); /* Get reply character */

 input_char = toupper(input_line[0]); /* Convert character to

420 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

uppercase */

 while (strlen(input_line) != 1 ||

 (input_char != ’Y’ &&

 input_char != ’N’))

 {

 printf("Please type Y or N\n");

 gets(input_line); /* Get reply character */

 input_char = toupper(input_line[0]); /* Convert character to

 uppercase */

 }

 if (input_char == ’Y’)

 {

 memcpy(req_type,

 RQSRPY,

 sizeof(req_type)); /* Indicate request should have

 a reply */

 }

 else

 {

 memcpy(req_type,

 RQSONLY,

 sizeof(req_type)); /* Indicate request should not have

 a reply */

 }

 QNMSNDRQ (&appl_handle,

 &qual_appl,

 &req_id,

 &send_buffer,

 &data_length,

 &req_type,

 &post_reply,

 &wait_time,

 &error_code_struc); /* Send request to remote

 application */

 check_error_code("QNMSNDRQ"); /* Check error code */

 if (input_char == ’Y’)

 {

 process_replies(); /* Process one or more received

 replies */

 }

 printf ("Enter message to send to remote application or "

 "QUIT to end\n");

 gets(input_line);

 }

 QNMENDAP (&appl_handle,

 &error_code_struc); /* End the application */

 return 0;

}

/*---*/

/* process_replies function */

/*---*/

void process_replies ()

{

 RECEIVERVAR receiver_var = /* Receiver variable */

 {sizeof(receiver_var)}; /* Initialize bytes provided */

 int rcv_var_len = sizeof(receiver_var); /* Length of receiver

 variable */

 DATARCVD data_rcvd = "*NODATA "; /* Type of data received */

 QUALAPPL qual_appl; /* Sender of reply */

 printf ("Received reply(s):\n");

 while (memcmp(data_rcvd,

 "*RPYCPL ",

 sizeof(data_rcvd)) != 0) /* While final reply has not

 been received */

APIs 421

{

 strncpy(receiver_var.received_data,

 "\0",

 sizeof(receiver_var.received_data)); /* Null out

 data buffer */

 QNMRCVDT (&appl_handle,

 &receiver_var,

 &rcv_var_len,

 &req_id,

 &qual_appl,

 &data_rcvd,

 &wait_time,

 &error_code_struc); /* Receive reply */

 check_error_code("QNMRCVDT"); /* Check error code */

 printf("%1.500s\n",receiver_var.received_data); /* Print out

 reply */

 }

}

/*---*/

/* get_network_id function. */

/*---*/

void get_network_id ()

{

 int count;

 printf("Enter network ID of remote system where MSTTARG "

 "application has been started\n"); /* Prompt for network

 ID */

 gets(input_line); /* Get network ID */

 while (strlen(input_line) <= 0 ||

 strlen(input_line) > 8) /* While network ID is not valid */

 {

 printf("Network ID is too long or too short - try again\n");

 gets(input_line); /* Get network ID */

 }

 memcpy(qual_appl.network_id,

 input_line,

 strlen(input_line)); /* Copy network ID */

 for (count=0; count < strlen(input_line); count++)

 qual_appl.network_id[count] =

 toupper(qual_appl.network_id[count]); /* Convert

 input to uppercase */

}

/*---*/

/* get_cp_name function. */

/*---*/

void get_cp_name ()

{

 int count;

 printf("Enter CP name of remote system where MSTTARG application "

 "has been started\n"); /* Prompt for CP name */

 gets(input_line); /* Get CP name */

 while (strlen(input_line) <= 0 ||

 strlen(input_line) > 8) /* While CP name is not valid */

 {

 printf("CP name is too long or too short - try again\n");

 gets(input_line); /* Get CP name */

 }

 memcpy(qual_appl.cp_name,

 input_line,

 strlen(input_line)); /* Copy CP name */

 for (count=0; count < strlen(input_line); count++)

 qual_appl.cp_name[count] =

 toupper(qual_appl.cp_name[count]); /* Convert

 input to uppercase */

}

422 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/*---*/

/* check_error_code - */

/*---*/

void check_error_code (char func_name[8])

{

 char *sense_ptr = error_code_struc.exception_data + 36; /*

 Pointer to sense code in

 exception data */

 SENSECODE sense_code; /* SNA sense code */

 if (error_code_struc.bytes_available != 0) /* Error occurred? */

 {

 printf("\n\nError occurred calling %1.8s.\n",func_name);

 memcpy(sense_code,

 sense_ptr,

 sizeof(sense_code)); /* Copy sense code from exception

 data */

 printf("Error code is %1.7s, SNA sense code is %1.8s.\n",

 error_code_struc.exception_ID,

 sense_code);

 if (memcmp(func_name,

 "QNMSTRAP",

 sizeof(func_name)) != 0) /* Error did not occur on

 start application? */

 {

 QNMENDAP (&appl_handle,

 &error_code_struc); /* End the application */

 }

 exit(EXIT_FAILURE); /* Exit this program */

 }

}

Target application program

This target application receives requests from and returns replies to source applications.

/***/

/***/

/* */

/* FUNCTION: */

/* This is a target application that uses the management services */

/* transport APIs. It receives management services transport */

/* requests from source application MSTSOURC and displays the data */

/* contained in the request. If the request specifies that a */

/* reply needs to be sent, this program accepts input from the */

/* keyboard and sends one or more replies to the source application. */

/* */

/* LANGUAGE: ILE C */

/* */

/* APIs USED: QNMSTRAP, QNMENDAP, QNMREGAP, QNMDRGAP, */

/* QNMRCVDT, QNMSNDRP, QNMRCVOC, QRCVDTAQ, */

/* QNMENDAP */

/* */

/***/

/***/

/* Includes */

/***/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define NOERROR "NOERROR"

#define REQUEST "*RQS "

#define REQREPLY "*RQSRPY "

#define REPLYINC "*RPYINCPL "

#define REPLYCMP "*RPYCPL "

APIs 423

/*---*/

/* Type definitions */

/*---*/

typedef int HANDLE; /* typedef for handle */

typedef char APPLNAME[8]; /* typedef for application name */

typedef char NETID[8]; /* typedef for network ID */

typedef char CPNAME[8]; /* typedef for control point name*/

typedef char SENSECODE[8]; /* typedef for SNA sense code

 (in character format) */

typedef char LIBNAME[10]; /* typedef for library name */

typedef char QNAME[10]; /* typedef for data queue name */

typedef char MSGID[7]; /* typedef for message ID */

typedef char EXCPDATA[48]; /* typedef for exception data */

typedef char CATEGORY[8]; /* typedef for category */

typedef char APPLTYPE[10]; /* typedef for application type */

typedef char REPLREG[10]; /* typedef for replace

 registration */

typedef char DATARCVD[10]; /* typedef for data received */

typedef char REPLYTYPE[10]; /* typedef for reply type */

typedef char REQUESTID[53]; /* typedef for request ID */

typedef char PACKED5[3]; /* typedef for PACKED(5,0) field */

typedef char SRBUFFER[500]; /* typedef for send/receive

 buffer. This program limits

 the amount of data to be sent

 or received to 500 bytes. The

 maximum size of a management

 services transport buffer is

 31739. */

typedef struct { /* Library-qualified data queue

 name */

 QNAME data_queue_name; /* data queue name */

 LIBNAME library_name; /* library name */

 } QUALQNAME;

typedef struct { /* Error code structure */

 int bytes_provided; /* number of bytes provided */

 int bytes_available; /* number of bytes available */

 MSGID exception_ID; /* exception ID */

 char reserved_area; /* reserved */

 EXCPDATA exception_data; /* exception data */

 } ERRORCODE;

typedef struct { /* Notification record structure */

 char record_type[10]; /* Record type */

 char function[2]; /* Function */

 HANDLE handle; /* Handle */

 REQUESTID req_id; /* Request ID */

 char reserved[11]; /* Reserved area */

 } NOTIFRCD;

typedef struct { /* Receiver variable structure */

 int bytes_provided; /* number of bytes provided */

 int bytes_available; /* number of bytes available */

 SRBUFFER received_data; /* received data */

 } RECEIVERVAR;

typedef struct { /* Qualified application name */

 NETID network_id; /* Network ID */

 CPNAME cp_name; /* Control point name */

 APPLNAME app_name; /* Application name */

 } QUALAPPL;

/*---*/

/* External program declarations */

/*---*/

#pragma linkage(QNMSTRAP, OS) /* Start application API */

424 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

extern void QNMSTRAP (HANDLE *handle, /* pointer to handle */

 APPLNAME *applname, /* pointer to application

 name */

 QUALQNAME *qualqname,/* pointer to data queue

 name */

 ERRORCODE *errorcode); /* pointer to error code

 parameter */

#pragma linkage(QNMENDAP, OS) /* End application API */

extern void QNMENDAP (HANDLE *handle, /* pointer to handle */

 ERRORCODE *errorcode); /* pointer to error code

 parameter */

#pragma linkage(QNMREGAP, OS) /* Register application API */

extern void QNMREGAP (HANDLE *handle, /* pointer to handle */

 CATEGORY *category, /* pointer to category */

 APPLTYPE *appltype, /* pointer to application

 type */

 REPLREG *replreg, /* pointer to replace

 registration parameter */

 ERRORCODE *errorcode); /* pointer to error code

 parameter */

#pragma linkage(QNMDRGAP, OS) /* Deregister application API */

extern void QNMDRGAP (HANDLE *handle, /* pointer to handle */

 ERRORCODE *errorcode); /* pointer to error code

 set group */

#pragma linkage(QNMRCVDT, OS) /* Receive data API */

extern void QNMRCVDT (HANDLE *handle, /* pointer to handle */

 RECEIVERVAR *rcvvar, /* pointer to receiver

 variable */

 int *rcvvarln, /* pointer to receiver variable

 length */

 REQUESTID *reqid, /* pointer to request ID */

 QUALAPPL *qualappl, /* pointer to remote

 application name */

 DATARCVD *datarcvd, /* pointer to type of data

 received */

 int *waittim, /* pointer to wait time */

 ERRORCODE *errorcode); /* pointer to error code

 parameter */

#pragma linkage(QNMSNDRP, OS) /* Send reply API */

extern void QNMSNDRP (HANDLE *handle, /* pointer to handle */

 REQUESTID *reqid, /* pointer to request ID */

 SRBUFFER *sndbuf, /* pointer to send buffer */

 int *sndbufln, /* pointer to send buffer length*/

 REPLYTYPE *rpltype, /* pointer to reply type */

 int *waittim, /* pointer to wait time */

 ERRORCODE *errorcode); /* pointer to error code

 parameter */

#pragma linkage(QNMRCVOC, OS) /* Receive operation completion API

 */

extern void QNMRCVOC (HANDLE *handle, /* pointer to handle */

 REQUESTID *reqid, /* pointer to request ID */

 QUALAPPL *qualappl, /* pointer to remote

 application name */

 ERRORCODE *errorcode); /* pointer to error code

 parameter */

#pragma linkage(QRCVDTAQ, OS) /* Receive data queue */

extern void QRCVDTAQ (QNAME *queue_name, /* pointer to queue name */

 LIBNAME *lib_name, /* pointer to library name */

 PACKED5 *rcd_len, /* pointer to record length */

 NOTIFRCD *notifrcd, /* pointer to notification

APIs 425

record */

 PACKED5 *waittime); /* pointer to wait time */

void check_error_code (char func_name[8]); /* Used to check error

 code */

/*---*/

/* Global declarations */

/*---*/

 HANDLE appl_handle; /* Handle of application */

 ERRORCODE error_code_struc = /* Error code parameter */

 {sizeof(error_code_struc), /* Initialize bytes provided */

 0, /* initialize bytes available */

 NOERROR}; /* initialize error code */

/*---*/

/* Start of main function */

/*---*/

int main ()

{

/*---*/

/* Local declarations */

/*---*/

 APPLNAME appl_name = "MSTTARG "; /* Application name to be used */

 QUALQNAME data_queue_parm = /* Data queue name to be used */

 {"MSTDTAQ ", "QTEMP "}; /* Initialize structure */

 NOTIFRCD notif_record; /* Area to contain notification

 record */

 RECEIVERVAR receiver_var = /* Receiver variable */

 {sizeof(receiver_var)}; /* Initialize bytes provided */

 QUALAPPL qual_appl; /* Qualified application name */

 DATARCVD data_rcvd; /* Type of data received */

 CATEGORY category = "*NONE "; /* SNA/Management Services function

 set group */

 APPLTYPE appl_type = "*FPAPP "; /* Application type */

 REPLREG replace_reg = "*YES "; /* Replace registration = *NO */

 REPLYTYPE reply_cmp = REPLYCMP; /* Complete reply */

 REPLYTYPE reply_inc = REPLYINC; /* Incomplete reply */

 int sys_result; /* Result of system function */

 int rcv_var_len = sizeof(receiver_var); /* Length of receiver

 variable */

 PACKED5 wait_time_p = "\x00\x00\x1D"; /* Packed value for wait time

 = -1, that is, wait forever */

 PACKED5 record_len; /* Length of received data queue

 record */

 int wait_forever = -1; /* Integer value for wait time =

 -1, that is, wait forever */

 int no_wait = 0; /* Do not wait for I/O to

 complete */

 char end_msg[] = "ENDRMTAPPL"; /* If this data is received then

 the application will end */

 char incoming_data[] = "01"; /* Incoming data constant */

 char inbuf[85]; /* Input buffer */

 SRBUFFER send_buffer; /* Send buffer for sending

 replies */

 int reply_len; /* Length of reply data */

/*---*/

/* Start of executable code */

/*---*/

 sys_result = system("DLTDTAQ DTAQ(QTEMP/MSTDTAQ)"); /* Delete

 previous data queue (if any) */

 sys_result = system("CRTDTAQ DTAQ(QTEMP/MSTDTAQ) MAXLEN(80)"); /*

 Create data queue */

 QNMSTRAP (&appl_handle,

 &appl_name,

 &data_queue_parm,

 &error_code_struc); /* Start application */

426 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

check_error_code("QNMSTRAP"); /* Check error code */

 QNMREGAP (&appl_handle,

 &category,

 &appl_type,

 &replace_reg,

 &error_code_struc); /* Register the application */

 check_error_code("QNMREGAP"); /* Check error code */

 while (memcmp(receiver_var.received_data,

 end_msg,

 sizeof(end_msg)) != 0)

 { /* Loop until an ending string

 has been sent by the requesting

 application */

 QRCVDTAQ (&data_queue_parm.data_queue_name,

 &data_queue_parm.library_name,

 &record_len,

 ¬if_record,

 &wait_time_p); /* Receive indication from data

 queue */

 if (memcmp(notif_record.function,

 incoming_data,

 sizeof(incoming_data)) == 0) /* Incoming data was

 received? */

 {

 strncpy(receiver_var.received_data,

 "\0",

 sizeof(receiver_var.received_data)); /* Null out the

 receive buffer */

 QNMRCVDT (&appl_handle,

 &receiver_var,

 &rcv_var_len,

 ¬if_record.req_id,

 &qual_appl,

 &data_rcvd,

 &wait_forever,

 &error_code_struc); /* Receive data using the

 request ID in the notification*/

 check_error_code("QNMRCVDT"); /* Check error code */

 printf("%1.500s\n",receiver_var.received_data); /* Display

 the received data */

 if (memcmp(data_rcvd,

 REQREPLY,

 sizeof(data_rcvd)) == 0) /* Request requires

 a reply? */

 {

 printf("Please enter your replies (a null line "

 "indicates that you are finished)\n"); /* Display

 a prompt message */

 gets(inbuf); /* Get the reply data */

 reply_len = strlen(inbuf); /* Get length of reply */

 while (reply_len != 0) /* While no null string was input

 */

 {

 memcpy(send_buffer,inbuf,strlen(inbuf)); /* Copy

 data to send buffer */

 QNMSNDRP (&appl_handle,

 ¬if_record.req_id,

 &send_buffer,

 &reply_len,

 &reply_inc,

 &no_wait,

 &error_code_struc); /* Send a reply to the

 source application (specify

 "not last" reply). The results

 of this operation will be

 obtained later using the

 receive operation completion

APIs 427

API. */

 gets(inbuf); /* Get the next reply */

 reply_len = strlen(inbuf); /* Get length of reply */

 }

 QNMSNDRP (&appl_handle,

 ¬if_record.req_id,

 &send_buffer,

 &reply_len,

 &reply_cmp,

 &no_wait,

 &error_code_struc); /* Send final reply (this

 contains no data). The results

 of this operation will be

 obtained later using the

 receive operation completion

 API. */

 }

 else

 { /* A reply is not required */

 if (memcmp(data_rcvd,

 REQUEST,

 sizeof(data_rcvd)) != 0) /* Something other than a

 request was received? */

 {

 printf("Incorrect data was received, "

 "data_rcvd = %1.10s\n", data_rcvd); /* Print

 value of data_rcvd */

 }

 }

 }

 else

 { /* A send completion was received

 for a previous send reply

 operation */

 QNMRCVOC (&appl_handle,

 ¬if_record.req_id,

 &qual_appl,

 &error_code_struc);/* Receive operation completion*/

 check_error_code("QNMRCVOC"); /* Check error code */

 printf("Reply was sent successfully.\n"); /* Error code was

 OK */

 }

 }

 QNMDRGAP (&appl_handle,

 &error_code_struc); /* Deregister the application */

 QNMENDAP (&appl_handle,

 &error_code_struc); /* End the application */

 return 0;

}

/*---*/

/* check_error_code - */

/* */

/* This function validates the error code parameter returned on */

/* the call to a management services transport API program. If */

/* an error occurred, it displays the error that occurred and */

/* ends this program. */

/*---*/

void check_error_code (char func_name[8])

{

 char *sense_ptr = error_code_struc.exception_data + 36; /*

 Pointer to sense code in

 exception data */

 SENSECODE sense_code; /* SNA sense code */

 if (error_code_struc.bytes_available != 0) /* Error occurred? */

428 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

{

 printf("\nError occurred calling %1.8s.\n",func_name);

 memcpy(sense_code,

 sense_ptr,

 sizeof(sense_code)); /* Copy sense code from exception

 data */

 printf("Error code is %1.7s, SNA sense code is %1.8s.\n",

 error_code_struc.exception_ID,

 sense_code);

 if (memcmp(func_name,

 "QNMSTRAP",

 sizeof("QNMSTRAP")) != 0) /* Error did not occur on

 start application? */

 {

 QNMENDAP (&appl_handle,

 &error_code_struc); /* End the application */

 }

 exit(EXIT_FAILURE); /* Exit this program */

 }

}

Example: Using source debugger APIs

The ILE source debugger APIs allow an application developer to write a debugger for ILE programs.

One might ask why this would ever be done when an ILE debugger is provided with i5/OS. There are

several reasons why an application developer might want to use these APIs to write a different ILE

debugger:

v A debugger running on a workstation could be built that would debug ILE programs running on the

iSeries server. This would allow a debugger to be written that would take advantage of Windows® and

other ease-of-use interfaces available on the workstation. The workstation debugger would

communicate with code running on the iSeries server. The code running on the iSeries server would

use the debugger APIs.

v The writer of an ILE compiler on the iSeries server might want to write a debugger to take advantages

of the features of the language. The i5/OS debugger is a more general-purpose debugger made for all

ILE languages.

v A debugger could be written with functions not available on the i5/OS ILE debugger.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Source debugger APIs overview

The ILE source debugger APIs can be divided into several groups. These include APIs that:

v Start and end the debug session

v Add programs and modules to debug

v Manipulate text views in a program

v Add and remove breakpoints, steps, and so on

Besides APIs, there are two user exits that get called:

v The Source Debug program gets called when the Start Debug (STRDBG), Display Module Source

(DSPMODSRC), and End Debug (ENDDBG) CL commands are entered.

v The Program Stop Handler gets called when an ILE program being debugged hits a breakpoint, step,

and so on.

To demonstrate how these APIs are used, this topic presents an example debugger with complete code

examples and an explanation of what the APIs do.

APIs 429

The ILE debugger that comes with i5/OS uses the debugger APIs just as a user-written debugger would.

There is nothing special about the i5/OS debugger. Its functions could be done by an application

developer using the debugger APIs and other i5/OS APIs.

Scenario: A simple debugger

Consider a simple scenario in which the user wishes to debug an ILE program.

1. From the command entry screen, the user enters the Start Debug (STRDBG) command, passing it the

name of an ILE program to debug.

STRDBG P1

2. The ILE debugger screen is displayed, showing the source of a module in the ILE program being

debugged. From this screen, the user adds a breakpoint and then exits.

3. Back at the command entry screen, the user runs the ILE program that is being debugged.

CALL P1

4. The ILE program hits the breakpoint previously set. The ILE debugger screen is displayed,

highlighting in the source where the program has stopped at the breakpoint.

5. The user displays a variable in the program being debugged.

6. The user exits the ILE debugger, allowing the ILE program to run to completion. The program ends.

7. Back at the command entry screen, the user ends the debug session.

ENDDBG

This is the simplest of debug scenarios, but it illustrates how i5/OS, the debugger user exits, and the

debugger APIs interact.

The following figure shows the various interactions.

430 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

A detailed explanation of the scenario follows:

1. The Start Debug (STRDBG) CL command is used to start the debug session. By default, if an ILE

program is specified on the command, the i5/OS ILE debugger user exit is called. A different user exit

(called the Source Debug program) can be specified on the Start Debug command by specifying a

program name on the SRCDBGPGM parameter.

When the Source Debug program is called, it is passed a reason field, which indicates why it was

called. The *START reason is passed to it by the Start Debug command, indicating that the ILE

APIs 431

debugger is to start itself and do any necessary initialization. When the *START reason is indicated,

the names of any ILE programs on the Start Debug command are also passed to the Source Debug

program.

2. In this scenario, the system Source Debug program initializes itself. It calls the QteStartSourceDebug

API, which tells the system that ILE debugging is to be done. The name of a program stop handler

program is passed to this API. The stop handler is a program that the system calls when an ILE

program hits a breakpoint, step, or other condition where the system stops the program for the

debugger.

The Source Debug program must indicate to the system that the ILE programs specified on the Start

Debug command are to be debugged. To do this, the QteRetrieveModuleViews API is called, once for

each ILE program specified on the Start Debug command. In this scenario, the API is called, passing it

the name of program P1. The purpose of the API is to return information about the ILE program,

including the modules and views of the program. A view is the source text that is displayed by the

debugger for a particular module.

Once information about the ILE program is obtained, one or more views of the program must be

registered. Once a view is registered, the system can perform various functions on that view in behalf

of the debugger application. For performance reasons, only the views the user is interested in

displaying should be registered.

The Source Debug program is now done performing the function for the *START reason. It exits,

returning control to the Start Debug command.

3. By default, if an ILE program is specified on the Start Debug command, the ILE debug screen is

displayed. To indicate to the ILE debugger that a screen is to be put up, the Source Debug program is

called by the command again, this time with a reason of *DISPLAY.

Because this is the first time any views for P1 are to be displayed, the ILE debugger must retrieve the

text to display. The first view of the first module of the program is selected as the default view to

display.

The Source Debug program calls the QteRetrieveViewText API to retrieve the text associated with the

default view. Next, in case this program is already on the stack and stopped, the

QteRetrieveStoppedPosition API is called to check. If the program were on the stack, the source

would be positioned to the statement where the program was stopped, and that line would be

highlighted. In this scenario, the program is not yet on the stack, so the first line of the source will

appear at the top of the screen, and no line will be highlighted.

The Source Debug program next calls User Interface Manager (UIM) APIs to display the source on the

screen.

4. At this point, the source screen is displayed showing the text of the first view in the first module of

the first ILE program specified on the Start Debug command. From this screen, the user can enter

debug commands or do other options provided by the debugger application.

In this scenario, the user adds a breakpoint to a line in the ILE program P1 being debugged. When a

command is entered, the UIM APIs call a program which is part of the ILE debugger to process the

command.

To process the breakpoint, the QteAddBreakpoint is called. It is passed a view number which

indicates the view being displayed, and a line number in that view. A breakpoint is added to the

program by the API.

5. Back to the UIM screen, the user exits the ILE debugger. Once at the command entry screen, the user

then runs the program P1 which has the breakpoint.

6. When P1 hits the breakpoint, the system calls the program stop handler defined by the

QteStartSourceDebug API. The Program Stop Handler calls UIM to put up the source for the module

where the program has stopped because of the breakpoint. The line is highlighted to show the user

exactly where the program has stopped.

432 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

7. From the source debugger screen, the user displays a variable in program P1 which is stopped at the

breakpoint. UIM calls the debugger to process the command. The debugger calls the

QteSubmitDebugCommand API, which retrieves the value of the variable to be displayed. The

debugger then displays this value on the screen.

8. The user now exits from the source debugger screen. This allows P1, which was stopped at a

breakpoint, to continue running. When P1 ends, the user is back at the command entry screen.

9. The user ends the debug session by entering the End Debug (ENDDBG) CL command. The system

calls the Source Debug program, passing it a reason of *STOP. The Source Debug program calls the

QteEndSourceDebug API to indicate to the system that ILE debugging has ended. It then tears down

its own environment (closes files, frees space, and so on) and then ends. The End Debug command

completes, and the user is back to the command entry, the debug session having ended.

Example: Source debugger

This section discusses an example ILE debugger that demonstrates the use of some of the ILE debugger

APIs. Each function in the C program is discussed along with the APIs that they call. Although the entire

program listing is printed later (see “Debugger code sample” on page 447), each function or piece of code

is printed with the section where it is discussed to make reading the code easier.

The example debugger does not use all ILE debugger APIs. Its function is limited. After the discussion of

the code, the APIs and some functions not covered are discussed.

Compiling the debugger

The Create C Module (CRTCMOD) command compiles the source code of the debugger. It is compiled

into module DEBUG.

The Create Program (CRTPGM) command creates program DEBUG from module DEBUG. It is necessary

to bind to service program QTEDBGS so that the calls to the debugger APIs are resolved. It is also

important to use activation group QTEDBGAG. This is an activation group that cannot be destroyed

while the job is in debug mode. Thus, all static variables in program DEBUG remain intact throughout

the debugging of the ILE program. Only when ENDDBG is entered can the activation group be

destroyed, even if the Reclaim Resources (RCLRSC) CL command is entered.

Starting the debugger

The example debugger consists of a single program called DEBUG. The program is used as the Source

Debug program as well as the Program Stop Handler. The program determines how many parameters it

is being called with, and with this information it does the function of one or the other of the user exits.

The debugger can debug only one ILE program. This program is specified on the Start Debug CL

command. The program cannot be removed from debug until ENDDBG is done. No new programs can

be added.

To debug an ILE program P1 with this sample debugger, the following CL command could be entered:

STRDBG P1 SRCDBGPGM(DEBUG)

Note that DEBUG must be in the library list when STRDBG is done.

If the command is done, P1 is called twice, once as a Source Debug program given a reason of *START,

and again as a Source Debug program given a reason of *DISPLAY.

Other variations of the Start Debug command can be given with different results. For example, the

following CL command causes DEBUG to be called only once with a reason of *START:

STRDBG P1 SRCDBGPGM(DEBUG) DSPMODSRC(*NO)

APIs 433

This is because STRDBG has been told not to display the debug screen, so the *DISPLAY reason is not

given until the user does the Display Module Source (DSPMODSRC) CL command.

The following example does not even call DEBUGGER:

STRDBG SRCDBGPGM(DEBUG)

This is because no ILE program is specified. If an ILE program receives an unmonitored message and the

ILE debugger needs to be called, DEBUG is first called with *START as a Source Debug program. Also, if

Display Module Source is entered, the *START and then the *DISPLAY reason is passed to DEBUG.

Using the debugger

When the debugger is started, it allows simple debugging commands to be entered. The C session

manager is put up, which scrolls the users commands and the debugger output. To see a list of the

allowable commands, enter HELP.

The ″list views″ command shows all of the views available in the program being debugged. The text

description of the view is listed, with a sequential number. This number is used by the ″switch″

command to switch to that view.

The ″list text″ command prints out the text of the current view. Text has a line number next to it. The line

number is used when setting breakpoints or other debug commands.

The switch command switches the current view. The current view is the view used when setting

breakpoints, displaying variables, viewing text, and so on.

The ″quit″ command exits the debugger.

Other commands are interpreted by the QteSubmitDebugCommand API. This API will be discussed later.

An example command that can be entered is ″break n″, where n is the line number in the current view.

These commands are similar to the ones allowed in the ILE debugger shipped with i5/OS.

Header files used in debugger

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <qtedbgs.h>

Besides the normal C library header files, an API header file, qtedbgs.h is included. This file defines the

functions exported from service program QTEDBGS. This service program contains the ILE debugger

APIs.

Global variables

static _TE_VEWL0100_T *pgm_dbg_dta = NULL;

static long current_view = 0; /* current view - defaults to 1st*/

static _TE_OBJLIB_T program_lib; /* name and lib of pgm debugged */

These are global variables that hold information about the program being debugged. These variables do

not go away when program DEBUG exits, because they are stored in the activation group which is not

destroyed until the debug session has completed.

The name and library of the program are stored, as is the current view being debugged. Also, a pointer

to a structure returned by the QteRetrieveModuleViews is saved, as this information is needed when

debugging the various views of the program.

PgmList_t

434 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

typedef struct {

 _TE_OBJLIB_T PgmLib; /* Name and Library of program */

 _TE_NAME_T PgmType; /* program type, *PGM or *SRVPGM */

} PgmList_t;

This is the structure of the name, library, and type of the program being debugged.

main()

main (int argc, char *argv[]) {

 if (argc == 4) /* called as source debug program*/

 HandleSession(argv[1], (PgmList_t *)argv[2], *(int

*)argv[3]);

 else if (argc == 8) /* called as program stop handler*/

 HandleStop((_TE_OBJLIB_T *)argv[1], argv[2],

argv[3], argv[4],

 (long *)argv[5], *(int *)argv[6],

argv[7]);

}

Program DEBUG can be called in two ways. When it is called by the STRDBG, DSPMODSRC, and

ENDDBG CL commands, it is called as the Source Debug program user exit. It is passed three

parameters.

DEBUG can also be called when a program being debug hits a breakpoint or step. In this case, it is

passed seven parameters.

DEBUG therefore can determine why it was called by counting the number of parameters it was passed.

Remember that argc includes the program name as the first argument passed.

If argc is 4 (three parameters passed to DEBUG), function HandleSession is called, and the three

parameters passed to DEBUG are passed to it, typecasted as needed.

If argc is 8 (seven parameters passed to DEBUG), function HandleStop is called, and the seven

parameters passed to DEBUG are passed to it, typecasted as needed.

If any other number of parameters are passed to DEBUG, it cannot have been called from the i5/OS

debug support, so DEBUG will just exit.

HandleSession()

void HandleSession(char reason[10],

 PgmList_t ProgramList[],

 int ProgramListCount) {

 if (memcmp(reason,"*START ",10) == 0) /* reason is *START */

 StartUpDebugger(ProgramList, ProgramListCount);

 else if (memcmp(reason,"*STOP ",10) == 0) /* reason is *STOP */

 TearDownDebugger();

 else if (memcmp(reason,"*DISPLAY ",10) == 0) /* reason *DISPLAY */

 ProcessCommands();

}

When DEBUG is called as a session handler, it is passed three parameters. The first parameter is a

10-character array containing a reason field. This contains the reason why the session handler is called.

When DEBUG is first called, it is passed a reason of *START, indicating that the debugger is to initialize

for an ILE debug session. When this reason is given, the second parameter contains a list of ILE

programs specified on the STRDBG command, and the third parameter contains the number of programs

specified on parameter two. From 0 to 10 ILE programs can be specified.

APIs 435

When the user wishes to see the ILE debugger screen, either from STRDBG or DSPMODSRC, a reason of

*DISPLAY is passed. When the user enters ENDDBG, the *STOP reason is passed, indicating that the ILE

debug session is ending. The second and third parameters are not used when the reason is *DISPLAY or

*STOP.

The code tests for a reason and calls the appropriate function. There is one function for each reason that

can be passed.

TearDownDebugger()

void TearDownDebugger(void) {

 _TE_ERROR_CODE_T errorCode = {8}; /* errors will be ignored */

 /* Call EndSourceDebug to get out of ILE debug mode */

 QteEndSourceDebug(&errorCode);

 exit(0); /* destroy activation group */

}

This function is called when the user enters ENDDBG. The debugger calls the QteEndSourceDebug API

which ends ILE debugging. Since an 8 is passed as the number of bytes provided, the message ID and

error data from an error are not returned to the caller. Thus, any errors from this API (there should not be

any) are ignored.

The exit() function is called, which destroys the activation group. Thus, all global data defined in the

program’s variables are lost. This is ok, since the debug session is ending at this point.

StartUpDebugger()

void StartUpDebugger(PgmList_t ProgramList[],

 int ProgramListCount) {

 _TE_ERROR_CODE_T errorCode = {0}; /* exceptions are generated */

 _TE_OBJLIB_T StopHandler = {"DEBUG ", "*LIBL "};

 int i;

 if (ProgramListCount!=1) { /* is only 1 pgm passed on STRDBG*/

 printf("Exactly ONE program must be specified on STRDBG.\n");

 TearDownDebugger(); /* end debugger */

 }

 /* Copy program name to global variables */

 memcpy(&program_lib, &ProgramList->PgmLib, 20);

 /* Call StartSourceDebug: giving the name and library of the */

 /* stop handler. This will start ILE debug mode */

 QteStartSourceDebug(&StopHandler, &errorCode);

 AddProgram(); /* add program to debug */

}

This function is passed the second and third parameters which were passed from the system when it

called DEBUG with a reason of *START. These parameters are the list of programs to be added to debug

and the number of programs in the list. This simple example debugger can only debug one program, so

if any other number of programs were specified on STRDBG, the debugger just exits.

StartUpDebugger first stores the program/library element passed to it in a global variable available to all

functions. This is the name and library of the program being debugged. It then calls the

QteStartSourceDebug API to tell the system that an ILE debug session is to begin. The name and library

of program DEBUG are passed to this API as the Program Stop Handler. Thus, whenever the program

being debugged is stopped by the debugger, program DEBUG will be called.

436 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Finally, the function calls AddProgram to add the single program to debug.

AddProgram()

void AddProgram(void) {

 _TE_ERROR_CODE_T errorCode = {0}; /* Signal exceptions on error */

 _TE_NAME_T Library; /* Lib returned */

 _TE_TIMESTAMP_T TimeStamp; /* TimeStamp returned */

 int viewIndex;

 long int iViewID;

 long int iViewLines;

 long rtvModViewDataLength = 8; /* size of receiver buffer */

 char tempBuffer[8]; /* enough room for header only*/

 int i, tempModuleCount;

 /* Call QteRetrieveModuleViews to determine the number of bytes */

 /* the receiver variable needs to be to hold all of the views for */

 /* the program. */

 pgm_dbg_dta = (_TE_VEWL0100_T *)tempBuffer;

 QteRetrieveModuleViews((char *)pgm_dbg_dta, &rtvModViewDataLength,

 "VEWL0100", &program_lib,

 "*PGM ", "*ALL ", Library,

 &errorCode);

 /* Get a buffer large enough to hold all view information */

 rtvModViewDataLength = pgm_dbg_dta->BytesAvailable;

 pgm_dbg_dta = (_TE_VEWL0100_T *)malloc(rtvModViewDataLength);

 /* Call QteRetrieveModuleViews again, passing a big enough buffer. */

 QteRetrieveModuleViews((char *)pgm_dbg_dta, &rtvModViewDataLength,

 "VEWL0100", &program_lib,

 "*PGM ", "*ALL ", Library,

 &errorCode);

 /* If number of elements is zero, program is not debuggable. */

 if (pgm_dbg_dta->NumberElements == 0) {

 printf("Program %.10s in Library %.10s cannot be debugged.",

 program_lib.obj, program_lib.lib);

 TearDownDebugger();

 }

 /* Put the library returned by Retrieve Module Views in PgmLib */

 memcpy(program_lib.lib, Library, sizeof(_TE_NAME_T));

 /* Register all views in the program */

 for (i=0; i < pgm_dbg_dta->NumberElements; i++) {

 QteRegisterDebugView(&iViewID, &iViewLines, Library, TimeStamp,

 &program_lib, "*PGM ",

 pgm_dbg_dta->Element[i].ModuleName,

 &pgm_dbg_dta->Element[i].ViewNumber,

 &errorCode);

 /* overwrite unneeded ViewNumber with obtained view id */

 pgm_dbg_dta->Element[i].ViewNumber = iViewID;

 }

}

The heart of this function is the two calls to the QteRetrieveModuleViews API and the call to

QteRegisterDebugView API.

The QteRetrieveModuleViews API returns information about an ILE program. It returns this information

in a structure of type _TE_VEWL0100_T. This is a fairly complex structure that has the following fields:

typedef _Packed struct { /* format VEWL0100 */

 long int BytesReturned; /* number of bytes returned */

 long int BytesAvailable; /* number of bytes available */

APIs 437

long int NumberElements; /* number of elements returned */

 _Packed struct { /* one element */

 _TE_NAME_T ModuleName; /* name of module in program */

 _TE_NAME_T ViewType; /* type of view: */

 _TE_COMPILER_ID_T CompilerID; /* compiler ID */

 _TE_NAME_T MainIndicator; /* main indicator */

 _TE_TIMESTAMP_T TimeStamp; /* time view was created */

 _TE_TEXTDESC_T ViewDescription; /* view description */

 char Reserved[3];

 long int ViewNumber; /* view number within module */

 long int NumViews; /* number of views in this module*/

 } Element[1]; /* one element */

} _TE_VEWL0100_T;

This structure has a header portion which holds the number of bytes returned by the API

(BytesReturned), the number of bytes that can be returned by the API, used when there is not enough

room for the API to return all of its data (BytesAvailable), and the number of elements (views) returned

by the API (NumberElements).

Since there is no way to know in advance how many views a program has, the QteRetrieveModuleViews

API should be called once with only enough storage to return the number of bytes that the API needs to

return all of its information. Thus, the first call to the API provides only 8 bytes of storage for the API to

return its data. This allows the API to fill in the BytesAvailable field.

QteRetrieveModuleViews is passed a buffer to hold the receiver variable and the length of that buffer (in

this case, 8 bytes). It is also passed a format name which identifies the structure of the receiver variable.

The only allowable format name at this time is VEWL0100. A structure containing the program name and

library name of the ILE program is passed. Also, the program type is passed. In this example debugger,

only *PGM objects can be debugged, but it is possible to debug *SRVPGM objects using the ILE debugger

APIs.

The name of the module is provided, in which case information about that module is returned. *ALL

indicates that information about all modules in the program is to be returned. A return library variable is

passed. This is so that when *LIBL is passed as a library name, the real library name can be obtained,

making subsequent API calls faster because the library list won’t have to be searched again.

Finally an error code structure is passed to the API. This structure is initialized with a zero, indicating

that the API is not to fill in any error code data. Instead, the API issues an exception if an error occurs.

No errors are expected, so this should not matter.

Before QteRetrieveModuleViews is called again, a buffer large enough to hold all of the information is

created. The API is called again with the same parameters, but this time the entire information will be

stored by the API in the allocated buffer.

If the API does not return any elements, this means that none of the modules has debug data. In this

case, the program cannot be debugged, so the debug session is ended.

Now that a list of views has been retrieved, it is time to register all of the views to the system, making it

possible to do debug operations against them. In a real debugger, only the views requested to be seen by

the user would be registered to save processing time, but in this example, all views will be registered at

once.

Not all of the fields in the VEWL0100 structure are needed by this debugger. However, they will be

described here. The API returns one element for each view in the program. Each module in the program

may have several views. All views for a particular module are contiguous in the list.

438 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

View Description

ModuleName This is the name of the module in the program which

this particular view is for.

ViewType This indicates the type of view. A *TEXT view contains

text retrieved from source files residing on the iSeries

server. The text contains sequence information from these

files that the debugger may not want to display. A

*LISTING view contains text that is stored with the

program object itself. A *STATEMENT view contains

information about HLL statements in the module, and

this information is not generally displayed to the user

but is used by the debugger. In the case of this debugger,

all views are displayed exactly as the text for the views

are retrieved.

CompilerID This indicates the language that the particular module is

written in. This is not used by the example debugger.

MainIndicator Only one module in a program is the module with the

program entry procedure (main() in the case of ILE C

programs). If a particular view in the list comes from this

module, then this field indicates that the module

contains this procedure. This field is not used by the

example debugger.

TimeStamp This indicates when the view was created. This is useful

in allowing the debugger to detect if a program has been

recompiled and the debugger has down-level view

information. This field is not used by the example

debugger.

ViewDescription This is text given to the view by the compiler creating

the view. It is a description of the view which can be

displayed by the debugger.

ViewNumber This is a sequence number of the view in a particular

module. When registering a view, the program name,

module name, and view number must be provided.

NumViews This is how many views are in the module. All elements

for views in a given module have the same value for this

field. This field is not used by the example debugger.

A loop through all the views returned by QteRetrieveModuleViews is done, registering the view using

the QteRegisterDebugView API. The program name, program type, module name, and view number of

the module are passed as inputs to the API. The API returns the library of the program (in case *LIBL) is

passed in as the program library), the timestamp of the view (in case the program has been recompiled

between the time the view information was retrieved and the time the view was registered), the number

of lines of text in the view, and a view ID. The view ID is a handle, and it is used in identifying the

registered view to various APIs. For example, when retrieving text for a particular view, the view must

be registered, and the view ID returned when registering the view is passed to the QteRetrieveViewText

API.

The structure that held the views retrieved by QteRetrieveModuleViews is also used by the debugger.

The view number is no longer needed, since it is just a sequence number passed to

QteRegisterDebugView. Thus, this number is overwritten and will hold the view ID, which is needed by

other debugger APIs.

ProcessCommands()

APIs 439

void ProcessCommands(void) {

 char InputBuffer[80];

 char *token;

 int i;

 int step=0; /* do an exit for step when 1 */

 if (pgm_dbg_dta == NULL) { /* if no debug data */

 printf("Debug session has ended.\n");

 exit(0); /* end the debugger */

 }

 while(!step) { /* read until step or quit cmd */

 ReadLine(InputBuffer,sizeof(InputBuffer));

 token = strtok(InputBuffer," ");

 if (token==NULL) continue; /* ignore blank lines */

 else if (strcmp(token,"quit") == 0) /* the quit command? */

 return; /* exit debugger */

 else if (strcmp(token,"list") == 0) /* the list command? */

 ProcessListCommand(); /* process command */

 else if (strcmp(token,"switch") == 0) { /* switch command? */

 token = strtok(NULL," "); /* get view number token */

 if (token == NULL)

 printf("’switch’ must be followed by a view number.\n");

 else

 current_view = atoi(token); /* switch current view */

 }

 else if (strcmp(token,"help") == 0) {

 printf("The following are the allowed debugger commands:\n");

 printf(" list views - lists all views in the program\n");

 printf(" list text - lists the text of the current view\n");

 printf(" switch n - changes current view to view n\n");

 printf(" help - displays this help text\n");

 printf(" quit - ends the debug session\n");

 printf("Other commands are interpreted by the debug support.\n");

 }

 else { /* pass command to API */

 /* Undo modifications that strtok did */

 InputBuffer[strlen(InputBuffer)] = ’ ’;

 step = ProcessDbgCommand(InputBuffer);

 }

 }

}

This function reads an input line from the user and processes it. If it is a command recognized by the

debugger, it process it. If not, it calls ProcessDebugCommand which lets QteSubmitDebugCommand

process the command.

The first test is to make sure that the pointer to the debug data is not null. This is here for safety reasons.

If program DEBUG is compiled with the wrong activation group name or no name at all, its global

variables can be destroyed when the program exits, causing problems when the program is called again.

This test prevents debug commands from being entered if the activation group has been destroyed,

wiping out the global view data.

The function loops until the quit command is entered or until a step is done. It calls the appropriate

function based on the command entered, or displays an error message if a syntax error is detected. If the

command is unknown, it is processed by ProcessDbgCommand.

The switch command is processed directly by the function. It changes the current view to a number

provided. There is no error checking in this sample debugger.

ReadLine()

440 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

void ReadLine(char *Buffer, int length) {

 int i; /* loop counter */

 printf("Enter a debugger command or ’help’.\n");

 fgets(Buffer,length,stdin); /* read line of text */

 /* Blank out line from \n to the end of the string. */

 for (i=0; i<length; i++) { /* loop, searching for newline */

 if (Buffer[i] == ’\n’) { /* if newline character found

*/

 break; /* end loop searching for newline*/

 }

 }

 memset(Buffer+i,’ ’,length-i); /* blank remainder of line */

}

This function reads a line of text from the user and fills the input buffer with trailing blanks.

ProcessListCommand()

void ProcessListCommand(void) {

 char *token; /* pointer to next token of input*/

 token = strtok(NULL," "); /* get next token in input buffer*/

 if (token==NULL) /* list not followed by anything */

 printf("’list’ must be followed by ’views’ or ’text’.\n");

 else if (strcmp(token,"views") == 0)/* if list views */

 PrintViews();

 else if (strcmp(token,"text") == 0) /* if list text */

 PrintText();

 else /* list <something-else> */

 printf("’list’ must be followed by ’views’ or ’text’.\n");

}

This routine process the list command. There are two versions of the list command, list views and list

text. The appropriate function is called depending on the type of list command entered, or a syntax error

message is issued.

PrintViews

void PrintViews(void) {

 int k;

 /* loop through views printing view#, module, and view desc. text */

 for (k=0; k< pgm_dbg_dta->NumberElements; k++) {

 printf("%d) %.10s:%.50s",

 k,

 pgm_dbg_dta->Element[k].ModuleName,

 pgm_dbg_dta->Element[k].ViewDescription);

 if (current_view == k) /* indicate if view is current */

 printf("<---Current\n");

 else

 printf("\n");

 }

}

This routine lists all of the views available in the program being debugged. The information about the

views is stored in the buffer that was passed to QteRetrieveModuleViews.

The module name and view descriptive text is printed for each view. If the current view being printed is

also the current view, this is noted by printing this fact next to the view information.

APIs 441

A view number is printed next to each view. This is not the view ID returned by the

QteRegisterDebugView. It is a number allowing the user to change the current view to one of the views

in the list.

PrintText()

void PrintText(void) {

 long LineLength = 92; /* length of lines of text */

 long NumberOfLines = 0; /* lines to retrieve - 0 = all */

 long StartLine=1; /* retrieve from line 1 (first) */

 long bufferLength = 100000; /* size of retrieved text buffer */

 long viewID; /* view ID of text to retrieve */

 _TE_TEXT_BUFFER_T *buffer; /* text retrieved by API */

 _TE_ERROR_CODE_T errorCode = {0}; /* Exceptions will be signaled */

 int i; /* points to start of each line */

 int line_number; /* line number counter for loop */

 /* Get View ID of current view */

 viewID = pgm_dbg_dta->Element[current_view].ViewNumber;

 buffer = malloc(bufferLength); /* malloc space for big text buf */

 /* Call Retrieve_View_Text for the current view. */

 QteRetrieveViewText((char *)buffer, &bufferLength, &viewID,

 &StartLine, &NumberOfLines, &LineLength,

 &errorCode);

 /* Print out the text */

 for (i=0,line_number=1;

 line_number <= buffer->NumLines;

 line_number++,i+=LineLength) {

 printf("%3d) %.70s\n", line_number, buffer->Text+i);

 }

 free(buffer); /* free memory for buffer */

}

This function retrieves the text associated with the current view and prints it. This text is the source of

the program and is the heart of a source debugger screen.

The text of the current view is retrieved, so the view ID of that view is determined. It is this view that is

passed to QteRetrieveViewText.

In the sample debugger, a large buffer is allocated, and as much text as will fit in this buffer is retrieved.

The QteRetrieveViewText API returns the text and the number of lines that fit in the buffer.

Once the text is retrieved, it is printed out along with the line number. The line number is needed when

setting breakpoints based on the view.

ProcessDbgCommand()

int ProcessDbgCommand(char InputBuffer[80]) {

 _TE_ERROR_CODE_T errorCode = {64}; /* fill in bytes provided */

 char OutputBuffer[4096];

 struct _TE_RESULT_BUFFER_T *Results;

 long InputBufferLength = 80;

 long OutputBufferLength = sizeof(OutputBuffer);

 long view_ID;

 _TE_COMPILER_ID_T *CompilerID;

 int i;

 int return_value = 0;

 view_ID = pgm_dbg_dta->Element[current_view].ViewNumber;

 CompilerID = &pgm_dbg_dta->Element[current_view].CompilerID;

442 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* Give command to QteSubmitDebugCommand */

 QteSubmitDebugCommand(OutputBuffer, &OutputBufferLength,

 &view_ID, InputBuffer, &InputBufferLength,

 *CompilerID, &errorCode);

 if (errorCode.BytesAvailable != 0) {

 printf("Error = %.7s\n",errorCode.ExceptionID);

 return return_value;

 }

 /* Process results from QteSubmitDebugCommand */

 Results = (_TE_RESULT_BUFFER_T *) OutputBuffer;

 /* Loop through Results array */

 for (i=0; i<Results->Header.EntryCount; i++) {

 switch (Results->Data[i].ResultKind)

 {

 case _TE_kStepR :

 printf("Step set\n");

 return_value=1; /* indicate step is to be done */

 break;

 case _TE_kBreakR :

 printf("Breakpoint set");

 break;

 case _TE_kBreakPositionR :

 printf(" at line %d\n",

 Results->Data[i].V.BreakPosition.Line);

 break;

 case _TE_kExpressionTextR :

 printf("%s",

 ((char *)Results) + Results->Data[i].V.

 ExpressionText.oExpressionText);

 break;

 case _TE_kExpressionValueR :

 printf(" = %s\n",

 ((char *)Results) + Results->Data[i].V.

 ExpressionValue.oExpressionValue);

 break;

 case _TE_kQualifyR :

 printf("Qual set\n");

 break;

 case _TE_kClearBreakpointR :

 printf("Breakpoint cleared\n");

 break;

 case _TE_kClearPgmR :

 printf("All breakpoints cleared\n");

 break;

 default: /* ignore all other record types */

 break;

 } /* switch */

 } /* loop through results array */

 return return_value;

}

This function is called to process all commands not known by the debugger. It calls the

QteSubmitDebugCommand API which is passed a view ID, compiler ID, and a command. The API needs

the compiler ID because each programming language used in compiling a particular module has different

debug commands or command syntax, and the API needs to know which language was used when

compiling the module.

The API returns back a series of result records which indicate what was done by the API. Most of this

function reads the results of the records returned and prints an appropriate response message.

APIs 443

Some results records indicate that a particular function has been performed. These include:

 Result record Description

_TE_kStepR The step command was successfully done.

_TE_kBreakR The break command was successfully done.

_TE_kQualifyR The qual command was successfully done.

_TE_kClearBreakpointR The clear breakpoint command was successfully done.

_TE_kClearPgmR The clear pgm command was successfully done.

Other results records contain numeric data useful by the debugger.

 Result record Description

_TE_kBreakPositionR Contains the line number where a breakpoint was set. It

is possible that a breakpoint set on two different lines

will correspond to the same HLL statement. In this case,

only one breakpoint is really set. To determine if this is

the case, it is necessary to map the position in the view

where the breakpoint is set to a position in the statement

view.

Still other results records contain string data. In this case, the record contains an offset into the string

space returned by the API as well as a string length.

 Result record Description

_TE_kExpressionTextR This points to the expression entered in the eval

command.

_TE_kExpressionValueR This points to the value of the evaluated expression.

There are other kinds of results records than processed by the sample debugger. The

QteSubmitDebugCommand API discusses in detail each result record and the data it contains.

The API description also discusses the syntax of the debug command that must be passed to it. The

commands and their syntax will not be discussed in depth here, but a few example commands will be

shown:

v break 5 when x == 3

This is a conditional breakpoint. The debugger will stop the program indicated by the view ID passed

to the API when it reaches line 5 of the view and when the expression ″x == 3″ is true. The ″when″

part of the break statement is optional, in which case an unconditional breakpoint is set.

v step 1 into

The step command instructs the debug support to stop the a program when it has executed one or

more statements. In this example, the program is stopped after 1 statement has been executed. The

″into″ means that statements in procedures are counted when stepping. ″over″ means that statements

in called procedures are skipped over and not counted. The default step type is ″into″, and the default

step count is 1.

v qual 13

The qual command is necessary when there are blocks of code with the same variable name. In this

case, the user indicates where the variable is searched for in the program. Normally, this command is

not used.

v clear 8

444 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

A conditional or unconditional breakpoint is removed from line 8 of the view indicated by the view ID

parameter.

HandleStop()

void HandleStop(_TE_OBJLIB_T *ProgramLib,

 _TE_NAME_T ProgramType,

 _TE_NAME_T Module,

 char reason[10],

 long Statements[],

 int StatementsCount,

 char *message) {

 int i;

 _TE_MAPP0100_T Map_Return_Structure;

 long Column = 1;

 long MapLength = sizeof(Map_Return_Structure);

 _TE_ERROR_CODE_T errorCode = {64};

 long stmt_view;

 /* If current view is for a different module than the one that is */

 /* stopped, change current view to first view in the stopped module*/

 if (memcmp(Module,

 pgm_dbg_dta->Element[current_view].ModuleName,

 sizeof(_TE_NAME_T)) != 0) { /* a different module? */

 for (i=0; i<pgm_dbg_dta->NumberElements; i++) {

 if (memcmp(Module,

 pgm_dbg_dta->Element[i].ModuleName,

 sizeof(_TE_NAME_T)) == 0) { /* found module */

 current_view = i; /* change current view to module */

 printf("Current view changed to %d.\n",current_view);

 break; /* exit search loop */

 } /* module found */

 } /* loop through views */

 } /* current view to be changed */

 /* Get number of statement view for module stopped */

 for (i=0; i<pgm_dbg_dta->NumberElements; i++) {

 if ((memcmp(Module,

 pgm_dbg_dta->Element[i].ModuleName,

 sizeof(_TE_NAME_T)) == 0) &&

 (memcmp("*STATEMENT",

 pgm_dbg_dta->Element[i].ViewType,

 sizeof(_TE_NAME_T)) == 0))

 stmt_view = i;

 }

 /* Call QteMapViewPosition to map the stopped location (which */

 /* is in terms of the *STATEMENT view) to the current view of */

 /* the module */

 QteMapViewPosition((char *)&Map_Return_Structure, &MapLength,

 &pgm_dbg_dta-> Element[stmt_view].ViewNumber,

 &Statements[0], &Column,

 &pgm_dbg_dta->Element[current_view].ViewNumber,

 &errorCode);

 /* Tell the user about the program that stopped. */

 for (i=0;i<4;i++) { /* See why program stopped */

 if (reason[i] == ’1’) {

 switch(i) {

 case 0: printf("Unmonitored exception");

 break;

 case 1: printf("Breakpoint");

 break;

 case 2: printf("Step completed");

 break;

 case 3: printf("Breakpoint condition error");

APIs 445

break;

 }

 }

 }

 printf(" in module %.10s at line %d.\n",

 Module,

 Map_Return_Structure.MapElem[0].LineNumber);

 ProcessCommands(); /* put user into debugger */

}

This function is called when program DEBUG is called as a Program Stop Handler. It is passed the name,

library, and type of the program stopped, the line number in the statement view where it has stopped, a

count of line numbers stopped in, if the system cannot determine exactly where the program has stopped

(this is the case for optimized code), and an array of character flags indicating why the program was

stopped.

The first thing the function does is determine if the current view is set to the module where the program

stopped. If not, then it needs to be reset to the first view in the module where the program has stopped.

Next, the statement view ID for the module stopped needs to be determined. This is necessary because

the stopped position is given in terms of the statement view, and this position needs to be converted to a

position in the current view.

The QteMapViewPosition API maps a position in the statement view to a statement in another view in

that module. This allows the debugger to determine the source line of the current view where the

program has stopped, even though the program is only told the line number in the statement view.

Finally, the character flags are checked to see why the program was stopped. Note that the program can

be stopped for more than one reason, so every flag is checked, and if it is on, a message for that flag is

printed.

Finally, the ProcessCommands function is called, allowing the user to enter debug commands.

Other APIs

This section discusses other APIs not covered in this example debugger. Some or all of these APIs could

be used in a real ILE source-level debugger. All of them are used in the debugger shipped with i5/OS.

QteRetrieveDebugAttributes

This API allows a debugger to retrieve information about the debug session. This includes the value of

the Update Production Files, set on the Start Debug command, as well as an indication of whether the job

where the debugger is running is servicing and debugging another job.

QteSetDebugAttributes

The only attribute that can be set is the value of the Update Production Files. This can also be

accomplished using the Change Debug (CHGDBG) CL command.

QteRemoveDebugView

Views that are registered can be removed from debug. This is desirable if a program is to be removed

from debug so that it can be recompiled and added again. It is not necessary to remove views from

debug when ending the debug session, as QteEndSourceDebug will do this automatically.

QteRetrieveStoppedPosition

446 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

This indicates if a program is currently stopped and on the stack, and whether this stopped position is

anywhere in a given view. This is useful whenever a source debugger is about to put up a source screen.

If the program is stopped somewhere within the source to be displayed, this can be indicated to the user.

This is necessary because a program can be stopped by other means than the debugger. For example, an

ILE program could have put up a command entry screen, and the debugger could be displayed from

there. In this case, it is nice to indicate to the user that the program being debugged is stopped.

QteAddBreakpoint

This and the following APIs are not really needed, as their function can be done with the

QteSubmitDebugCommand. However, this API is much faster, since a debug language command does

not need to be parsed and interpreted. In cases where the debugger knows the information without

needing to specify a debug command to the API, these ″shortcut″ APIs should be used.

This API performs the same function as the break n debug language command.

QteRemoveBreakpoint

This API performs the same function as the clear n debug language command.

QteRemoveAllBreakpoints

This API performs the same function as the clear pgm debug language command.

QteStep

This API performs the same function as the step n into and step n over debug language commands.

Debugger code sample

Following is the entire program listing for the ILE C program containing the example debugger discussed

in the preceding sections.

/***/

/***/

/* */

/* FUNCTION: The entire program listing for the program */

/* containing the example debugger discussed in the */

/* preceding sections. */

/* */

/* LANGUAGE: ILE C */

/* */

/* APIs USED: QteRetrieveViewText, QteSubmitDebugCommand, */

/* QteEndSourceDebug, QteRetrieveModuleViews, */

/* QteRegisterDebugView, QteStartSourceDebug, */

/* QteMapViewPosition */

/* */

/***/

/***/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <qtedbgs.h>

/* Global variables holding information about a program in debug mode*/

static _TE_VEWL0100_T *pgm_dbg_dta = NULL;

static long current_view = 0; /* current view - defaults to 1st*/

static _TE_OBJLIB_T program_lib; /* name and lib of pgm debugged */

APIs 447

/* ReadLine: Reads a line of input and stores it in a string. */

void ReadLine(char *Buffer, int length) {

 int i; /* loop counter */

 printf("Enter a debugger command or ’help’.\n");

 fgets(Buffer,length,stdin); /* read line of text */

 /* Blank out line from \n to the end of the string. */

 for (i=0; i<length; i++) { /* loop, searching for newline */

 if (Buffer[i] == ’\n’) { /* if newline character found */

 break; /* end loop searching for newline*/

 }

 }

 memset(Buffer+i,’ ’,length-i); /* blank remainder of line */

}

/* PrintText: This function will print the text for the current view */

void PrintText(void) {

 long LineLength = 92; /* length of lines of text */

 long NumberOfLines = 0; /* lines to retrieve - 0 = all */

 long StartLine=1; /* retrieve from line 1 (first) */

 long bufferLength = 100000; /* size of retrieved text buffer */

 long viewID; /* view ID of text to retrieve */

 _TE_TEXT_BUFFER_T *buffer; /* text retrieved by API */

 _TE_ERROR_CODE_T errorCode = {0}; /* Exceptions will be signaled */

 int i; /* points to start of each line */

 int line_number; /* line number counter for loop */

 /* Get View ID of current view */

 viewID = pgm_dbg_dta->Element[current_view].ViewNumber;

 buffer = malloc(bufferLength); /* malloc space for big text buf */

 /* Call Retrieve_View_Text for the current view. */

 QteRetrieveViewText((char *)buffer, &bufferLength, &viewID,

 &StartLine, &NumberOfLines, &LineLength,

 &errorCode);

 /* Print out the text */

 for (i=0,line_number=1;

 line_number <= buffer->NumLines;

 line_number++,i+=LineLength) {

 printf("%3d) %.70s\n", line_number, buffer->Text+i);

 }

 free(buffer); /* free memory for buffer */

}

/* PrintViews: Prints all the views of the program being debugged. */

void PrintViews(void) {

 int k;

 /* loop through views printing view#, module, and view desc. text */

 for (k=0; k< pgm_dbg_dta->NumberElements; k++) {

 printf("%d) %.10s:%.50s",

 k,

 pgm_dbg_dta->Element[k].ModuleName,

 pgm_dbg_dta->Element[k].ViewDescription);

 if (current_view == k) /* indicate if view is current */

 printf("<---Current\n");

 else

 printf("\n");

 }

}

448 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* ProcessListCommand: Process list command to list views or text */

void ProcessListCommand(void) {

 char *token; /* pointer to next token of input*/

 token = strtok(NULL," "); /* get next token in input buffer*/

 if (token==NULL) /* list not followed by anything */

 printf("’list’ must be followed by ’views’ or ’text’.\n");

 else if (strcmp(token,"views") == 0)/* if list views */

 PrintViews();

 else if (strcmp(token,"text") == 0) /* if list text */

 PrintText();

 else /* list <something-else> */

 printf("’list’ must be followed by ’views’ or ’text’.\n");

}

/* ProcessDbgCommand: This function will process commands sent to */

/* the QteSubmitDebugCommand API. */

int ProcessDbgCommand(char InputBuffer[80]) {

 _TE_ERROR_CODE_T errorCode = {64}; /* fill in bytes provided */

 char OutputBuffer[4096];

 struct _TE_RESULT_BUFFER_T *Results;

 long InputBufferLength = 80;

 long OutputBufferLength = sizeof(OutputBuffer);

 long view_ID;

 _TE_COMPILER_ID_T *CompilerID;

 int i;

 int return_value = 0;

 view_ID = pgm_dbg_dta->Element[current_view].ViewNumber;

 CompilerID = &pgm_dbg_dta->Element[current_view].CompilerID;

 /* Give command to QteSubmitDebugCommand */

 QteSubmitDebugCommand(OutputBuffer, &OutputBufferLength,

 &view_ID, InputBuffer, &InputBufferLength,

 *CompilerID, &errorCode);

 if (errorCode.BytesAvailable != 0) {

 printf("Error = %.7s\n",errorCode.ExceptionID);

 return return_value;

 }

 /* Process results from QteSubmitDebugCommand */

 Results = (_TE_RESULT_BUFFER_T *) OutputBuffer;

 /* Loop through Results array */

 for (i=0; i<Results->Header.EntryCount; i++) {

 switch (Results->Data[i].ResultKind)

 {

 case _TE_kStepR :

 printf("Step set\n");

 return_value=1; /* indicate step is to be done */

 break;

 case _TE_kBreakR :

 printf("Breakpoint set");

 break;

 case _TE_kBreakPositionR :

 printf(" at line %d\n",

 Results->Data[i].V.BreakPosition.Line);

 break;

 case _TE_kExpressionTextR :

 printf("%s",

 ((char *)Results) + Results->Data[i].V.

 ExpressionText.oExpressionText);

 break;

 case _TE_kExpressionValueR :

 printf(" = %s\n",

APIs 449

((char *)Results) + Results->Data[i].V.

 ExpressionValue.oExpressionValue);

 break;

 case _TE_kQualifyR :

 printf("Qual set\n");

 break;

 case _TE_kClearBreakpointR :

 printf("Breakpoint cleared\n");

 break;

 case _TE_kClearPgmR :

 printf("All breakpoints cleared\n");

 break;

 default: /* ignore all other record types */

 break;

 } /* switch */

 } /* loop through results array */

 return return_value;

}

/* ProcessCommands: Read input from user and process commands. */

void ProcessCommands(void) {

 char InputBuffer[80];

 char *token;

 int i;

 int step=0; /* do an exit for step when 1 */

 if (pgm_dbg_dta == NULL) { /* if no debug data */

 printf("Debug session has ended.\n");

 exit(0); /* end the debugger */

 }

 while(!step) { /* read until step or quit cmd */

 ReadLine(InputBuffer,sizeof(InputBuffer));

 token = strtok(InputBuffer," ");

 if (token==NULL) continue; /* ignore blank lines */

 else if (strcmp(token,"quit") == 0) /* the quit command? */

 return; /* exit debugger */

 else if (strcmp(token,"list") == 0) /* the list command? */

 ProcessListCommand(); /* process command */

 else if (strcmp(token,"switch") == 0) { /* switch command? */

 token = strtok(NULL," "); /* get view number token */

 if (token == NULL)

 printf("’switch’ must be followed by a view number.\n");

 else

 current_view = atoi(token); /* switch current view */

 }

 else if (strcmp(token,"help") == 0) {

 printf("The following are the allowed debugger commands:\n");

 printf(" list views - lists all views in the program\n");

 printf(" list text - lists the text of the current view\n");

 printf(" switch n - changes current view to view n\n");

 printf(" help - displays this help text\n");

 printf(" quit - ends the debug session\n");

 printf("Other commands are interpreted by the debug support.\n");

 }

 else { /* pass command to API */

 /* Undo modifications that strtok did */

 InputBuffer[strlen(InputBuffer)] = ’ ’;

 step = ProcessDbgCommand(InputBuffer);

 }

 }

}

/* TearDownDebugger: End the debugger. */

void TearDownDebugger(void) {

450 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

_TE_ERROR_CODE_T errorCode = {8}; /* errors will be ignored */

 /* Call EndSourceDebug to get out of ILE debug mode */

 QteEndSourceDebug(&errorCode);

 exit(0); /* destroy activation group */

}

/* AddProgram: Add a program to debug mode. */

void AddProgram(void) {

 _TE_ERROR_CODE_T errorCode = {0}; /* Signal exceptions on error */

 _TE_NAME_T Library; /* Lib returned */

 _TE_TIMESTAMP_T TimeStamp; /* TimeStamp returned */

 int viewIndex;

 long int iViewID;

 long int iViewLines;

 long rtvModViewDataLength = 8; /* size of receiver buffer */

 char tempBuffer[8]; /* Temp storage */

 int i, tempModuleCount;

 /* Call QteRetrieveModuleViews to determine the number of bytes */

 /* the receiver variable needs to be to hold all of the views for */

 /* the program. */

 pgm_dbg_dta = (_TE_VEWL0100_T *)tempBuffer;

 QteRetrieveModuleViews((char *)pgm_dbg_dta, &rtvModViewDataLength,

 "VEWL0100", &program_lib,

 "*PGM ", "*ALL ", Library,

 &errorCode);

 /* Get a buffer large enough to hold all view information */

 rtvModViewDataLength = pgm_dbg_dta->BytesAvailable;

 pgm_dbg_dta = (_TE_VEWL0100_T *)malloc(rtvModViewDataLength);

 /* Call QteRetrieveModuleViews again, passing a big enough buffer. */

 QteRetrieveModuleViews((char *)pgm_dbg_dta, &rtvModViewDataLength,

 "VEWL0100", &program_lib,

 "*PGM ", "*ALL ", Library,

 &errorCode);

 /* If number of elements is zero, program is not debuggable. */

 if (pgm_dbg_dta->NumberElements == 0) {

 printf("Program %.10s in Library %.10s cannot be debugged.",

 program_lib.obj, program_lib.lib);

 TearDownDebugger();

 }

 /* Put the library returned by Retrieve Module Views in PgmLib */

 memcpy(program_lib.lib, Library, sizeof(_TE_NAME_T));

 /* Register all views in the program */

 for (i=0; i < pgm_dbg_dta->NumberElements; i++) {

 QteRegisterDebugView(&iViewID, &iViewLines, Library, TimeStamp,

 &program_lib, "*PGM ",

 pgm_dbg_dta->Element[i].ModuleName,

 &pgm_dbg_dta->Element[i].ViewNumber,

 &errorCode);

 /* overwrite unneeded ViewNumber with obtained view id */

 pgm_dbg_dta->Element[i].ViewNumber = iViewID;

 }

}

/* Typedef for program list passed to this program at STRDBG time */

typedef struct {

 _TE_OBJLIB_T PgmLib; /* Name and Library of program */

 _TE_NAME_T PgmType; /* program type, *PGM or *SRVPGM */

APIs 451

} PgmList_t;

/* StartUpDebugger: Initialize the debugger. */

void StartUpDebugger(PgmList_t ProgramList[],

 int ProgramListCount) {

 _TE_ERROR_CODE_T errorCode = {0}; /* exceptions are generated */

 _TE_OBJLIB_T StopHandler = {"DEBUG ", "*LIBL "};

 int i;

 if (ProgramListCount!=1) { /* is only 1 pgm passed on STRDBG*/

 printf("Exactly ONE program must be specified on STRDBG.\n");

 TearDownDebugger(); /* end debugger

 */

 }

 /* Copy program name to global variables */

 memcpy(&program_lib, &ProgramList->PgmLib, 20);

 /* Call StartSourceDebug: giving the name and library of the */

 /* stop handler. This will start ILE debug mode */

 QteStartSourceDebug(&StopHandler, &errorCode);

 AddProgram(); /* add program to debug */

}

/* HandleSession: This function is called to handle the session */

/* events STRDBG, DSPMODSRC and ENDDBG. */

void HandleSession(char reason[10],

 PgmList_t ProgramList[],

 int ProgramListCount) {

 if (memcmp(reason,"*START ",10) == 0) /* reason is *START */

 StartUpDebugger(ProgramList, ProgramListCount);

 else if (memcmp(reason,"*STOP ",10) == 0) /* reason is *STOP */

 TearDownDebugger();

 else if (memcmp(reason,"*DISPLAY ",10) == 0) /* reason *DISPLAY */

 ProcessCommands();

}

/* HandleStop: This function is called to handle stop events like */

/* breakpoint, step, unmonitored exception, etc. */

void HandleStop(_TE_OBJLIB_T *ProgramLib,

 _TE_NAME_T ProgramType,

 _TE_NAME_T Module,

 char reason[10],

 long Statements[],

 int StatementsCount,

 char *message) {

 int i;

 _TE_MAPP0100_T Map_Return_Structure;

 long Column = 1;

 long MapLength = sizeof(Map_Return_Structure);

 _TE_ERROR_CODE_T errorCode = {64};

 long stmt_view;

 /* If current view is for a different module than the one that is */

 /* stopped, change current view to first view in the stopped module*/

 if (memcmp(Module,

 pgm_dbg_dta->Element[current_view].ModuleName,

 sizeof(_TE_NAME_T)) != 0) { /* a different module? */

 for (i=0; i<pgm_dbg_dta->NumberElements; i++) {

 if (memcmp(Module,

 pgm_dbg_dta->Element[i].ModuleName,

 sizeof(_TE_NAME_T)) == 0) { /* found module */

 current_view = i; /* change current view to module */

 printf("Current view changed to %d.\n",current_view);

452 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

break; /* exit search loop */

 } /* module found */

 } /* loop through views */

 } /* current view to be changed */

 /* Get number of statement view for module stopped */

 for (i=0; i<pgm_dbg_dta->NumberElements; i++) {

 if ((memcmp(Module,

 pgm_dbg_dta->Element[i].ModuleName,

 sizeof(_TE_NAME_T)) == 0) &&

 (memcmp("*STATEMENT",

 pgm_dbg_dta->Element[i].ViewType,

 sizeof(_TE_NAME_T)) == 0))

 stmt_view = i;

 }

 /* Call QteMapViewPosition to map the stopped location (which */

 /* is in terms of the *STATEMENT view) to the current view of */

 /* the module */

 QteMapViewPosition((char *)&Map_Return_Structure, &MapLength,

 &pgm_dbg_dta-> Element[stmt_view].ViewNumber,

 &Statements[0], &Column,

 &pgm_dbg_dta->Element[current_view].ViewNumber,

 &errorCode);

 /* Tell the user about the program that stopped. */

 for (i=0;i<4;i++) { /* See why program stopped */

 if (reason[i] == ’1’) {

 switch(i) {

 case 0: printf("Unmonitored exception");

 break;

 case 1: printf("Breakpoint");

 break;

 case 2: printf("Step completed");

 break;

 case 3: printf("Breakpoint condition error");

 break;

 }

 }

 }

 printf(" in module %.10s at line %d.\n",

 Module,

 Map_Return_Structure.MapElem[0].LineNumber);

 ProcessCommands(); /* put user into debugger */

}

/* main: Entry point for the debugger (session or stop handler) */

main (int argc, char *argv[]) {

 if (argc == 4) /* called as source debug program*/

 HandleSession(argv[1], (PgmList_t *)argv[2], *(int

*)argv[3]);

 else if (argc == 8) /* called as program stop handler */

 HandleStop((_TE_OBJLIB_T *)argv[1], argv[2],

argv[3], argv[4],

 (long *)argv[5], *(int *)argv[6],

argv[7]);

}

Examples: Using the spawn process and wait for child process APIs

These two examples illustrate programs that use a parent/child relationship.

See the QlgSpawn--Spawn Process (using NLS-enabled path name) API for an example of supplying

parameters in any CCSID.

APIs 453

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Parent program

This program acts as a parent to a child program (see “Child program” on page 460).

This program demonstrates the use of the spawn() function and the wait() and waitpid() functions in a

parent/child relationship. The use of file descriptors, the creation of a new process group, arguments

passed from parent to child, and environment variables are demonstrated. The parent program uses

spawn() in three different ways.

Use the Create C Module (CRTCMOD) and the Create Program (CRTPGM) commands to create this

program (see “Creating the parent and child programs” on page 462).

Call this program with no parameters (see “Calling the parent program” on page 463).

/***/

/***/

/* */

/* FUNCTION: This program acts as a parent to a child program. */

/* */

/* LANGUAGE: ILE C */

/* */

/* APIs USED: putenv(), spawn(), wait(), waitpid() */

/* */

/***/

/***/

#include <errno.h>

#include <fcntl.h>

#include <spawn.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <unistd.h>

#define MAP_NUM 5

#define ARGV_NUM 6

#define ENVP_NUM 2

#define CHILD_PGM "QGPL/CHILD"

extern char **environ;

/* This is a parent program that will use spawn() in 3 different */

/* ways for 3 different children. A file is created that is */

/* written to, both by the parent and the 3 children. The end result*/

/* of the file will look something like the following: */

/* Parent writes Child writes */

/* ------------- --------------------------------------- */

/* 1 argv[0] getppid() getpgrp() getpid() */

/* 2 argv[0] getppid() getpgrp() getpid() */

/* 3 argv[0] getppid() getpgrp() getpid() */

/* The parent uses wait() or waitpid() to wait for a given child to */

/* return and to retrieve the resulting status of the child when it */

/* does return. */

int main(int argc, char *argv[])

{

 int rc; /* API return code */

 int fd, fd_read; /* parent file descriptors */

 char fd_str[4]; /* file descriptor string */

 char f_path_name[] = "A_File"; /* file pathname */

 int buf_int; /* write(), read() buffer */

454 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

char buf_pgm_name[22]; /* read() program name buffer */

 char spw_path[] = "/QSYS.LIB/QGPL.LIB/CHILD.PGM";

 /* spawn() *path */

 int spw_fd_count; /* spawn() fd_count */

 int spw_fd_map[MAP_NUM];

 /* spawn() fd_map[] */

 struct inheritance spw_inherit; /* spawn() *inherit */

 char *spw_argv[ARGV_NUM];

 /* spawn() *argv[] */

 char *spw_envp[ENVP_NUM];

 /* spawn() *envp[] */

 int seq_num; /* sequence number */

 char seq_num_str[4]; /* sequence number string */

 pid_t pid; /* parent pid */

 char pid_str[11]; /* parent pid string */

 pid_t pgrp; /* parent process group */

 char pgrp_str[11]; /* parent process group string */

 pid_t spw_child_pid[3]; /* 3 spawn() child pid */

 pid_t wt_child_pid[3]; /* 3 wait()/waitpid() child pid */

 int wt_stat_loc[3];

 /* 3 wait()/waitpid() *stat_loc*/

 int wt_pid_opt = 0; /* waitpid() option */

 char env_return_val[16];

 /* environ var "return_val=" */

 memset(&spw_inherit,0x00,sizeof(spw_inherit));

 /* Get the pid and pgrp for the parent. */

 pid = getpid();

 pgrp = getpgrp();

 /* Format the pid and pgrp value into null-terminated strings. */

 sprintf(pid_str, "%d", pid);

 sprintf(pgrp_str, "%d", pgrp);

 /* Create a file and maintain the file descriptor. */

 fd = creat(f_path_name, S_IRWXU);

 if (fd == -1)

 {

 printf("FAILURE: creat() with errno = %d\n",errno);

 return -1;

 }

 /* Format the file descriptor into null-terminated string. */

 sprintf(fd_str, "%d", fd);

 /* Set the spawn() child arguments that are common for each */

 /* child. */

 /* NOTE: The child will always get argv[0] in the */

 /* LIBRARY/PROGRAM notation, but the */

 /* spawn() argv[0] (spw_argv[0] */

 /* in this case) must be non-NULL in order to allow additional */

 /* arguments. For this example, the character pointer spw_path */

 /* was chosen. */

 /* NOTE: The parent pid and the parent process group are passed */

 /* to the child for demonstration purposes only. */

 spw_argv[0] = spw_path;

 spw_argv[1] = pid_str;

 spw_argv[2] = pgrp_str;

 spw_argv[4] = fd_str;

 spw_argv[5] = NULL;

 /* Write a ’1’ out to the file. */

 buf_int = 1;

 write(fd, &buf_int, sizeof(int));

 /* The 1st spawn() will use simple inheritance for file */

APIs 455

/* descriptors (fd_map[] value is NULL). */

 spw_fd_count = 0;

 spw_inherit.pgroup = 0;

 seq_num = 1;

 sprintf(seq_num_str, "%d", seq_num);

 spw_argv[3] = seq_num_str;

 spw_envp[0] = NULL;

 spw_child_pid[0] = spawn(spw_path, spw_fd_count, NULL, &spw_inherit,

 spw_argv, spw_envp);

 if (spw_child_pid[0] == -1)

 {

 printf("FAILURE: spawn() #1 with errno = %d\n",errno);

 close(fd);

 unlink(f_path_name);

 return -1;

 }

 /* NOTE: The parent can continue processing while the child is */

 /* also processing. In this example, though, the parent will */

 /* simply /* wait() until the child finishes processing. */

 /* Issue wait() in order to wait for the child to return. */

 wt_child_pid[0] = wait(&wt_stat_loc[0]);

 if (wt_child_pid[0] == -1)

 {

 printf("FAILURE: wait() #1 with errno = %d\n",errno);

 close(fd);

 unlink(f_path_name);

 return -1;

 }

 /* Check to ensure the child’s pid returned from spawn() is the */

 /* same as the child’s pid returned from wait(), for which */

 /* status was returned. */

 if ((spw_child_pid[0] != wt_child_pid[0]))

 printf("FAILURE: spawn() #1 and wait() #1 pid not the same\n");

 /* Check to ensure the child did not encounter an error */

 /* condition. */

 if (WIFEXITED(wt_stat_loc[0]))

 {

 if (WEXITSTATUS(wt_stat_loc[0]) != 1)

 printf("FAILURE: wait() exit status = %d\n",

 WEXITSTATUS(wt_stat_loc[0]));

 }

 else

 printf("FAILURE: unknown child #1 status\n");

 /* Write a ’2’ out to the file. */

 buf_int = 2;

 write(fd, &buf_int, sizeof(int));

 /* The 2nd spawn() will use mapping for the file descriptor, */

 /* along with the inheritance option to create a new process */

 /* group for the child. */

 spw_fd_count = 1;

 spw_fd_map[0] = fd;

 spw_inherit.pgroup = SPAWN_NEWPGROUP;

 seq_num = 2;

 sprintf(seq_num_str, "%d", seq_num);

 spw_argv[3] = seq_num_str;

 spw_envp[0] = NULL;

 spw_child_pid[1] = spawn(spw_path, spw_fd_count, spw_fd_map,

 &spw_inherit, spw_argv, spw_envp);

 if (spw_child_pid[1] == -1)

 {

 printf("FAILURE: spawn() #2 with errno = %d\n",errno);

456 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

close(fd);

 unlink(f_path_name);

 return -1;

 }

 /* NOTE: The parent can continue processing while the child is */

 /* also processing. In this example, though, the parent will */

 /* simply waitpid() until the child finishes processing. */

 /* Issue waitpid() in order to wait for the child to return. */

 wt_child_pid[1] = waitpid(spw_child_pid[1], &wt_stat_loc[1],

 wt_pid_opt);

 if (wt_child_pid[1] == -1)

 {

 printf("FAILURE: waitpid() #2 with errno = %d\n",errno);

 close(fd);

 unlink(f_path_name);

 return -1;

 }

 /* Check to ensure the child’s pid returned from spawn() is the */

 /* same as the child’s pid returned from waitpid(), for which */

 /* status was returned. */

 if ((spw_child_pid[1] != wt_child_pid[1]))

 printf("FAILURE: spawn() #2 and waitpid() #2 pid not same\n");

 /* Check to ensure the child did not encounter an error */

 /* condition. */

 if (WIFEXITED(wt_stat_loc[1]))

 {

 if (WEXITSTATUS(wt_stat_loc[1]) != 2)

 printf("FAILURE: waitpid() exit status = %d\n",

 WEXITSTATUS(wt_stat_loc[1]));

 }

 else

 printf("FAILURE: unknown child #2 status\n");

 /* Write a ’3’ out to the file. */

 buf_int = 3;

 write(fd, &buf_int, sizeof(int));

 /* The 3rd spawn() will use mapping for the file descriptors */

 /* with some file descriptors designated as being closed */

 /* (SPAWN_FDCLOSED) and the same parent file descriptor mapped */

 /* to more than one child file descriptor. In addition, an */

 /* environment variable will be set and used by the child. */

 spw_fd_count = 5;

 spw_fd_map[0] = SPAWN_FDCLOSED;

 spw_fd_map[1] = SPAWN_FDCLOSED;

 spw_fd_map[2] = fd;

 spw_fd_map[3] = SPAWN_FDCLOSED;

 spw_fd_map[4] = fd;

 spw_inherit.pgroup = 0;

 seq_num = 3;

 sprintf(seq_num_str, "%d", seq_num);

 spw_argv[3] = seq_num_str;

 strcpy(env_return_val,"return_val=3");

 rc = putenv(env_return_val);

 if (rc < 0)

 {

 printf("FAILURE: putenv() with errno = %d\n",errno);

 close(fd);

 unlink(f_path_name);

 return -1;

 }

 spw_child_pid[2] = spawn(spw_path, spw_fd_count, spw_fd_map,

 &spw_inherit, spw_argv, environ);

APIs 457

if (spw_child_pid[2] == -1)

 {

 printf("FAILURE: spawn() #3 with errno = %d\n",errno);

 close(fd);

 unlink(f_path_name);

 return -1;

 }

 /* The parent no longer needs to use the file descriptor, so it */

 /* can close it, now that it has issued spawn(). */

 rc = close(fd);

 if (rc != 0)

 printf("FAILURE: close(fd) with errno = %d\n",errno);

 /* NOTE: The parent can continue processing while the child is */

 /* also processing. In this example, though, the parent will */

 /* simply wait() until the child finishes processing. */

 /* Issue wait() in order to wait for the child to return. */

 wt_child_pid[2] = wait(&wt_stat_loc[2]);

 if (wt_child_pid[2] == -1)

 {

 printf("FAILURE: wait() #3 with errno = %d\n",errno);

 unlink(f_path_name);

 return -1;

 }

 /* Check to ensure the child’s pid returned from spawn() is the */

 /* same as the child’s pid returned from wait(), for which */

 /* status was returned. */

 if ((spw_child_pid[2] != wt_child_pid[2]))

 printf("FAILURE: spawn() #3 and wait() #3 pid not the same\n");

 /* Check to ensure the child did not encounter an error */

 /* condition. */

 if (WIFEXITED(wt_stat_loc[2]))

 {

 if (WEXITSTATUS(wt_stat_loc[2]) != 3)

 printf("FAILURE: wait() exit status = %d\n",

 WEXITSTATUS(wt_stat_loc[2]));

 }

 else

 printf("FAILURE: unknown child #3 status\n");

 /* Open the file for read to verify what the child wrote. */

 fd_read = open(f_path_name, O_RDONLY);

 if (fd_read == -1)

 {

 printf("FAILURE: open() for read with errno = %d\n",errno);

 unlink(f_path_name);

 return -1;

 }

 /* Verify what child #1 wrote. */

 rc = read(fd_read, &buf_int, sizeof(int));

 if ((rc != sizeof(int)) || (buf_int != 1))

 printf("FAILURE: read() #1\n");

 memset(buf_pgm_name,0x00,sizeof(buf_pgm_name));

 rc = read(fd_read, buf_pgm_name, strlen(CHILD_PGM));

 if ((rc != strlen(CHILD_PGM)) ||

 (strcmp(buf_pgm_name,CHILD_PGM) != 0))

 printf("FAILURE: read() child #1 argv[0]\n");

 rc = read(fd_read, &buf_int, sizeof(int));

 if ((rc != sizeof(int)) || (buf_int != pid))

 printf("FAILURE: read() child #1 getppid()\n");

 rc = read(fd_read, &buf_int, sizeof(int));

 if ((rc != sizeof(int)) || (buf_int != pgrp))

458 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

printf("FAILURE: read() child #1 getpgrp()\n");

 rc = read(fd_read, &buf_int, sizeof(int));

 if ((rc != sizeof(int)) || (buf_int != spw_child_pid[0]) ||

 (buf_int != wt_child_pid[0]))

 printf("FAILURE: read() child #1 getpid()\n");

 /* Verify what child #2 wrote. */

 rc = read(fd_read, &buf_int, sizeof(int));

 if ((rc != sizeof(int)) || (buf_int != 2))

 printf("FAILURE: read() #2\n");

 memset(buf_pgm_name,0x00,sizeof(buf_pgm_name));

 rc = read(fd_read, buf_pgm_name, strlen(CHILD_PGM));

 if ((rc != strlen(CHILD_PGM)) ||

 (strcmp(buf_pgm_name,CHILD_PGM) != 0))

 printf("FAILURE: read() child #2 argv[0]\n");

 rc = read(fd_read, &buf_int, sizeof(int));

 if ((rc != sizeof(int)) || (buf_int != pid))

 printf("FAILURE: read() child #2 getppid()\n");

 rc = read(fd_read, &buf_int, sizeof(int));

 if ((rc != sizeof(int)) || (buf_int == pgrp))

 printf("FAILURE: read() child #2 getpgrp()\n");

 rc = read(fd_read, &buf_int, sizeof(int));

 if ((rc != sizeof(int)) || (buf_int != spw_child_pid[1]) ||

 (buf_int != wt_child_pid[1]))

 printf("FAILURE: read() child #2 getpid()\n");

 /* Verify what child #3 wrote. */

 rc = read(fd_read, &buf_int, sizeof(int));

 if ((rc != sizeof(int)) || (buf_int != 3))

 printf("FAILURE: read() #3\n");

 memset(buf_pgm_name,0x00,sizeof(buf_pgm_name));

 rc = read(fd_read, buf_pgm_name, strlen(CHILD_PGM));

 if ((rc != strlen(CHILD_PGM)) ||

 (strcmp(buf_pgm_name,CHILD_PGM) != 0))

 printf("FAILURE: read() child #3 argv[0]\n");

 rc = read(fd_read, &buf_int, sizeof(int));

 if ((rc != sizeof(int)) || (buf_int != pid))

 printf("FAILURE: read() child #3 getppid()\n");

 rc = read(fd_read, &buf_int, sizeof(int));

 if ((rc != sizeof(int)) || (buf_int != pgrp))

 printf("FAILURE: read() child #3 getpgrp()\n");

 rc = read(fd_read, &buf_int, sizeof(int));

 if ((rc != sizeof(int)) || (buf_int != spw_child_pid[2]) ||

 (buf_int != wt_child_pid[2]))

 printf("FAILURE: read() child #3 getpid()\n");

 /* Attempt one more read() to ensure there is no more data. */

 rc = read(fd_read, &buf_int, sizeof(int));

 if (rc != 0)

 printf("FAILURE: read() past end of data\n");

 /* The parent no longer needs to use the read() file descriptor, */

 /* so it can close it. */

 rc = close(fd_read);

 if (rc != 0)

 printf("FAILURE: close(fd_read) with errno = %d\n",errno);

 /* Attempt one more wait() to ensure there are no more children. */

 wt_child_pid[0] = wait(&wt_stat_loc[0]);

 if ((wt_child_pid[0] != -1) || (errno != ECHILD))

 printf("FAILURE: ECHILD wait()\n");

 /* Clean up by performing unlink(). */

 rc = unlink(f_path_name);

 if (rc != 0)

 {

 printf("FAILURE: unlink() with errno = %d\n",errno);

APIs 459

return -1;

 }

 printf("completed successfully\n");

 return 0;

}

Child program

This program acts as a child to a parent program (see “Parent program” on page 454). This program

demonstrates how a child program uses characteristics expressed through the use of spawn() in the

parent program. The use of file descriptors, the creation of a new process group, arguments passed from

the parent, and environment variables are demonstrated. The child program handles three distinct calls

through the use of one of its arguments.

Use the CRTCMOD and CRTPGM commands to create this program (see “Creating the parent and child

programs” on page 462).

This program is called by the spawn() function from the parent program. The program name must be

CHILD and must be created into library QGPL, as indicated by the parent program. This program is not

to be called directly.

/***/

/***/

/* */

/* FUNCTION: This program acts as a child to a parent program. */

/* */

/* LANGUAGE: ILE C */

/* */

/* APIs USED: getenv(), getpid(), getppid(), getpgrp() */

/* */

/***/

/***/

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <unistd.h>

/* This is a child program that gets control from a parent program */

/* that issues spawn(). This particular child program expects the */

/* following 5 arguments (all are null-terminated strings): */

/* argv[0] - child program name */

/* argv[1] - parent pid (for demonstration only) */

/* argv[2] - parent process group (for demonstration only) */

/* argv[3] - sequence number */

/* argv[4] - parent file descriptor */

/* If the child program encounters an error, it returns with a value */

/* greater than 50. If the parent uses wait() or waitpid(), this */

/* return value can be interrogated using the WIFEXITED and */

/* WEXITSTATUS macros on the resulting wait() or waitpid() */

/* *stat_loc field. */

int main(int argc, char *argv[])

{

 pid_t p_pid; /* parent pid argv[1] */

 pid_t p_pgrp; /* parent process group argv[2] */

 int seq_num; /* parent sequence num argv[3] */

 int fd; /* parent file desc argv[4] */

 int rc; /* API return code */

 pid_t pid; /* getpid() - child pid */

 pid_t ppid; /* getppid() - parent pid */

 pid_t pgrp; /* getpgrp() - process group */

 char *env_return_val; /* environ var for "return_val" */

 /* Get the pid, ppid, and pgrp for the child. */

 pid = getpid();

460 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

ppid = getppid();

 pgrp = getpgrp();

 /* Verify 5 parameters were passed to the child. */

 if (argc != 5)

 return 60;

 /* Since the parameters passed to the child using spawn() are */

 /* pointers to strings, convert the parent pid, parent process */

 /* group, sequence number, and the file descriptor from strings */

 /* to integers. */

 p_pid = atoi(argv[1]);

 p_pgrp = atoi(argv[2]);

 seq_num = atoi(argv[3]);

 fd = atoi(argv[4]);

 /* Verify the getpid() value of the parent is the same as the */

 /* getppid() value of the child. */

 if (p_pid != ppid)

 return 61;

 /* If the sequence number is 1, simple inheritance was used in */

 /* this case. First, verify the getpgrp() value of the parent */

 /* is the same as the getpgrp() value of the child. Next, the */

 /* child will use the file descriptor passed in to write the */

 /* child’s values for argv[0], getppid(), getpgrp(), */

 /* and getpid(). Finally, the child returns, which will satisfy */

 /* the parent’s wait() or waitpid(). */

 if (seq_num == 1)

 {

 if (p_pgrp != pgrp)

 return 70;

 rc = write(fd, argv[0], strlen(argv[0]));

 if (rc != strlen(argv[0]))

 return 71;

 rc = write(fd, &ppid, sizeof(pid_t));

 if (rc != sizeof(pid_t))

 return 72;

 rc = write(fd, &pgrp, sizeof(pid_t));

 if (rc != sizeof(pid_t))

 return 73;

 rc = write(fd, &pid, sizeof(pid_t));

 if (rc != sizeof(pid_t))

 return 74;

 return seq_num;

 }

 /* If the sequence number is 2, file descriptor mapping was used */

 /* in this case. In addition, an inheritance option was used to */

 /* indicate this child will create a new process group. First, */

 /* verify the getpgrp() value of the parent is different than */

 /* the getpgrp() value of the child. Next, the child will use */

 /* a literal value of ’0’ as the file descriptor (instead of the */

 /* parent’s file descriptor passed in) since a known mapping was */

 /* performed by the parent. This literal is used to write the */

 /* child’s values for argv[0], getppid(), getpgrp(), */

 /* and getpid(). Finally, the child returns, which will satisfy */

 /* the parent’s wait() or waitpid(). */

 else if (seq_num == 2)

 {

 if (p_pgrp == pgrp)

 return 80;

 rc = write(0, argv[0], strlen(argv[0]));

 if (rc != strlen(argv[0]))

 return 81;

 rc = write(0, &ppid, sizeof(pid_t));

 if (rc != sizeof(pid_t))

APIs 461

return 82;

 rc = write(0, &pgrp, sizeof(pid_t));

 if (rc != sizeof(pid_t))

 return 83;

 rc = write(0, &pid, sizeof(pid_t));

 if (rc != sizeof(pid_t))

 return 84;

 return seq_num;

 }

 /* If the sequence number is 3, file descriptor mapping was used */

 /* in this case. In addition, an environment variable by the */

 /* name of "return_val" was set with the desired return value. */

 /* First, verify the getpgrp() value of the parent is the same */

 /* as the getpgrp() value of the child. Next, the child will */

 /* use literal values of ’2’ and ’4’ as the file descriptor */

 /* (instead of the parent’s file descriptor passed in) since a */

 /* known mapping was performed by the parent. These literals */

 /* are used to write the child’s values for argv[0], getppid(), */

 /* getpgrp(), and getpid(). Finally, getenv() is performed to */

 /* retrieve the desired value to use on return, which will */

 /* satisfy the parent’s wait() or waitpid(). */

 else if (seq_num == 3)

 {

 if (p_pgrp != pgrp)

 return 90;

 rc = write(4, argv[0], strlen(argv[0]));

 if (rc != strlen(argv[0]))

 return 91;

 rc = write(2, &ppid, sizeof(pid_t));

 if (rc != sizeof(pid_t))

 return 92;

 rc = write(4, &pgrp, sizeof(pid_t));

 if (rc != sizeof(pid_t))

 return 93;

 rc = write(2, &pid, sizeof(pid_t));

 if (rc != sizeof(pid_t))

 return 94;

 env_return_val = getenv("return_val");

 return (atoi(env_return_val));

 }

 /* If the sequence number is an unexpected value, return */

 /* indicating an error. */

 else

 return 99;

}

Creating the parent and child programs

The following examples show how to create the example programs (“Parent program” on page 454 and

“Child program” on page 460). These examples assume that the source for the parent program is member

PARENT in the file QGPL/QCSRC and the source for the child program is member CHILD in the file

QGPL/QCSRC.

Create the parent module:

CRTCMOD MODULE(QGPL/PARENT)

 SRCFILE(QGPL/QCSRC)

 SRCMBR(PARENT)

 TEXT(’Example Parent’)

Create the child module:

462 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

CRTCMOD MODULE(QGPL/CHILD)

 SRCFILE(QGPL/QCSRC)

 SRCMBR(CHILD)

 TEXT(’Example Child’)

Create the parent program:

CRTPGM PGM(QGPL/PARENT)

Create the child program:

CRTPGM PGM(QGPL/CHILD)

Calling the parent program

The following example shows how to start the example programs:

CALL PGM(QGPL/PARENT)

 Related reference

 QlgSpawn

Example: Using the user-defined communications programs for file

transfer

This example shows how X.25-oriented applications use the user-defined communications support to

connect to remote systems.

Two user-defined application programs written in the ILE C programming language are used to illustrate

a simple file transfer between two systems over an X.25 packet-switching data network (PSDN). Although

an X.25 example is shown, many of the same concepts can be applied to applications running over

token-ring and Ethernet local area networks (LANs). For the purposes of the examples, the APIs are

referred to by their call names. The includes header, hexconv, and typedefs are not in QSYSINC. These

includes are only documented in the examples.

For this example, the following network configuration will be used.

APIs 463

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

X.25 overview

In this example X.25 network, the source application on System A is responsible for establishing a

switched virtual circuit, or connection to the target application running on System B. This is done by

using the remote network address (System B’s address) of X’0000652’. When the target application on

System B is initialized, it waits for notification of an incoming call packet before proceeding. Once the

virtual circuit is established, the source application reads records from a file into its output buffer and

sends them to the target application using normal X.25 data transfer procedures. While receiving the file

data, the target application writes the data to a local file on System B. When the file transfer completes,

the source application closes the connection by issuing an X.25 clear request packet and ends. When

receiving the clear indication packet, the target application also ends.

User-defined communications support overview

Both the source and target applications call the Query Line Description (QOLQLIND) API to obtain

information about the local X.25 line being used. This information is stored in a local control block for

use in establishing the peer connection during X.25 connection processing. Both applications also call the

Enable Link (QOLELINK) API to enable the link for future communications. The iSeries server line name,

communications handle, and remote DTE address are passed to both programs as arguments to the C

function main(). For simplicity, the user space names and data queue name on the call to the QOLELINK

API are coded directly in the applications.

Note: Keyed data queue support is used by both applications. The key length is 3 and the keys used are

source (SRC) and target (TGT) for the source and target applications, respectively.

Activating filters

464 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Once the links have been enabled and both applications have read their respective enable-complete

entries from their data queues, the target application program calls the Set Filter (QOLSETF) API to

activate a filter. The filter activated then identifies the protocol of the local X.25 service user. This filter is

used by the user-defined communications support on System B to route incoming calls. The actual filter

type activated is X’00’ (for X.25 PID) and its associated value is X’21’. For more information concerning

filters, see Set Filter (QOLSETF) API. After activating the X’21’ filter, the target application waits for the

source application to request a connection.

Establishing a connection

The source application calls the Send Data (QOLSEND) API with a X’B000’ operation in its output data

buffer to establish a switched virtual circuit (SVC) to the target application. Included in the first byte of

the call user data is the protocol ID of the target application, or X’21’. When the user-defined

communications support on System B sees the incoming call packet with the first byte of user data equal

to a previously activated filter, the call is routed to the process responsible for activating that filter. In this

case, the target application will receive notification of an incoming call since it previously activated filter

X’21’.

While waiting for the incoming call, the target application calls the Receive Data (QOLRECV) API to

receive a X’B201’ operation with incoming call data. After doing so, the target application accepts the X.25

connection by calling the QOLSEND API with a X’B400’ operation in its output data buffer. See for more

information.

Sending data

Once the peer connection is established between the source and target applications running on System A

and System B respectively, the file transfer takes place. The source application reads records from a local

file and calls the QOLSEND API with X’0000’ operations in its output data buffer to transfer the file data

to System B. This process continues until the entire contents of the source file has been sent to System B.

Receiving data

After accepting the X.25 connection, the target application waits until its data queue receives

incoming-data entries. When the first entry is read from the queue, the QOLRECV API is called to

determine which operation was received. Barring failure, the target application should receive a X’0001’

operation as a result of the QOLRECV API call. The data contained in the input data buffer is the file

data received from System A. While receiving the file data, the target application writes the data to a

local file. This process continues until the entire contents of the file is received from System A. The target

application then assumes the file transfer is complete when an operation other than a X’0001’ operation is

received after a successful call to the QOLRECV API. Most likely, the first non-X’0001’ operation received

will be X’B301’ operation, signalling that the user-defined communications support running on System B

received an SVC clear indication.

Clearing the connection and disabling links

Once the entire contents of the file has been read and sent to System B, the source application calls the

QOLSEND API with a X’B100’ operation in its output data buffer to clear the X.25 connection.

Afterwards, the source application closes its local file, disables its local link by calling the QOLDLINK

API, and ends.

When the source application program sends a X’B100’ operation, it causes the target application to receive

a X’B301’ operation. After receiving this operation, the target application program calls the QOLSEND

API with a X’B100’ operation to locally close the connection between itself and the user-defined

communications support. Afterwards, the target application closes its local file, disables its local link by

calling the QOLDLINK API, and ends.

APIs 465

Using timers and the data queue support

Both the source and target application programs use the user-defined communications support timer

service to manage the reception of certain operations. This is done by setting a timer before checking the

data queue for an entry. For example, the target application sets a timer to manage the reception of file

data from the source application. If the timer expires, the user-defined communications support places a

timer-expired entry on the application’s data queue. The target application then assumes when receiving

this entry that the source application ended abnormally. The target application can then take the

appropriate action to end itself.

ILE C compiler listings

Below are the listings for the source and target applications described in the previous paragraphs. Note

the reference numbers (for example, (1)) in the listings. Detailed explanations of each reference number

block are found in “Source application program listing references” on page 476 and “Target application

program listing references” on page 488.

The target application compiler listing can be found in Target application on System B listing.

Source application on System A listing

In this example, the source application is the initiator of all meaningful work. In summary, the source

program listed on the following pages does the following:

v Calls the QOLQLIND API to get local X.25 line information

v Opens the local file

v Calls the QOLELINK API to establish a link for communications

v Calls the QOLSEND API with X’B000’ operation to establish a peer (SVC) connection

v Sends the local file to the target system using X’0000’ operations

v Calls the QOLSEND API with X’B100’ operation to clear the peer (SVC) connection

v Calls the QOLDLINK API to disable the link

v Calls the QOLTIMER API to manage the reception of data queue entries

To create the program using ILE C, use the Create Bound C (CRTBNDC) command.

 Program name :

(SOURCE)

 Library name : UDCS_APPLS

 Source file : QCSRC

 Library name : UDCS_APPLS

 Source member name : SOURCE

 Text Description : Source Application Example

 Output : *NONE

 Compiler options : *SOURCE *NOXREF *SHOWUSR

 : *SHOWSYS *NOSHOWSKP *NOEXPMAC

 : *NOAGR *NOPPONLY *NODEBUG

 : *GEN *NOSECLVL *PRINT *LOGMSG

 : *USRINCPATH

 Checkout Options : *NOAGR

 Optimization : *NONE

 Inline Options:

 Inliner : *OFF

 Mode : *NOAUTO

 Threshold : 250

 Limit : 2000

 Debugging View : *NONE

 Define Names : *NONE

 Language Level : *SOURCE

 Source Margins:

 Left margin : 1

466 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Right margin : 32754

 Sequence columns:

 Left column : *NONE

 Right column :

 Message flagging level : 0

 Compiler messages:

 Message limit : *NOMAX

 Message limit severity . . . : 30

 Replace Program Object : *YES

 User Profile : *USER

 Authority : *LIBCRTAUT

 Target Release : *CURRENT

 System includes : *YES

/***/

/** Program Name: Source Application Program Example **/

/** **/

/** **/

/** Function: **/

/** This is the source application program example that uses **/

/** X.25 services provided by the user-defined communications **/

/** support to transfer a simple file to the target application **/

/** program running on system B. This program performs the **/

/** following: **/

/** 01. Open the source file name INFILE. **/

/** 02. Call QOLQLIND API to obtain local line information. **/

/** 03. Enable a link. **/

/** 04. Send a ’B000’X operation (call request). **/

/** 05. Receive a ’B001’X operation (call confirmation). **/

/** 06. Read record(s) from the file opened in step 1). and **/

/** send ’0001’X operation(s) to transfer the file to **/

/** the target application program. **/

/** 07. Send a ’B100’X operation (clear call request). **/

/** 08. Receive a ’B101’X operation. **/

/** 09. Disable the link enabled in step 3). **/

/** **/

/** A data queue will be actively used to manage the operation **/

/** of this program. Data queue support will be used to monitor **/

/** for the completion of the enable and disable routines, as **/

/** well as timer expirations and incoming data. Timers are **/

/** used to ensure that there will never be an infinite wait on **/

/** the data queue. If a timer expires, the link enabled will **/

/** be disabled and the program will stop. **/

/** **/

/** Inputs: **/

/** The program expects the following input parameters **/

/** Line Name: This is the name of the line description **/

/** that will be used to call the QOLELINK API. **/

/** The line must be an X.25 line with at least **/

/** one SVC of type *SVCBOTH or *SVCOUT. **/

/** **/

/** CommHandle: This is the logical name that will be used **/

/** to identify the link enabled. **/

/** **/

/** Remote DTE Address: The is the Local Network Address **/

/** of System B. **/

/** **/

/** **/

/** Outputs: **/

/** Current status of the file transfer will be provided when **/

/** running this program. If an error should occur, then a **/

/** message will be displayed indicating where the error occurred **/

/** and the program will end. If the program completes **/

/** successfully, a "successful completion" message will be **/

/** posted. **/

/** **/

/** Language: ILE C **/

APIs 467

/** **/

/** APIs used: QOLELINK, QUSPTRUS, QOLRECV, QOLSEND, QOLDLINK, **/

/** QOLTIMER, QRCVDTAQ **/

/** **/

/***/

/***/

/***/

#include "header"

#include "typedef"

#include "hexconv"

(1)

/************ Typedef Declarations *******************/

(2)

void senddata(sendparms *a, char *b, desc *c, char *d, char *e, int f);

void sndformat1(sendparms *a,char *b, char *c, char *d, qlindparms *f);

void sndformat2 (sendparms *a, char *b, char *c);

void setfilters (hdrparms *a);

void byte (char *a, int b, char *c, int d);

void printespec (espec *a);

void settimer(unsigned short *a,char *b,qentry *c,usrspace *d,char *e);

void dequeue (int a, char *b, qentry *c, usrspace *d);

void x25lind (qlindparms *a, char *b);

int getline (char *a, int b, FILE *c);

void disablelink (disableparms *a, char *b, usrspace *c);

void handler (disableparms a, usrspace *b);

void _GetExcData(_INTRPT_Hndlr_Parms_T *parms);

/**/

/*************** Start Main Program *******************/

/**/

main (int argc, char *argv[])

{

/************ Variable Declarations *******************/

 usrspace inbuff, /* Input Data Buffer */

 indesc, /* Input Buffer Descriptor */

 outbuff, /* Output Data Buffer */

 outdesc, /* Output Buffer Descriptor */

 qname; /* Data Queue */

 int length, /* Data Queue key length */

 linesiz, /* Length of line that is read in */

 i= 0; /* counter */

 unsigned short expctid; /* Message ID that is expected */

 char commhandle[10], /* Command Line Parameter */

 buffer, / Pointer to buffer */

 rmtdte[18], /* Remote DTE read in */

 line[132], /* Line to read in */

 key[256]; /* Data Queue key identifier */

 desc *descriptor; /* Pointer to buffer descriptor */

 /** definitions for the API functions **/

 enableparms enable;

 disableparms disable;

 sendparms send;

 recvparms recv;

 setfparms setf;

 timerparms timer;

 qlindparms qlind;

 qentry dataq;

 hdrparms *header;

(3)

 /***--- Open the file to send to remote side ----**/

 if ((fptr = fopen("UDCS_APPLS/INFILE(INFILE)", "r")) == NULL)

 {

 printf("Unable to open source input file in UDCS_APPLS LIB.\n");

468 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

printf("The Program was terminated.\n\n");

 return;

 }

 /***--- Open the display file as our input screen. ----**/

 if ((screen = fopen("ERRORSPEC", "ab+ type=record")) == NULL)

 {

 printf("Unable to open display file.\n");

 printf("The Program was terminated.\n\n");

 return;

 }

 /** set the exception handler **/

 signal(SIGALL,SIG_DFL);

 /** Clear the command line Parameters **/

 strncpy(enable.linename, " ", 10); /* Clear linename */

 strncpy(commhandle, " ", 10); /* Clear Commhandle*/

 strncpy(rmtdte, " ", 17); /* Clear Remote DTE*/

 /** Receive command line Parameters **/

 strncpy(enable.linename, argv[1], strlen(argv[1]));

 strncpy(commhandle, argv[2], strlen(argv[2]));

 strncpy(rmtdte, argv[3], strlen(argv[3]));

 rmtdte[strlen(argv[3])] = ’\0’;

 /** Initialize the user spaces **/

 strncpy(inbuff.library, "UDCS_APPLS", 10); /* Input Buffer */

 strncpy(inbuff.name, "SOURCEIBUF", 10);

 strncpy(indesc.library, "UDCS_APPLS", 10); /* Input B Desc */

 strncpy(indesc.name, "SOURCEBDSC", 10);

 strncpy(outbuff.library, "UDCS_APPLS", 10); /* Output Buffer*/

 strncpy(outbuff.name, "SOURCEOBUF", 10);

 strncpy(outdesc.library, "UDCS_APPLS", 10); /* Output B Desc */

 strncpy(outdesc.name, "SOURCEODSC", 10);

 strncpy(qname.library, "UDCS_APPLS", 10); /* Data queue */

 strncpy(qname.name, "X25DTAQ ", 10);

 /***** retrieve the line description information ******/

 x25lind (&qlind, enable.linename);

 if ((qlind.retcode != 0) || (qlind.reason != 0))

 {

 printf("Query line description failed.\n");

 printf("Return code = %d\n", qlind.retcode);

 printf("Reason code = %d\n\n", qlind.reason);

 return;

 }

 /***** Hard Code the QOLELINK Input Parameters ******/

 enable.maxdtax25 = 512;

 enable.keylength = 3;

 strncpy (enable.keyvalue, "SND", 3);

(4)

 /**/

 /************ Enable the line *******************/

 /**/

 QOLELINK (&(enable.retcode), &(enable.reason), &(enable.tdusize),\

 &(enable.numunits), &(enable.maxdtalan), &(enable.maxdtax25),\

 (char *)&inbuff, (char *)&indesc, (char *)&outbuff,\

 (char *)&outdesc, &(enable.keylength), enable.keyvalue,\

 (char *)&qname, enable.linename, commhandle);

 if ((enable.retcode != 0) || (enable.reason != 0))

 {

 printf("Line %.10s with Commhandle %.10s was NOT ENABLED.\n",\

 enable.linename, commhandle);

 printf("Return code = %d\n", enable.retcode);

 printf("Reason code = %d\n\n", enable.reason);

 return;

 }

(5)

APIs 469

/*-------- Set a timer for Enable Link ---------**/

 expctid = 0xF0F0;

 settimer(&expctid, "Enable", &dataq, &qname, commhandle);

 if (expctid != 0xF0F0)

 {

 disablelink (&disable, commhandle, &qname);

 return;

 }

(6)

 /**/

 /************** Set up a Call Request Packet *******************/

 /**/

 /**** Get pointers to the user spaces. ******/

 QUSPTRUS(&outbuff, &buffer);

 QUSPTRUS(&outdesc, &descriptor);

 send.ucep = 26; /* set the UCEP number */

 send.operation = 0xB000; /* send a call request */

 send.numdtaelmnts = 1; /* send one data unit */

 /**----------- Send the packet ---------**/

 sndformat1 (&send, buffer, rmtdte, commhandle, &qlind);

 if ((send.retcode != 0) || (send.reason != 0))

 {

 printf("Call request packet not sent\n");

 printf("Return code = %d\n", send.retcode);

 printf("Reason code = %d\n", send.reason);

 printf("new pcep %d\n", send.newpcep);

 printespec(&(send.errorspecific));

 disablelink (&disable, commhandle, &qname);

 return;

 }

(7)

 /***/

 /*********** Receive the Call CONFIRMATION packet ********/

 /***/

 /*-------- Set a timer to receive a message ---------**/

 expctid = 0xF0F3;

 settimer(&expctid, "Rcv Call", &dataq, &qname, commhandle);

 if (expctid != 0xF0F3)

 {

 disablelink (&disable, commhandle, &qname);

 return;

 }

 QOLRECV (&(recv.retcode), &(recv.reason), &(recv.ucep),\

 &(recv.pcep), &(recv.operation), &(recv.numdtaunits),\

 &(recv.dataavail), &(recv.errorspecific), commhandle);

 if ((recv.retcode != 0) || (recv.reason != 0))

 {

 printf("Recv Call reqst resp failed\n");

 printf("return code %d\n", recv.retcode);

 printf("reason code %d\n", recv.reason);

 printespec(&(send.errorspecific));

 disablelink (&disable, commhandle, &qname);

 return;

 }

 /* Interpret the Received Operation */

 if (recv.operation != 0xB001)

 {

 printf("Recvd opr %x instead of opr B001\n", recv.operation);

 disablelink (&disable, commhandle, &qname);

 return;

 }

 printf("We have an X.25 SVC connection\n\n");

470 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

(8)

 /***/

 /*************** Send the file to the target application *******/

 /***/

 send.pcep = send.newpcep; /* set the PCEP number */

 /*************** Send the Mbr LGRF in file DOC ****************/

 linesiz = getline(line, 92, fptr); /* Get first record **/

 while (linesiz != 0)

 {

 /*************** Send a Packet of Data ***************/

 /**** Get pointers to the user spaces. ******/

 QUSPTRUS(&outbuff, &buffer);

 QUSPTRUS(&outdesc, &descriptor);

 send.operation = 0x0000;

 send.numdtaelmnts = 1;

 /**----- Send the packet -------------**/

 senddata (&send, buffer, descriptor, commhandle, line, linesiz);

 if ((send.retcode != 0) || (send.reason != 0))

 {

 printf("Data NOT sent for commhandle %.9s\n", commhandle);

 printf("Return code = %d\n", send.retcode);

 printf("Reason code = %d\n", send.reason);

 printf("new pcep %d\n", send.newpcep);

 printespec(&(send.errorspecific));

 disablelink (&disable, commhandle, &qname);

 return;

 }

 i = i + 1;

 printf("Data %d Sent for commhandle %.9s.\n\n", i, commhandle);

 linesiz = getline(line, 92, fptr); /** Get next record **/

 } /*** End While loop ***/

 /***/

 /*************** Set up a Clear Request Packet **************/

 /***/

(9)

 /**** Get pointers to the user spaces. ******/

 QUSPTRUS(&outbuff, &buffer);

 QUSPTRUS(&outdesc, &descriptor);

 send.operation = 0xB100; /** send clear request **/

 send.numdtaelmnts = 1; /** send one data unit **/

 /**----------- Send the packet ---------**/

 sndformat2 (&send, buffer, commhandle);

 if ((send.retcode != 0) || (send.reason != 0))

 {

 printf("Clear request packet not sent\n");

 printf("Return code = %d\n", send.retcode);

 printf("Reason code = %d\n", send.reason);

 printf("new pcep %d\n", send.newpcep);

 printespec(&(send.errorspecific));

 disablelink (&disable, commhandle, &qname);

 return;

 }

(10)

 /***/

 /*********** Receive the Clear Request Response packet *****/

 /***/

 /*-------- Set a timer to receive a message ---------**/

 expctid = 0xF0F3;

 settimer(&expctid, "Rv Clr Rqt", &dataq, &qname, commhandle);

 if (expctid != 0xF0F3)

 {

 disablelink (&disable, commhandle, &qname);

 return;

APIs 471

}

 /*********** Call QOLRECV to Receive the Clear Response *****/

 /**** Get pointers to the user spaces. ******/

 QUSPTRUS (&inbuff, &buffer);

 QUSPTRUS (&indesc, &descriptor);

 QOLRECV (&(recv.retcode), &(recv.reason), &(recv.ucep),\

 &(recv.pcep), &(recv.operation), &(recv.numdtaunits),\

 &(recv.dataavail), &(recv.errorspecific), commhandle);

 if ((recv.retcode != 0) || (recv.reason != 0))

 {

 printf("Recv clear response failed\n");

 printf("return code %d\n", recv.retcode);

 printf("reason code %d\n", recv.reason);

 printespec(&(send.errorspecific));

 disablelink (&disable, commhandle, &qname);

 return;

 }

 /* Interpret the Received Operation */

 if (recv.operation != 0xB101)

 {

 printf("Recvd opr %x instead of opr B101\n", recv.operation);

 disablelink (&disable, commhandle, &qname);

 return;

 }

 /***/

 /*** Disable the link and end the program ****/

 /***/

 disablelink (&disable, commhandle, &qname);

 printf("****** SOURCE completed successfully ******\n\n");

} /* End Main */

/***/

/************** Start Subroutine Section **********************/

/***/

/***/

/*************** Send a Packet of Data ******************/

(11)

void senddata (sendparms *send,

 char *buffer,

 desc *descriptor,

 char *commhandle,

 char *line,

 int linesiz)

{

 descriptor->length = linesiz;

 descriptor->more = 0;

 descriptor->qualified = 0;

 descriptor->interrupt = 0;

 descriptor->dbit = 0;

 strncpy (buffer, line, linesiz);

 QOLSEND (&(send->retcode), &(send->reason),

&(send->errorspecific),\

 &(send->newpcep), &(send->ucep), &(send->pcep), \

 commhandle, &(send->operation), &(send->numdtaelmnts));

} /* End senddata Subroutine */

/***/

/************ Routine to fill X.25 Format I ***********/

void sndformat1 (sendparms *send,

 char *buffer,

 char *rmtdte,

 char *commhandle,

 qlindparms *qlind)

{

 format1 *output = (format1 *) buffer;

 register int counter;

 register querydata *qd;

 qd = (querydata *)&(qlind->userbuffer);

472 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

output->type = 2; /* SVC used */

 output->logchanid = 0x0;

 output->sendpacksize = qd->x25data.defsend;

 output->sendwindsize = qd->x25data.windowsend;

 output->recvpacksize = qd->x25data.defrecv;

 output->recvwindsize = qd->x25data.windowrecv;

 output->dtelength = strlen(rmtdte);

 byte(output->dte, 16, rmtdte, strlen(rmtdte));

 output->dbit = 0;

 output->cug = 0;

 output->cugid = 0;

 output->reverse = 0;

 output->fast = 0;

 output->faclength = 0;

 byte(output->facilities, 109, "", 0);

 output->calllength = 1;

 byte(output->callud, 128, "21", 2); /* Contains Remote PID */

 output->misc[0] = 0; /* change to 0x80 for reset support */

 output->misc[1] = 0;

 output->misc[2] = 0;

 output->misc[3] = 0;

 output->maxasmsize = 16383;

 output->autoflow = 32;

 QOLSEND (&(send->retcode), &(send->reason),

&(send->errorspecific),\

 &(send->newpcep), &(send->ucep), &(send->pcep),\

 commhandle, &(send->operation), &(send->numdtaelmnts));

} /* End sndformat1 Subroutine */

/**/

/************ Routine to fill X.25 Format II ***********/

void sndformat2 (sendparms *send,

 char *buffer,

 char *commhandle)

{

 format2 *output = (format2 *) buffer;

 output->type = 1;

 output->cause = ’FF’;

 output->diagnostic = ’FF’;

 output->faclength = 0;

 byte(output->facilities, 109, "", 0);

 output->length = 0;

 byte(output->userdata, 128, "", 0);

 QOLSEND (&(send->retcode), &(send->reason),

&(send->errorspecific),\

 &(send->newpcep), &(send->ucep), &(send->pcep),\

 commhandle, &(send->operation), &(send->numdtaelmnts));

} /* End sndformat2 Subroutine */

(12)

/**/

/******** Routine to disable ***********/

void disablelink (disableparms *disable,

 char *commhandle,

 usrspace *qname)

{

unsigned short expctid;

qentry dataq;

 disable->vary = 1; /* Hard coded to be varied off */

 QOLDLINK (&(disable->retcode), &(disable->reason),\

 commhandle, &(disable->vary));

 if ((disable->retcode != 0) && (disable->reason != 00))

 {

 printf ("Link %.10s did not disabled.\n", commhandle);

 printf ("return code = %d\n", disable->retcode);

 printf ("reason code = %d\n\n", disable->reason);

 }

APIs 473

/**------- Set a timer to receive disable complete msg --------**/

 expctid = 0xF0F1;

 settimer(&expctid, "Disable", &dataq, qname, commhandle);

 if (expctid != 0xF0F1)

 {

 printf("Disable link did not complete successfully");

 return;

 }

 printf ("%.10s link disabled \n", commhandle);

 /** close the files **/

 fclose(fptr);

 fclose(screen);

} /* End disablelink Subroutine */

/**/

/** Routine to convert string to Hexadecimal format ******/

void byte (char *dest,

 int dlength,

 char *source,

 int slength)

{

 register int counter;

 char holder[2];

 for (counter=0;counter<dlength;counter++)

 dest[counter]=0;

 for (counter=slength-1;counter>=0;counter--)

 if (isxdigit(source[counter]))

 {

 holder[0]=source[counter];

 holder[1]=’\0’;

 if (counter % 2 == 0)

 dest[counter/2] += (char) hextoint(holder)*16;

 else dest[counter/2] += (char) hextoint(holder);

 }

} /* End byte Subroutine */

/**/

/** Routine to display the ErrorSpecific output ******/

void printespec(espec *errorspecific)

{

 especout outparms;

 sprintf(outparms.hwecode, "%.8X", errorspecific->hwecode);

 sprintf(outparms.timestamp, "%.8X%.8X", errorspecific->timestamphi,\

 errorspecific->timestamplo);

 sprintf(outparms.elogid, "%.8X", errorspecific->elogid);

 if (errorspecific->flags & 0x40)

 outparms.fail = ’Y’;

 else outparms.fail = ’N’;

 if (errorspecific->flags & 0x20)

 outparms.zerocodes = ’Y’;

 else outparms.zerocodes = ’N’;

 if (errorspecific->flags & 0x10)

 outparms.qsysopr = ’Y’;

 else outparms.qsysopr = ’N’;

 sprintf(outparms.cause,"%.2X", errorspecific->cause);

 sprintf(outparms.diagnostic, "%.2X", errorspecific->diagnostic);

 sprintf(outparms.erroffset, "%.6d", errorspecific->erroroffset);

 fwrite(&outparms, 1, sizeof(especout), screen);

 fread("", 0, 0, screen);

} /* End printespec Subroutine */

(13)

/************* Set a timer and dequeue next entry ******/

void settimer (unsigned short *expctid,

 char *process,

 qentry *dataq,

 usrspace *qname,

 char *commhandle)

474 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

{

timerparms timer;

disableparms disable;

int length;

char key[6];

 timer.interval = 20000; /* Set timer for 20 seconds */

 timer.establishcount = 1;

 timer.keylength = 3; /* Set key value */

 strncpy(timer.keyvalue, "SRC", 3);

 timer.operation = 1; /* Set a timer */

 QOLTIMER (&(timer.retcode), &(timer.reason), timer.handleout,\

 timer.handlein, (char *)qname, &(timer.operation),\

 &(timer.interval), &(timer.establishcount),\

 &(timer.keylength), timer.keyvalue, timer.userdata);

 if ((timer.retcode != 0) || (timer.reason != 0))

 {

 printf("%s timer failed while being set.\n", process);

 printf("Return code = %d\n", timer.retcode);

 printf("Reason code = %d\n\n", timer.reason);

 }

/**------- Dequeue an entry --------**/

 strncpy(key, "SRC",3);

 length = 3;

 dequeue (length, key, dataq, qname);

 /*** Cancel timer ***/

 if (dataq->msgid != 0xF0F4)

 {

 strncpy(timer.handlein, timer.handleout, 8);

 timer.operation = 2; /* Set one timer */

 QOLTIMER (&(timer.retcode), &(timer.reason), timer.handleout,\

 timer.handlein, (char *)qname, &(timer.operation),\

 &(timer.interval), &(timer.establishcount),\

 &(timer.keylength), timer.keyvalue, timer.userdata);

 if ((timer.retcode != 0) || (timer.reason != 0))

 {

 printf("%s timer failed while being canceled\n", process);

 printf("Return code = %d\n", timer.retcode);

 printf("Reason code = %d\n\n", timer.reason);

 }

 }

 if (dataq->msgid != *expctid)

 {

 printf ("A %.4X message ID was received instead of %.4X\n",\

 dataq->msgid, *expctid);

 printf ("%s completion message was not received\n", process);

 *expctid = dataq->msgid;

 }

} /* End settimer Subroutine */

/***/

/******* Dequeues the Incoming Message and processes it ******/

void dequeue (int length,

 char *key,

 qentry *dataq,

 usrspace *qname)

{

 char fldlen[3],

 waittime[3],

 keylen[2],

 senderid[2],

 *pointer,

 order[2];

 register int counter;

 waittime[0] = 0;

 waittime[1] = 0;

 waittime[2] = 0x1D; /* Hard code a delay of infinite */

 keylen[0] = 0;

 keylen[1] = 0x3F; /* Hard code a keylength of 3 */

APIs 475

senderid[0] = 0;

 senderid[1] = 0x0F;

 strncpy(order, "EQ", 2);

 fflush(stdin);

 pointer = (char *)dataq;

 for (counter = 0; counter < 336; counter++)

 pointer[counter] = 0;

 strncpy (dataq->type, " ", 7);

 while ((strncmp(dataq->type, "*USRDFN", 7) != 0) || (fldlen == 0))

 QRCVDTAQ(qname->name, qname->library, fldlen, dataq, waittime,\

 order, keylen, key, senderid,"");

} /* End dequeue Subroutine */

(14)

/**/

/** x25lind: Retrieve X.25 line description information **/

void x25lind (qlindparms *qlind, char *linename)

{

register int counter;

 for(counter=0;counter<256;counter++)

 qlind->userbuffer[counter]=0;

 qlind->format = 0x01;

 QOLQLIND (&(qlind->retcode), &(qlind->reason), &(qlind->nbytes),\

 qlind->userbuffer, linename, &(qlind->format));

} /* End x25lind Subroutine */

/***/

/** Getline: Read a record into line and return length **/

int getline (char *line, int max, FILE *fptr)

{

 if (fgets(line, max, fptr) == NULL)

 return 0;

 else

 return strlen(line);

} /* End getline Subroutine */

/***/

Source application program listing references

The following reference numbers and explanations correspond to the reference numbers in the source

application’s program listing.

 (1) Some general C structure declarations used by both the

source and target application programs.

(2) Function prototypes of the internal functions used in this

program.

(3) Call the C library routines fopen() and signal() to open

the source file and set up a signal handler to process

i5/OS exceptions, respectively. An example of an

exception would be accessing a data area with a NULL

pointer. If an exception situation is encountered,

SIG_DFL, the default handler, will be called in order for

the program to end.

(4) Call the QOLQLIND API to retrieve local configuration

information from the iSeries server line description about

that will be used for communications. Next, call the

QOLELINK API to enable the line description using the

line name and communications handle passed as input

parameters to this program.

(5) Call the QOLTIMER API to time the completion of the

enable link operation. If the timer expires before the

enable-complete entry is posted on the this program’s

data queue, then this program will end.

476 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

(6) Call the QOLSEND API with a X’B000’ operation to

establish a connection to the target application program.

(7) Monitor the source program’s data queue for the call

confirmation. The source program will be notified of the

call confirmation by call the QOLRECV API and

receiving a X’B001’ operation in the program’s input

buffer.

(8) This is the main send loop for the source program. The

data from the source file is placed one line at a time in

the output buffer and then the QOLSEND API is called

to send one data unit of the file to System B. This

process repeats until the contents of the entire file have

been transmitted to the target application.

(9) Call the QOLSEND API with a X’B100’ operation to clear

the peer connection.

(10) The source program will check its data queue for a

response to the clear packet sent to the target system.

Once the response is received, the program will clean up,

call the QOLDLINK API to disable the link previously

enabled, and end.

(11) The following C functions illustrate the various

user-defined communications support APIs.

(12) This procedure illustrates a call to the QOLDLINK API.

Note the vary option is set to vary off the associated

iSeries server *USRDFN network device.

(13) The settimer() calls the QOLTIMER API requesting timers

for 20000 milliseconds, or twenty seconds. After setting a

timer, the settimer() will call the dequeue() to remove an

entry from the program’s data queue.

(14) The x25lind() illustrates calling the QOLQLIND API.

Target application on System B listing

The target application waits for the source application to initiate the file transfer. The following list

summarizes the actions of the target application:

v Calls the QOLQLIND API to get local X.25 line information

v Opens the local file

v Calls the QOLELINK API to establish a link for communications

v Calls the QOLSETF API to activate an X.25 protocol ID filter

v Calls the QOLRECV API to receive the X’B201’ operation (incoming call)

v Calls the QOLSEND API with a X’B400’ operation to accept the SVC connection

v Receives the file from the target system using X’0001’ operations

v Calls the QOLRECV API to receive the X’B301’ (connection failure notification)

v Call the QOLSEND API with ’B100’ operation to locally close the SVC connection

v Calls the QOLDLINK API to disable the link

v Calls the QOLTIMER API to manage the reception of data queue entries

To create the program using ILE C, use the Create Bound C (CRTBNDC) command.

Explanations of the reference numbers in the listing can be found in “Target application program listing

references” on page 488.

APIs 477

Program name :

(TARGET)

 Library name : UDCS_APPLS

 Source file : QCSRC

 Library name : UDCS_APPLS

 Source member name : TARGET

 Text Description : Target Application Example

 Output : *NONE

 Compiler options : *SOURCE *NOXREF *NOSHOWUSR

 : *NOSHOWSYS *NOSHOWSKP *NOEXPMAC

 : *NOAGR *NOPPONLY *NODEBUG

 : *GEN *NOSECLVL *PRINT *LOGMSG

 : *USRINCPATH

 Checkout Options : *NOAGR

 Optimization : *NONE

 Inline Options:

 Inliner : *OFF

 Mode : *NOAUTO

 Threshold : 250

 Limit : 2000

 Debugging View : *NONE

 Define Names : *NONE

 Language Level : *SOURCE

 Source Margins:

 Left margin : 1

 Right margin : 32754

 Sequence columns:

 Left column : *NONE

 Right column :

 Message flagging level : 0

 Compiler messages:

 Message limit : *NOMAX

 Message limit severity . . . : 30

 Replace Program Object : *YES

 User Profile : *USER

 Authority : *LIBCRTAUT

 Target Release : *CURRENT

 System includes : *YES

/***/

/** **/

/** Program Name: Target Application Program Example **/

/** **/

/** **/

/** Function: **/

/** This is the target application program example that uses **/

/** X.25 services provided by the user-defined communications **/

/** support to receive a simple file from the source application **/

/** program running on System A. This program performs the **/

/** following: **/

/** 01. Open the target file named OUTFILE. **/

/** 02. Call QOLQLIND to obtain local line information. **/

/** 03. Enable a link. **/

/** 04. Set a Filter on the enabled link. **/

/** 05. Receive a ’B101’X operation (incoming call). **/

/** 06. Send a ’B400’X operation (accept call). **/

/** 07. Receive ’0001’X operation(s) (incoming data) from **/

/** the source application program and write it to the **/

/** file opened in step 1). **/

/** 08. Receive a ’B301’X operation (clear call indication). **/

/** 09. Send a ’B100’X operation to respond locally to the **/

/** clearing of the connection. **/

/** 10. Disable the link enabled in step 3). **/

/** **/

/** A data queue will be actively used to manage the operation **/

/** of this program. Data queue support will be used to monitor **/

/** for the completion of the enable and disable routines, as **/

478 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/** well as timer expirations and incoming data. Timers are **/

/** used to ensure that there will never be an infinite wait on **/

/** the data queue. If a timer expires, the link enabled will **/

/** be disabled and the program will stop. **/

/** **/

/** **/

/** Inputs: **/

/** The program expects the following input parameters: **/

/** Line Name: This is the name of the line description **/

/** that will be used to call the QOLELINK API. **/

/** The line must be an X.25 line with at least **/

/** one SVC of type *SVCBOTH or *SVCIN. **/

/** **/

/** CommHandle: This is the logical name that will be used **/

/** to identify the link enabled. **/

/** **/

/** Remote DTE Address: The is the Local Network Address **/

/** of system A. **/

/** **/

/** **/

/** Outputs: **/

/** Current status of the file transfer will be provided when **/

/** running this program. If an error should occur, then a **/

/** message will be displayed indicating where the error occurred **/

/** and the program will end. If the program completes **/

/** successfully, a "successful completion" message will be **/

/** posted. **/

/** **/

/** Language: ILE C **/

/** **/

/** APIs used: QOLELINK, QUSPTRUS, QOLRECV, QOLSEND, QOLDLINK, **/

/** QRCVDTAQ, QOLTIMER **/

/** **/

/***/

/***/

/***/

/***/

#include "header"

#include "typedef"

#include "hexconv"

void senddata(sendparms *a, char *b, desc *c, char *d, char *e, int f);

void sndformat1(sendparms *a,char *b, char *c, char *d, qlindparms *e);

void sndformat2 (sendparms *a, char *b, char *c);

void setfilters (hdrparms *a);

void byte (char *a, int b, char *c, int d);

void printespec (espec *a);

void settimer(unsigned short *a,char *b,qentry *c,usrspace *d,char *e);

void dequeue (int a, char *b, qentry *c, usrspace *d);

void putdata (char *a, int b, FILE *c);

void x25lind (qlindparms *a, char *b);

void disablelink (disableparms *a, char *b, usrspace *c);

void handler (disableparms a, usrspace *b);

void _GetExcData(_INTRPT_Hndlr_Parms_T *parms);

/**/

/*************** Start Main Program *******************/

/**/

main (int argc, char *argv[])

{

/************ Variable Declarations *******************/

 usrspace inbuff, /* Input Data Buffer */

 indesc, /* Input Buffer Descriptor */

 outbuff, /* Output Data Buffer */

 outdesc, /* Output Buffer Descriptor */

 qname; /* Data Queue */

 int length, /* Data Queue key length */

 inc, i, j; /* counters */

APIs 479

unsigned short expctid; /* Message ID that is expected */

 char commhandle[10], /* Command Line Parameter */

 rmtdte[17], /* Remote DTE Address */

 buffer, / Pointer to buffer */

 key[256]; /* Data Queue key identifier */

 desc *descriptor; /* Pointer to buffer descriptor */

/** definitions for API functions **/

 enableparms enable;

 disableparms disable;

 sendparms send;

 recvparms recv;

 setfparms setf;

 timerparms timer;

 qlindparms qlind;

 qentry dataq;

 hdrparms *header;

 /****** Annndddddd.... they’re off!! ***********/

(1)

 /***--- Open the file to put the received data. ----**/

 if ((fptr = fopen("UDCS_APPLS/OUTFILE))", "w")) == NULL)

 {

 printf("Unable to open target output file in UDCS_APPLS LIB.\n");

 printf("The Program was terminated.\n\n");

 return;

 }

 /***--- Open the display file for error handling. ----**/

 if ((screen = fopen("ERRORSPEC", "ab+ type = record")) == NULL)

 {

 printf("Unable to open display file.\n");

 printf("The Program was terminated.\n\n");

 return;

 }

 /***--- Set the Exception Handler ----**/

 signal(SIGALL,SIG_DFL);

 /** Clear the command line parameters **/

 strncpy(enable.linename, " ", 10); /* Clear linename */

 strncpy(commhandle, " ", 10); /* Clear Commhandle */

 strncpy(rmtdte, " ", 17); /* Clear Remote DTE */

 /** Receive command line Parameters **/

 strncpy(enable.linename, argv[1], strlen(argv[1]));

 strncpy(commhandle, argv[2], strlen(argv[2]));

 strncpy(rmtdte, argv[3], strlen(argv[3]));

 rmtdte[strlen(argv[3])] = ’\0’;

 /** Initialize the user spaces **/

 strncpy(inbuff.library, "UDCS_APPLS", 10); /* Input Buffer */

 strncpy(inbuff.name, "TARGETIBUF", 10);

 strncpy(indesc.library, "UDCS_APPLS", 10); /* Input B Desc */

 strncpy(indesc.name, "TARGETIDSC", 10);

 strncpy(outbuff.library, "UDCS_APPLS", 10); /* Output Buffer*/

 strncpy(outbuff.name, "TARGETOBUF", 10);

 strncpy(outdesc.library, "UDCS_APPLS", 10); /* Output B Desc */

 strncpy(outdesc.name, "TARGETODSC", 10);

 strncpy(qname.library, "UDCS_APPLS", 10); /* Data queue */

 strncpy(qname.name, "X25DTAQ ", 10);

 /***** retrieve the line description information ******/

 x25lind (&qlind, enable.linename);

 if ((qlind.retcode != 0) || (qlind.reason != 0))

 {

 printf("Query line description failed.\n");

 printf("Return code = %d\n", qlind.retcode);

 printf("Reason code = %d\n\n", qlind.reason);

 return;

 }

 /***** Hard Code the QOLELINK Input Parameters ******/

 enable.maxdtax25 = 512;

480 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

enable.keylength = 3;

 strncpy(enable.keyvalue, "RCV", 3);

(2)

 /**------- Enable the link -----------**/

 QOLELINK (&(enable.retcode), &(enable.reason), &(enable.tdusize),\

 &(enable.numunits), &(enable.maxdtalan), &(enable.maxdtax25),\

 (char *)&inbuff, (char *)&indesc, (char *)&outbuff,\

 (char *)&outdesc, &(enable.keylength), enable.keyvalue,\

 (char *)&qname, enable.linename, commhandle);

 if ((enable.retcode != 0) || (enable.reason != 0))

 {

 printf("Line %.10s with Commhandle %.10s was NOT ENABLED.\n",\

 enable.linename, commhandle);

 printf("Return code = %d\n", enable.retcode);

 printf("Reason code = %d\n\n", enable.reason);

 return;

 }

(3)

 /**------- Set a timer for Enable link --------**/

 expctid = 0xF0F0;

 settimer(&expctid, "Enable", &dataq, &qname, commhandle);

 if (expctid != 0xF0F0)

 {

 disablelink (&disable, commhandle, &qname);

 return;

 }

 /***/

 /*******---- Set a Filter for the Link --------*********/

 /***/

(4)

 QUSPTRUS(&outbuff, &header); /* get the output buffer pointer */

 header->function = 1; /* add a filter */

 header->type = 0; /* X.25 PID only */

 header->number = 1; /* set 1 filter */

 header->length = 16; /* X.25 filter length */

 setfilters(header); /* Fill in the filter format */

 /*******---- Set the filter for the Link --------*********/

 QOLSETF (&(setf.retcode), &(setf.reason), &(setf.erroffset),\

 commhandle);

 if ((setf.retcode != 0) || (setf.reason != 0))

 {

 printf("Set Filters Return Code = %.2d\n", setf.retcode);

 printf("Set Filters Reason Codes = %.4d\n", setf.reason);

 printf("Set Filters Error Offset = %.4d\n", setf.erroffset);

 return;

 }

 /***/

 /**** Receive the incoming call packet and accept the call **/

 /***/

 /**------- Set a timer to receive data --------**/

 expctid = 0xF0F3;

 settimer(&expctid, "Inc Call ", &dataq, &qname, commhandle);

 if (expctid != 0xF0F3)

 {

 disablelink (&disable, commhandle, &qname);

 return;

 }

(5)

 /********** Receive the Incoming Data **********/

 QUSPTRUS (&inbuff, &buffer);

 QUSPTRUS (&indesc, &descriptor);

 QOLRECV (&(recv.retcode), &(recv.reason), &(recv.ucep),\

 &(recv.pcep), &(recv.operation), &(recv.numdtaunits),\

APIs 481

&(recv.dataavail), &(recv.errorspecific), commhandle);

 if ((recv.retcode != 0) || (recv.reason != 0))

 {

 printf("Recv incoming call packet failed\n");

 printf("return code %d\n", recv.retcode);

 printf("reason code %d\n", recv.reason);

 printespec(&(send.errorspecific));

 disablelink (&disable, commhandle, &qname);

 return;

 }

 /*** Interpret the Received Operation ***/

 if (recv.operation != 0xB201)

 {

 printf("Recvd operation %x instead of B201", recv.operation);

 disablelink (&disable, commhandle, &qname);

 return; /**** End the program ***/

 }

(6)

 /**/

 /** Send a response to accept the call and establish a connection */

 /**/

 /**** Get pointers to the user spaces. ******/

 QUSPTRUS(&outbuff, &buffer);

 QUSPTRUS(&outdesc, &descriptor);

 /******* Set up Send Packet *********/

 send.ucep = 62; /* set UCEP to be 62 */

 send.pcep = recv.pcep; /* get the PCEP number */

 send.operation = 0xB400; /* send a call request response*/

 send.numdtaelmnts = 1; /* send one data unit */

 /**----- Send the packet ----------------**/

 sndformat1 (&send, buffer, rmtdte, commhandle, &qlind);

 if ((send.retcode != 0) || (send.reason != 0))

 {

 printf("Data NOT sent for commhandle %.9s\n", commhandle);

 printf("Return code = %d\n", send.retcode);

 printf("Reason code = %d\n", send.reason);

 printf("new pcep %d\n\n", send.newpcep);

 printespec(&(send.errorspecific));

 disablelink (&disable, commhandle, &qname);

 return;

 }

 printf("An X.25 SVC connection was completed\n\n");

(7)

 /**/

 /**** Receive Incoming Data *************************/

 /**/

 /**------- Set a timer to receive data --------**/

 expctid = 0xF0F3;

 settimer(&expctid, "Inc Data ", &dataq, &qname, commhandle);

 if (expctid != 0xF0F3)

 {

 disablelink (&disable, commhandle, &qname);

 return;

 }

 /*******--- Receive the Incoming Data ----******/

 /** Get pointer to user space **/

 QUSPTRUS (&inbuff, &buffer);

 QUSPTRUS (&indesc, &descriptor);

 /** Receive the data **/

 QOLRECV (&(recv.retcode), &(recv.reason), &(recv.ucep),\

 &(recv.pcep), &(recv.operation), &(recv.numdtaunits),\

 &(recv.dataavail), &(recv.errorspecific), commhandle);

 if ((recv.retcode != 0) || (recv.reason != 0))

 {

482 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

printf("Recv op for first data unit failed\n");

 printf("return code %d\n", recv.retcode);

 printf("reason code %d\n", recv.reason);

 printespec(&(send.errorspecific));

 disablelink (&disable, commhandle, &qname);

 return;

 }

(8)

 /**/

 /******* Start a loop to read in all the incoming data ***/

 /**/

 i = 1;

 while (recv.operation == 0x0001)

 {

 printf("%d Data Recvd {%.4x}.\n\n", i++, recv.operation);

 /** Store all the data units in the file **/

 for (j = 1; j <= recv.numdtaunits; j++) {

 putdata (buffer + (j - 1)*enable.tdusize,\

 descriptor->length, fptr);

 descriptor = (desc *)((char *)descriptor + sizeof(desc));

 } /* for */

 /**------- Set a timer to wait for more data -------**/

 if (recv.dataavail == 0)

 {

 /** Set timer **/

 expctid = 0xF0F3;

 settimer(&expctid, "Wt Inc Dta", &dataq, &qname, commhandle);

 if (expctid != 0xF0F3)

 {

 disablelink (&disable, commhandle, &qname);

 return;

 }

 }

 /** Get pointer to user space **/

 QUSPTRUS (&inbuff, &buffer);

 QUSPTRUS (&indesc, &descriptor);

 /** Receive the data **/

 QOLRECV (&(recv.retcode), &(recv.reason), &(recv.ucep),\

 &(recv.pcep), &(recv.operation), &(recv.numdtaunits),\

 &(recv.dataavail), &(recv.errorspecific), commhandle);

 } /** End Receive data while loop ******/

(9)

 /**/

 /*********** Receive the Clear indication ***********/

 /**/

 if ((recv.retcode != 83) || (recv.reason != 4002))

 {

 printf("Recv opr for clear request failed\n");

 printf("return code %d\n", recv.retcode);

 printf("reason code %d\n", recv.reason);

 printespec(&(send.errorspecific));

 disablelink (&disable, commhandle, &qname);

 return;

 }

 /* Interpret the Received Operation */

 if (recv.operation != 0xB301)

 {

 printf("Recvd operation %x instead of B301", recv.operation);

 disablelink (&disable, commhandle, &qname);

 return; /**** end the program ***/

 }

(10)

APIs 483

/**/

 /*********** Send local response to clear indication ***********/

 /**/

 /**** Get pointers to the user spaces. ******/

 QUSPTRUS(&outbuff, &buffer);

 QUSPTRUS(&outdesc, &descriptor);

 /******* Set up the packet ****************/

 send.operation = 0xB100; /* send a clear request packet */

 send.numdtaelmnts = 1; /* send one data unit */

 /**----- Send the packet ----------------**/

 sndformat2 (&send, buffer, commhandle);

 if ((send.retcode != 0) && (send.reason != 0))

 {

 printf("Response not sent for clear connection\n");

 printf("Return code = %d\n", send.retcode);

 printf("Reason code = %d\n", send.reason);

 printf("new pcep %d\n\n", send.newpcep);

 printespec(&(send.errorspecific));

 disablelink (&disable, commhandle, &qname);

 return;

 }

 /**/

 /*********** Receive the Clear Confirmation **********/

 /**/

 /**------- Set a timer to receive data --------**/

 expctid = 0xF0F3;

 settimer(&expctid, "Clr Cnfrm", &dataq, &qname, commhandle);

 if (expctid != 0xF0F3)

 {

 disablelink (&disable, commhandle, &qname);

 return;

 }

 if ((recv.retcode != 00) || (recv.reason != 0000))

 {

 printf("Recv failed for clear confirmation\n");

 printf("return code %d\n", recv.retcode);

 printf("reason code %d\n", recv.reason);

 printespec(&(send.errorspecific));

 disablelink (&disable, commhandle, &qname);

 return;

 }

 /* Interpret the Received Operation */

 if (recv.operation != 0xB101)

 {

 printf("Recvd opr %x instead of opr B301\n", recv.operation);

 disablelink (&disable, commhandle, &qname);

 return;

 }

(11)

 /**/

 /** disable the link and end program **/

 /**/

 disablelink (&disable, commhandle, &qname);

 printf("TARGET application completed OK!\n\n");

} /* End Main */

/***/

/************** Start Subroutine Section **********************/

/***/

/***/

/************ Routine to fill X.25 Format I ***********/

void sndformat1 (sendparms *send,

 char *buffer,

 char *rmtdte,

 char *commhandle,

484 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

qlindparms *qlind)

{

 format1 *output = (format1 *) buffer;

 register int counter;

 register querydata *qd;

 qd = (querydata *)&(qlind->userbuffer);

 output->type = 0; /* not used */

 output->logchanid = 0x0;

 output->sendpacksize = qd->x25data.defsend;

 output->sendwindsize = qd->x25data.windowsend;

 output->recvpacksize = qd->x25data.defrecv;

 output->recvwindsize = qd->x25data.windowrecv;

 output->dtelength = strlen(rmtdte); /* not used */

 byte(output->dte, 16, rmtdte, strlen(rmtdte)); /* not used */

 output->dbit = 0;

 output->cug = 0; /* not used */

 output->cugid = 0; /* not used */

 output->reverse = 0; /* not used */

 output->fast = 0; /* not used */

 output->faclength = 0;

 byte(output->facilities, 109, "", 0);

 output->calllength = 0;

 byte(output->callud, 128, "00", 2);

 output->misc[0] = 0;

 output->misc[1] = 0;

 output->misc[2] = 0;

 output->misc[3] = 0;

 output->maxasmsize = 16383;

 output->autoflow = 32;

 QOLSEND (&(send->retcode), &(send->reason),

&(send->errorspecific),\

 &(send->newpcep), &(send->ucep), &(send->pcep),\

 commhandle, &(send->operation), &(send->numdtaelmnts));

} /* End sndformat1 Subroutine */

/***/

/************ Routine to fill X.25 Format II ***********/

void sndformat2 (sendparms *send,

 char *buffer,

 char *commhandle)

{

 format2 *output = (format2 *) buffer;

 output->type = 1;

 output->cause = ’FF’;

 output->diagnostic = ’FF’;

 output->faclength = 0;

 byte(output->facilities, 109, "", 0);

 output->length = 0;

 byte(output->userdata, 128, "", 0);

 QOLSEND (&(send->retcode), &(send->reason),

&(send->errorspecific),\

 &(send->newpcep), &(send->ucep), &(send->pcep),\

 commhandle, &(send->operation), &(send->numdtaelmnts));

} /* End sndformat2 Subroutine */

/**/

/************** Fill in the Buffer for the Filter ****************/

void setfilters (hdrparms *header)

{

 x25filter *filters;

 filters = (x25filter *)header->filters;

 filters[0].pidlength = 1;

 filters[0].pid = 0x21; /* set the protocol ID */

 filters[0].dtelength = 0; /* no DTE used in filter */

 byte(filters[0].dte, 12, "", 0);

 filters[0].flags = 0x0;

 filters[0].flags += 0x80; /* Set Reverse Charging to no */

 filters[0].flags += 0x40; /* Set Fast Select to no */

} /* End setfilters Subroutine */

APIs 485

/**/

/******** Routine to disable ***********/

void disablelink (disableparms *disable,

 char *commhandle,

 usrspace *qname)

{

 qentry dataq;

 unsigned short expctid;

 disable->vary = 1; /* Hard code device to vary off */

 /** Call disable link **/

 QOLDLINK (&(disable->retcode), &(disable->reason),\

 commhandle, &(disable->vary));

 if ((disable->retcode != 0) && (disable->reason != 00))

 {

 printf ("Link %.10s did not disabled.\n", commhandle);

 printf ("return code = %d\n", disable->retcode);

 printf ("reason code = %d\n\n", disable->reason);

 }

 else

 printf ("%.10s link disabled \n", commhandle);

 /**------- Set a timer to receive message --------**/

 expctid = 0xF0F1;

 settimer(&expctid, "Disable ", &dataq, qname, commhandle);

 if (expctid != 0xF0F1)

 {

 printf("Disable link did not complete successfully");

 return;

 }

 /** close the files **/

 fclose(fptr);

 fclose(screen);

} /* End disablelink Subroutine */

/**/

/** Routine to convert string to Hexadecimal format ******/

void byte (char *dest,

 int dlength,

 char *source,

 int slength)

{

 register int counter;

 char holder[2];

 for (counter=0;counter<dlength;counter++)

 dest[counter]=0;

 for (counter=slength-1;counter>=0;counter--)

 if isxdigit(source[counter])

 {

 holder[0]=source[counter];

 holder[1]=’\0’;

 if (counter % 2 == 0)

 dest[counter/2] += (char) hextoint(holder)*16;

 else dest[counter/2] += (char) hextoint(holder);

 }

} /* End byte Subroutine */

/**/

/** Routine to display the ErrorSpecific output ******/

/**/

void printespec(espec *errorspecific)

{

 especout outparms;

 sprintf(outparms.hwecode, "%.8X", errorspecific->hwecode);

 sprintf(outparms.timestamp, "%.8X%.8X", errorspecific->timestamphi,\

 errorspecific->timestamplo);

 sprintf(outparms.elogid, "%.8X", errorspecific->elogid);

 if (errorspecific->flags & 0x40)

 outparms.fail = ’Y’;

 else outparms.fail = ’N’;

486 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

if (errorspecific->flags & 0x20)

 outparms.zerocodes = ’Y’;

 else outparms.zerocodes = ’N’;

 if (errorspecific->flags & 0x10)

 outparms.qsysopr = ’Y’;

 else outparms.qsysopr = ’N’;

 sprintf(outparms.cause,"%.2X", errorspecific->cause);

 sprintf(outparms.diagnostic, "%.2X", errorspecific->diagnostic);

 sprintf(outparms.erroffset, "%.6d", errorspecific->erroroffset);

 fwrite(&outparms, 1, sizeof(especout), screen);

 fread("", 0, 0, screen);

} /* End printespec Subroutine */

/***/

/******* Dequeues the Incoming Message and processes it ******/

void dequeue (int length,

 char *key,

 qentry *dataq,

 usrspace *qname)

{

 char fldlen[3],

 waittime[3],

 keylen[2],

 senderid[2],

 *pointer,

 order[2];

 register int counter;

 waittime[0] = 0;

 waittime[1] = 0;

 waittime[2] = 0x1D; /* Hard code a delay of infinite */

 keylen[0] = 0;

 keylen[1] = 0x3F; /* Hard code a keylength of 3 */

 senderid[0] = 0;

 senderid[1] = 0x0F;

 strncpy(order, "EQ", 2);

 /* Clear the data structures **/

 fflush(stdin);

 pointer = (char *)dataq;

 for (counter = 0; counter < 336; counter++)

 pointer[counter] = 0;

 strncpy (dataq->type, " ", 7);

 while ((strncmp(dataq->type, "*USRDFN", 7) != 0) || (fldlen == 0))

 QRCVDTAQ(qname->name, qname->library, fldlen, dataq, waittime,\

 order, keylen, key, senderid,"");

} /* End dequeue Subroutine */

/**/

/************* Set a timer and dequeue next entry ******/

void settimer (unsigned short *expctid,

 char *process,

 qentry *dataq,

 usrspace *qname,

 char *commhandle)

{

timerparms timer;

disableparms disable;

int length;

char key[6];

 timer.interval = 20000; /* set timer for 20 seconds */

 timer.establishcount = 1; /* set establish count to 1 */

 timer.keylength = 3; /* key value */

 strncpy(timer.keyvalue, "TGT", 3); /* set key value /

 timer.operation = 1; /* set a timer */

 /* Call QOLTIMER */

 QOLTIMER (&(timer.retcode), &(timer.reason), timer.handleout,\

 timer.handlein, (char *)qname, &(timer.operation),\

 &(timer.interval), &(timer.establishcount),\

 &(timer.keylength), timer.keyvalue, timer.userdata);

 if ((timer.retcode != 0) || (timer.reason != 0))

APIs 487

{

 printf("%s timer failed while being set.\n", process);

 printf("Return code = %d\n", timer.retcode);

 printf("Reason code = %d\n\n", timer.reason);

 }

 /**------- Dequeue an entry --------**/

 strncpy(key, "TGT", 3);

 length = 3;

 dequeue (length, key, dataq, qname);

 /***---- Cancel timer -----***/

 if (dataq->msgid != 0xF0F4)

 {

 strncpy(timer.handlein, timer.handleout, 8);

 timer.operation = 2; /* Cancel one timer */

 QOLTIMER (&(timer.retcode), &(timer.reason), timer.handleout,\

 timer.handlein, (char *)qname, &(timer.operation),\

 &(timer.interval), &(timer.establishcount),\

 &(timer.keylength), timer.keyvalue, timer.userdata);

 if ((timer.retcode != 0) || (timer.reason != 0))

 {

 printf("%s timer failed while being canceled\n", process);

 printf("Return code = %d\n", timer.retcode);

 printf("Reason code = %d\n\n", timer.reason);

 }

 }

 if (dataq->msgid != *expctid)

 {

 printf ("A %.4X message ID was received instead of %.4X\n",\

 dataq->msgid, *expctid);

 printf ("%s completion message was not received\n", process);

 *expctid = dataq->msgid;

 }

} /* End settimer Subroutine */

/**/

/** x25lind: Read a record into buf and return length **/

void x25lind (qlindparms *qlind, char *linename)

{

register int counter;

 for(counter=0;counter<256;counter++)

 qlind->userbuffer[counter]=0;

 qlind->format = 0x01;

 QOLQLIND (&(qlind->retcode), &(qlind->reason), &(qlind->nbytes),\

 qlind->userbuffer, linename, &(qlind->format));

} /* End x25lind Subroutine */

/**/

/** putdata: Read a record into buf and return length **/

void putdata (char *buf,

 int dtalen,

 FILE *fptr)

{

int i;

 for (i = 0; i < dtalen; i++)

 fwrite(buf + i, 1, 1, fptr);

} /* End putdata Subroutine */

Target application program listing references

The following reference numbers and explanations correspond to the reference numbers in the target

application’s program listing.

 (1) Call the C library routines fopen() and signal() to open

the target file and set up a signal handler to process

i5/OS exceptions, respectively. If an exception situation is

encountered, the handler() will be called to perform

clean-up in order for the program to end.

488 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

(2) Call the QOLELINK API to enable the line description

using the line name and communications handle passed

as input parameters to this program.

(3) Call the QOLTIMER API to time the completion of the

enable link operation. If the timer expires before the

enable-complete message is posted on the this program’s

data queue, then this program will end.

(4) Call the QUSPTRUS API to obtain a pointer to the

beginning of the output buffer user space. The output

buffer will be used to construct a filter list for the call to

the QOLSETF API.

(5) Call the QOLRECV API to receive inbound data after

reading an incoming data message that was posted on

the program’s data queue by the user-defined

communications support. Since these programs are

operating using the communications services of X.25, the

first data unit the target program should see is a X’B201’

operation signalling an incoming call was received.

(6) Call the QOLSEND API with a X’B400’ operation to

accept the incoming X.25 call. A connection is now

established between the source and target application

programs.

(7) The target program will now set a timer by calling the

QOLTIMER API and wait for incoming data. If the timer

expires before any incoming data is received, then this

program will call the QOLDLINK API, and end.

(8) This is the main receive loop for the target program.

When data is received from the source program, it will

be written to the target file opened during the

initialization of this program. The loop will process until

a message other than incoming-data entry is read from

the program’s data queue.

(9) Call the QOLSEND API with a X’B001’ operation to

locally close the connection.

(10) Receives a X’B101’ operation from the user-defined

communications support. This is a local confirmation of

X’B100’ operation.

(11) Call the QOLDLINK API to disable the link previously

enabled and end.

Includes for source and target programs

The following three includes are used by both the preceding source and target programs. They are not in

an i5/OS library.

/***/

/***/

/* Include Name: Header */

/* */

/* */

/* Function: */

/* Type define and declare the structures used to interface */

/* to the user-defined communications APIs. These structures */

/* are used by both the source and target application. */

/* */

/* */

/* LANGUAGE: ILE C */

APIs 489

/* */

/* APIs USED: QOLDLINK, QOLELINK, QOLSEND, QOLRECV, QOLSETF, */

/* QOLTIMER, QUSPTRUS, QRCVDTAQ, QCLRDTAQ, QOLQLIND */

/* */

/***/

/***/

FILE *screen;

FILE *rptr;

FILE *fptr;

#include <qoldlink.h>

#include <qolelink.h>

#include <qolsend.h>

#include <qolrecv.h>

#include <qolsetf.h>

#include <qoltimer.h>

#include <qusptrus.h>

#include <qrcvdtaq.h>

#include <qclrdtaq.h>

#include <qolqlind.h>

/************ Typedef Declarations *******************/

typedef struct usrspace

 {

 char name[10];

 char library[10];

 } usrspace;

typedef struct enableparms /* Enable parameters */

 {

 int retcode, /* Output */

 reason, /* Output */

 tdusize, /* Output */

 numunits, /* Output */

 maxdtalan, /* Output */

 maxdtax25, /* Input */

 keylength; /* Input */

char keyvalue[256], /* Input */

 linename[10]; /* Input */

 } enableparms;

typedef struct disableparms /* Disable parameters */

 {

 int retcode, /* Output */

 reason; /* Output */

 char vary; /* Input */

 } disableparms;

typedef struct setfparms /* Set Filters parameters */

 {

 int retcode, /* Output */

 reason, /* Output */

 erroffset; /* Output */

 } setfparms;

typedef _Packed struct hdrparms /* Filter header */

 {

 char function;

 char type;

 unsigned short number;

 unsigned short length;

 char filters[1];

 } hdrparms;

typedef _Packed struct x25filter /* X.25 filter */

490 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

{

 char pidlength;

 char pid;

 char dtelength;

 char dte[12];

 char flags;

 } x25filter;

typedef struct sendparms /* Send parameters */

 {

 espec errorspecific; /* Output */

 int retcode, /* Output */

 reason, /* Output */

 newpcep, /* Output */

 ucep, /* Input */

 pcep, /* Input */

 numdtaelmnts; /* Input */

unsigned short operation; /* Input */

 } sendparms;

typedef struct recvparms /* Receive parameters */

 {

 espec errorspecific; /* Output */

 int retcode, /* Output */

 reason, /* Output */

 newpcep, /* Output */

 ucep, /* Output */

 pcep, /* Output */

 numdtaunits; /* Output */

 char dataavail; /* Output */

unsigned short operation; /* Output */

 } recvparms;

typedef struct timerparms /* Timer parameters */

 {

 int retcode, /* Output */

 reason, /* Output */

 interval, /* Input */

 establishcount, /* Input */

 keylength; /* Input */

 char handleout[8], /* Output */

 handlein[8], /* Input */

 operation, /* Input */

 keyvalue[256], /* Input */

 userdata[60]; /* Input */

 } timerparms;

typedef struct especout

 {

 char hwecode[8];

 char timestamp[16];

 char elogid[8];

 char fail;

 char zerocodes;

 char qsysopr;

 char cause[2];

 char diagnostic[2];

 char erroffset[6];

 } especout;

typedef struct qlindparms /* Query line parameters */

 {

 int retcode, /* Output */

 reason, /* Output */

 nbytes; /* Output */

 char userbuffer[256];

APIs 491

char format;

 } qlindparms;

typedef _Packed union content /* Queue support parameters */

 {

 _Packed struct other

 {

 char commhandle[10];

 char reserved[58];

 } other;

 _Packed struct enable

 {

 char commhandle[10];

 char status;

 char reserved[57];

 } enable;

 _Packed struct timer

 {

 char timerhandle[8];

 char userdata[60];

 } timer;

 } content;

typedef _Packed struct qentry /* Queue parameters */

 {

 char type[10];

 unsigned short msgid;

 content message;

 char key[256];

 } qentry;

The following typedef include has new type declarations used by both source and target programs.

/***/

/***/

/* Include Name: Typedef */

/* */

/* Function: */

/* Define the buffer spaces used to pass the data to the */

/* APIs. */

/* */

/* */

/* LANGUAGE: ILE C */

/* */

/***/

/***/

/*These definitions and C library #include files are either global, or

 are used by multiple modules in the Open FM API driver.*/

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

#include <xxcvt.h>

#include <string.h>

#include <ctype.h>

#include <recio.h>

typedef struct queuein

 {

 char library[10];

 char name[10];

 char option;

 } queuein;

typedef struct namelib

 {

 char library[10];

492 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

char name[10];

 } namelib;

typedef _Packed struct format1

 {

 char type;

 char reserved1;

 unsigned short logchanid;

 unsigned short sendpacksize;

 unsigned short sendwindsize;

 unsigned short recvpacksize;

 unsigned short recvwindsize;

 char reserved2[7];

 char dtelength;

 char dte[16];

 char reserved3[8];

 char dbit;

 char reserved4[7];

 char cug;

 char cugid;

 char reverse;

 char fast;

 char faclength;

 char facilities[109];

 char reserved5[48];

 unsigned short calllength;

 char callud[128];

 char reserved6[128];

 unsigned char misc[4]; /* control flags */

 unsigned int maxasmsize;

 unsigned short autoflow;

} format1;

typedef _Packed struct format2

 {

 unsigned short type;

 char cause;

 char diagnostic;

 char reserved[4];

 char faclength;

 char facilities[109];

 char reserved2[48];

 unsigned short length;

 char userdata[128];

 } format2;

typedef _Packed struct desc

 {

 unsigned short length;

 char more; /*These 4 char’s are only used for X.25.*/

 char qualified;

 char interrupt;

 char dbit;

 char reserved[26];

 } desc;

typedef _Packed struct llcheader

 {

 unsigned short headerlength;

 char macaddr[6];

 char dsap;

 char ssap;

 char priority;

 char priorctl;

 unsigned short routlen;

 unsigned short userdtalen;

 char data[1];

APIs 493

} llcheader;

typedef _Packed struct espec

 {

 char reserved[2];

 unsigned int hwecode;

 unsigned int timestamphi;

 unsigned int timestamplo;

 unsigned int elogid;

 char reserved2[10];

 char flags;

 char cause;

 char diagnostic;

 char reserved3;

 unsigned int erroroffset;

 char reserved4[4];

 } espec;

typedef struct tableentry

 {

 char handle[10];

 char type;

 char inbuff[20];

 char indesc[20];

 char outbuff[20];

 char outdesc[20];

 unsigned int totaldusize;

 struct tableentry *next;

 } tableentry;

/******* Data structure for X.25 line ********/

/******* descriptions as returned by QOLQLIND. ******/

typedef struct x25info

 {

 char addrlen;

 char addr[9];

 char addrtype;

 char insert;

 char modulus;

 char dtedce;

 unsigned short maxsend;

 unsigned short maxrecv;

 unsigned short defsend;

 unsigned short defrecv;

 char windowsend;

 char windowrecv;

 unsigned short numlc;

 char lcinfo[4];

 } x25info;

typedef struct querydata

 {

 char header[12]; /* line header info */

 x25info x25data; /* preliminary data */

 } querydata;

/***/

/***/

/* Include Name: Hexconv */

/* */

/* Function: */

/* This include brings in procedures to convert hexadecimal */

/* to integer values and vice versa. */

/* */

/* */

/* LANGUAGE: ILE C */

/* */

494 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/***/

/***/

#include <stdio.h>

unsigned int hextoint(char *);

char *inttohex(decimal,hex) /*Converts a 4-byte integer into a

 string of 2 uppercase hex characters.*/

unsigned int decimal;

char *hex;

{

 sprintf(hex,"%.2X",decimal);

 return(hex);

}

unsigned int hextoint(hex) /*Converts a string containing hex

 digits into a 4-byte integer. */

char *hex;

{

 int decimal;

 sscanf(hex,"%x",&decimal);

 return(decimal);

}

 Related reference

 Set Filter (QOLSETF) API

Example: Working with stream files

This ILE C program opens an existing stream file, creates or replaces a database file, reads from the

stream file and writes to the database file until end-of-file, and closes both files.

The program uses the following hierarchical file system (HFS) APIs:

v Create Directory (QHFCRTDR)

v Open Stream File (QHFOPNSF)

v Read from Stream File (QHFRDSF)

v Close Stream File (QHFCLOSF)

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
/**/

/* Program Name: HFSCOPY */

/* Language : ILE C */

/* Description : This program will do the following: */

/* -- Create or replace a stream file */

/* -- Create or replace a database file */

/* -- Read from the stream file and write to the */

/* database file until EOF */

/* -- Close both files when done */

/* APIs Used : QHFCRTDR, QHFOPNSF, QHFRDSF, QHFCLOSF */

/**/

/**/

/* Include files */

/**/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <qhfopnsf.h>

#include <qhfrdsf.h>

#include <qhfclosf.h>

#include <qhfcrtdr.h>

#include <qusec.h>

APIs 495

/**/

/* Structure and variable definitions */

/**/

#define ON 1

#define OFF 0

typedef struct error_code_struct {

 Qus_EC_t EC;

 char exception_data[256];

 }error_code_struct;

error_code_struct error_code;

char file_handle[16];

char path_name[30];

char open_info[10];

char attrib_info;

char action;

char read_buffer[80];

int path_length;

int attrib_length = 0;

int bytes_to_read;

int bytes_read = 0;

int end_file;

int cmpgood;

FILE *FP;

/***/

/*printErrCode: Routine to print the error code structure */

/***/

void printErrCode(error_code_struct *theErrCode)

{

 int i;

 char *tempptr = theErrCode->EC.Exception_Id;

 printf("Bytes Provided -> %d\n",theErrCode->EC.Bytes_Provided);

 printf("Bytes Available -> %d\n",theErrCode->EC.Bytes_Available);

 printf("Exception ID -> ");

 for (i=0;i<7 ;i++,tempptr++)

 {

 putchar(*tempptr);

 }

 putchar(’\n’);

}

/**/

/* Start of code */

/**/

main()

{

 error_code.EC.Bytes_Provided = 116;

/**/

/* Create the directory */

/**/

 strcpy(path_name,"/QDLS/HFSFLR");

 path_length = strlen(path_name);

 QHFCRTDR(path_name,path_length,&attrib_info,attrib_length,&error_code);

 if (error_code.EC.Bytes_Available != 0)

 {

 if (!memcmp(error_code.EC.Exception_Id,"CPF1F04",7))

 printf("Directory HFSFLR already created.\n");

 else

 {

 printErrCode(&error_code);

 exit(1);

 }

496 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

}

/**/

/* Open the stream file */

/**/

 strcpy(open_info,"210 120 "); /* Create or replace the file */

 strcpy(path_name,"/QDLS/HFSFLR/SAMPLE.HFS");

 path_length = strlen(path_name);

 printf("OPEN STREAM FILE:\n ");

 QHFOPNSF(&file_handle,

 path_name,

 path_length,

 open_info,

 &attrib_info,

 attrib_length,

 &action,

 &error_code);

 if (error_code.EC.Bytes_Available != 0)

 {

 printErrCode(&error_code);

 exit(1);

 }

/**/

/* Open a database file */

/**/

 system("CRTLIB LIB(HFSLIB)");

 if ((FP = fopen("HFSLIB/HFSFILE(SAMPLE)","wb")) == NULL)

 {

 printf("Cannot open HFSLIB/HFSFILE(SAMPLE)\n");

 exit(1);

 }

/**/

/* Loop through reading from the stream file and writing to the */

/* database file. */

/**/

 end_file = OFF;

 while (end_file == OFF)

 {

 /***/

 /* Read 80 bytes from the stream file */

 /***/

 bytes_to_read = 80;

 printf("READ STREAM FILE:\n ");

 QHFRDSF(&file_handle,

 read_buffer,

 bytes_to_read,

 &bytes_read,

 &error_code);

 if (error_code.EC.Bytes_Available != 0)

 {

 cmpgood = strncmp("CPF1F33",error_code.EC.Exception_Id,7);

 if (cmpgood != 0)

 printErrCode(&error_code);

 end_file = ON;

 }

 else

 {

 printf("BYTES READ: %d\n ",bytes_read);

 printf("READ BUFFER: %s\n",read_buffer);

 if (bytes_read < bytes_to_read)

 {

 end_file = ON;

 /***/

 /* Write remaining bytes to the database file */

APIs 497

/***/

 if (bytes_read > 0)

 fwrite(read_buffer,1,bytes_read,FP);

 }

 }

 }

/**/

/* Close the stream file */

/**/

 printf("CLOSE STREAM FILE:\n ");

 QHFCLOSF(&file_handle,

 &error_code);

 if (error_code.EC.Bytes_Available != 0)

 printErrCode(&error_code);

/**/

/* Close the database file */

/**/

 fclose(FP);

}

To create the program using ILE C, specify the following:

CRTBNDC PGM(QGPL/HFSCOPY) SRCFILE(QGPL/QCSRC)

Example: Creating a program temporary fix exit program

This example creates a program temporary fix exit program.

This example exit program covers the following possible changes in the logical state of the PTF:

 Loaded to temporarily applied

 Temporarily applied to temporarily removed

The example program shows where you can add your code. You can write a PTF exit program in any

programming language.

Note: This example does not show the apply-temporary to apply-permanent or the not-applied to

remove-permanent cases. It is assumed that all action was taken on the moves from loaded to

apply-temporary and from apply-temporary to not-applied. If additional actions are necessary,

code could be added to handle those transitions as well.

Do not assume the default values for parameters on CL commands or for library lists. Users can change

these values. Library lists can vary from one system to another.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 /**** START OF SPECIFICATIONS *************************************/

 /* */

 /* LANGUAGE: CL */

 /* */

 /* APIs USED: None */

 /* */

 /* FUNCTION: */

 /* THIS EXIT PROGRAM IS CALLED DURING ANY */

 /* OF THE FOLLOWING CASES. */

 /* */

 /* APPLY TEMPORARILY - (user defined) */

 /* */

 /* APPLY PERMANENTLY - (user defined) */

 /* */

 /* REMOVE TEMPORARILY - (user defined) */

 /* */

 /* REMOVE PERMANENTLY - (user defined) */

498 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* */

 /* Input: PARM1 - CHAR(7) - Product ID */

 /* PARM2 CHAR(7) - PTF ID */

 /* PARM3 - CHAR(6) - Product release */

 /* PARM4 CHAR(4) - Product option ID */

 /* PARM5 CHAR(4) - Product load ID */

 /* PARM6 CHAR(10) - PTF library */

 /* PARM7 CHAR(50) - User data */

 /* PARM8 - CHAR(1) - Current PTF Status */

 /* 0 - LOADED BUT NOT APPLIED */

 /* 1 - APPLIED TEMPORARILY */

 /* PARM9 CHAR(1) - PTF Operation */

 /* 0 - REMOVE TEMPORARILY */

 /* 1 - APPLY TEMPORARILY */

 /* 2 - APPLY PERMANENTLY */

 /* 3 - REMOVE PERMANENTLY */

 /* 4 - PRE-REMOVE TEMPORARILY */

 /* 5 - PRE-APPLY TEMPORARILY */

 /* 6 - PRE-APPLY PERMANENTLY */

 /* 7 - PRE-REMOVE PERMANENTLY */

 /* */

 /* */

 /******* END OF SPECIFICATIONS ************************************/

 PGM PARM(&PARM1 &PARM2 &PARM3 &PARM4 &PARM5 &PARM6 &PARM7 &PARM8 &PARM9)

 /*--*/

 /* */

 /* DECLARE INPUT PARAMETERS */

 /* */

 /*--*/

 DCL &PARM1 TYPE(*CHAR) LEN(7) /* Product ID */

 DCL &PARM2 TYPE(*CHAR) LEN(7) /* PTF ID */

 DCL &PARM3 TYPE(*CHAR) LEN(6) /* Product release */

 DCL &PARM4 TYPE(*CHAR) LEN(4) /* Product option ID */

 DCL &PARM5 TYPE(*CHAR) LEN(4) /* Product load ID */

 DCL &PARM6 TYPE(*CHAR) LEN(10) /* PTF library */

 DCL &PARM7 TYPE(*CHAR) LEN(50) /* User data */

 DCL &PARM8 TYPE(*CHAR) LEN(1) /* Current PTF status */

 DCL &PARM9 TYPE(*CHAR) LEN(1) /* PTF operation */

 /*--*/

 /*--*/

 /* */

 /* DECLARE VARIABLES */

 /* */

 /*--*/

 DCL &ACTION TYPE(*CHAR) LEN(1) /* PTF action to occur */

 DCL &STATUS TYPE(*CHAR) LEN(1) /* PTF current status */

 /* Handle exceptions */

 MONMSG MSGID(CPF0000) EXEC(GOTO CMDLBL(HDLERR))

 CHGVAR VAR(&ACTION) VALUE(&PARM9) /* Gets action being performed */

 CHGVAR VAR(&STATUS) VALUE(&PARM8) /* Gets current PTF status */

 /*--*/

 /* THE CURRENT STATUS OF THE PTF IS "LOADED (NOT APPLIED)" */

 /*--*/

 IF (&STATUS = ’0’) THEN(DO) /* If PTF is loaded but not applied */

 IF (&ACTION = ’1’) THEN(DO) /* If action is temporarily */

 /* applied then */

 /*?---- TEMP APPLY - ADD YOUR STATEMENTS HERE ----- */

 ENDDO

 IF (&ACTION = ’5’) THEN(DO) /* If action will be temporarily */

 /* apply then */

 /*?---- PRE-TEMP APPLY - ADD YOUR STATEMENTS HERE ----- */

 ENDDO

 ENDDO /* End of loading the PTF */

APIs 499

/*--*/

 /* THE CURRENT STATUS OF THE PTF IS "APPLIED TEMPORARILY" */

 /*--*/

 IF (&STATUS = ’1’) THEN(DO) /* If PTF is temporarily */

 /* applied then */

 IF (&ACTION = ’0’) THEN(DO) /* If action is temporarily */

 /* removed then */

 /*?---- TEMPORARILY REMOVE - ADD YOUR STATEMENTS HERE --- */

 ENDDO

 IF (&ACTION = ’4’) THEN(DO) /* If action will be temporarily */

 /* remove then */

 /*?---- PRE-TEMP REMOVE - ADD YOUR STATEMENTS HERE ----- */

 ENDDO

 ENDDO /* End of remove the PTF */

 /*---*/

 /* PTF HAS BEEN SUCCESSFULLY PROCESSED */

 /*---*/

 QSYS/SNDPGMMSG MSGID(CPC1214) MSGF(*LIBL/QCPFMSG) +

 MSGDTA(*NONE) TOPGMQ(*PRV (* *NONE +

 *NONE)) TOMSGQ(*TOPGMQ) MSGTYPE(*COMP)

 RETURN

 /*--*/

 /* HANDLE ALL ERROR CONDITIONS */

 /*--*/

 HDLERR:

 /* Try to back out any changes already made */

 /* If nothing to back out or back-out operation was successful */

 QSYS/SNDPGMMSG MSGID(CPF3638) MSGF(*LIBL/QCPFMSG) +

 MSGDTA(*NONE) TOPGMQ(*PRV (* *NONE +

 *NONE)) TOMSGQ(*TOPGMQ) MSGTYPE(*ESCAPE)

 /* Else the permanent changes not backed out */

 QSYS/SNDPGMMSG MSGID(CPF3639) MSGF(*LIBL/QCPFMSG) +

 MSGDTA(*NONE) TOPGMQ(*PRV (* *NONE +

 *NONE)) TOMSGQ(*TOPGMQ) MSGTYPE(*ESCAPE)

ENDPGM /* Return to external caller */

Example: Using the operational assistant exit program for operational

assistant backup

This example contains a user-written exit program for doing Operational Assistant backup.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
 /***/

 /***/

 /* */

 /* FUNCTION: User-written exit program for doing Operational */

 /* Assistant backup. */

 /* */

 /* LANGUAGE: CL */

 /* */

 /* APIs USED: None */

 /* */

 /***/

 /***/

 PGM PARM(&PRODID &FLAG &OPTIONS &DEVS &TAPSET &RETCODE)

 DCL VAR(&PRODID) TYPE(*CHAR) LEN(10) /* Calling product. +

 Will be ’QEZBACKUP’ when called from +

 Operational Assistant. */

 DCL VAR(&FLAG) TYPE(*CHAR) LEN(10) /* Indicates whether +

 before or after backup. */

 DCL VAR(&DEVS) TYPE(*CHAR) LEN(40) /* Devices used. */

 DCL VAR(&TAPSET) TYPE(*CHAR) LEN(4) /* Tape set name */

500 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

DCL VAR(&RETCODE) TYPE(*CHAR) LEN(7) /* Return code */

 DCL VAR(&OPTIONS) TYPE(*CHAR) LEN(10) /* Options used */

 DCL VAR(&MSG) TYPE(*CHAR) LEN(512) /* Message text */

 IF COND(&FLAG *EQ ’*BEFORE ’) THEN(DO)

 /*--*/

 /* Insert commands to be run before the backup here. */

 /*--*/

 ENDDO

 IF COND(&FLAG *EQ ’*AFTER ’) THEN(DO)

 /*--*/

 /* Insert commands to be run after the backup here. */

 /*--*/

 ENDDO

 ENDPGM

Machine interface programming

Provides information about creating machine interface (MI) programs.

This topic is for programmers interested in creating machine interface (MI) programs. While some MI

instructions are discussed within the context of how to develop MI programs, the following information

makes no attempt to review the full range of MI instructions. The goal is to provide a sufficient base of

knowledge so that you can begin to use the MI language. After reading the information on machine

interface programming, you should be able to develop, create, run, and debug an MI program.

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

Machine interface instructions

Programs and procedures are the two basic units of execution on iSeries.

Programs come in two flavors: the original program model (OPM) and the Integrated Language

Environment (ILE). MI programs can be created only for the OPM environment. If you require ILE

support in the development of your applications, use ILE C, ILE COBOL, or ILE RPG and the languages’

built-in MI support.

APIs 501

|
|
|
|
|

|
|

|

|
|

|

|
|
|

In the OPM environment, a program is comprised of two basic components: the object definition table

(ODT) and an instruction stream. In the case of MI programs, the program is created using the Create

Program (QPRCRTPG) API.

The ODT is the means for defining all objects (program data elements) that are referred to by the MI

instruction stream. An ODT definition of an object does not actually allocate storage for the object. It

does, however, define when and how much storage is to be allocated and also the attributes of the

storage (for example, the data type of the object). The ODT is built from the declare (DCL) statements

found in the source used to create a program. Because DCL statements are actually instructions to the

QPRCRTPG API and not MI instructions, they are defined in the QPRCRTPG API.

The types of objects that can be declared are:

The instruction stream defines the set of operations to be performed by the program. The instruction

stream is built from the MI instructions found in the source used to create a program. The various MI

instructions that you can use are defined in the iSeries Machine Interface instructions.

Within the source used to create a program, there is a type of statement called a directive. Directive

statements can be found in the QPRCRTPG API and are used to do the following:

v Control the formatting of the output listing, such as the title, page ejection, and so on.

v Define entry points within the program for external and internal calls.

v Define breakpoints within the program to associate a breakpoint name to a particular MI instruction.

v Specify the end of the program source.

The program end (PEND) directive must be the last statement in the source, and it functions as a return

external (RTX) MI instruction if logically processed as part of the instruction stream.

Noncomment source statements (declares, instructions, and directives) are always ended by a semicolon

(;). Comments always begin with a slash and asterisk (/*) and end with an asterisk and slash (*/).

 Related reference

 Create Program (QPRCRTPG) API

 iSeries Machine Interface instructions

Example: Writing an MI program

This topic shows how to write a simple MI program that receives two packed-decimal parameters and

returns the larger value through a third parameter.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

This MI program demonstrates how to do the following tasks:

v Define an external entry point

v Define and access parameters

v Use conditional branching

v Assign a value to a scalar object

v End the program

Setting the entry point

First the program, MI01 in this example, needs an ENTRY directive statement to designate its external

entry point. The following directive declares an unnamed (the *) external (the EXT) entry point, which is

called with a parameter list corresponding to PARM_LIST (defined later in the source code):

ENTRY * (PARM_LIST) EXT;

502 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Setting the declare statements

i5/OS programs typically pass parameters by reference as part of the high-level language (HLL) calling

convention. Because i5/OS programs pass by reference (that is, address and not value), the program also

needs to define three space pointers (how storage is referenced) to represent the three parameters being

passed. This is accomplished by the following directives:

DCL SPCPTR ARG1@ PARM;

DCL SPCPTR ARG2@ PARM;

DCL SPCPTR RESULT@ PARM;

To associate these three space pointers with the parameters being passed to the program, the following

operand list (OL) is declared:

DCL OL PARM_LIST /* Name of OL is PARM_LIST */

 (ARG1@, /* The first parameter */

 ARG2@, /* The second parameter */

 RESULT@) /* The third parameter */

 PARM EXT; /* External parameter list */

The names ARG1@, ARG2@, RESULT@, and PARM_LIST are chosen by you and are not mandated by the

system. You can choose any valid name for any object data element. For a definition of what constitutes a

valid name, see ″Name″ in the Program syntax topic of the Create Program (QPRCRTPG) API.

Now that the program has established addressability (the space pointers) to the three parameters, the

program needs to declare how to map (or view) the storage addressed. The following declarations define

the storage addressed (the BAS argument) by the three space pointer parameters as being packed-decimal

(PKD) scalar data objects (DD) with 15 digits, 5 digits being to the right of the decimal point:

DCL DD ARG1 PKD(15,5) BAS(ARG1@);

DCL DD ARG2 PKD(15,5) BAS(ARG2@);

DCL DD RESULT PKD(15,5) BAS(RESULT@);

The names ARG1, ARG2, and RESULT are chosen arbitrarily, but, for ease of reading, are similar to the

basing space pointers ARG1@, ARG2@, and RESULT@. The declarations of packed 15,5 are used for

consistency with CL. The declared type and size could be of any other valid type and size. The true

requirement is that the calling program and the MI program agree on the type and size.

Starting the instruction stream

With all the needed declarations now done, the instruction stream definition, where the program will

compare the numeric values (CMPNV instruction) of parameters one and two, is started:

 CMPNV(B) ARG1,ARG2 / LO(ITS2);

The program then branches (the (B) extender to CMPNV) to label ITS2 if ARG1 is less than ARG2 (the

/LO branch target).

Note: MI instructions such as CMPNV are defined in the iSeries Machine Interface instructions. Pervasive

instruction extenders such as branch (B) and target keywords (LO, HI, EQ, and so on) are defined

under Instruction Statement, which is a subheading in the Program syntax topic of the Create

Program (QPRCRTPG) API.

If ARG1 is not low (LO) when compared to ARG2, the next MI instruction in the source stream is run.

When the next MI instruction is run, it copies the numeric value (CPYNV instruction) of ARG1 to

RESULT and, following that, branches to label RETURN:

 CPYNV RESULT,ARG1;

 B RETURN;

If ARG2 was greater than ARG1, the CPYNV instruction at label ITS2 is run, setting RESULT to the value

of ARG2:

APIs 503

ITS2: CPYNV RESULT,ARG2;

The program has now finished processing and ends:

RETURN: RTX *;

 PEND;

The previous return external (RTX) instruction is not needed because it is implied by the PEND directive.

The RTX instruction is included to add clarity to the program flow.

MI01 program complete code example

Put all together, the program looks like this:

/**/

/**/

/* */

/* Program Name: MI01 */

/* */

/* Programming Language: MI */

/* */

/* Description: Return the larger of two packed arguments. */

/* */

/* */

/* Header Files Included: None */

/* */

/* */

/**/

ENTRY * (PARM_LIST) EXT;

DCL SPCPTR ARG1@ PARM;

DCL SPCPTR ARG2@ PARM;

DCL SPCPTR RESULT@ PARM;

DCL OL PARM_LIST

 (ARG1@,

 ARG2@,

 RESULT@)

 PARM EXT;

DCL DD ARG1 PKD(15,5) BAS(ARG1@);

DCL DD ARG2 PKD(15,5) BAS(ARG2@);

DCL DD RESULT PKD(15,5) BAS(RESULT@);

 CMPNV(B) ARG1,ARG2 / LO(ITS2);

 CPYNV RESULT,ARG1;

 B RETURN;

ITS2: CPYNV RESULT,ARG2;

RETURN: RTX *;

 PEND;

 Related reference

 Program syntax

 iSeries Machine Interface instructions

 “Creating an MI version of CLCRTPG” on page 511

This topic discusses how to create an MI version of the CLCRTPG program that can be used to create

MI programs. This program is called MICRTPG.

Compile an MI program

To compile an MI program, use the Create Program (QPRCRTPG) API.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

If you enter the source into a source physical file, you can now compile the source and create an MI

program.

504 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Note: The QPRCRTPG API assumes that the source statements presented to it are in code page 37. See

iSeries Machine Interface instructions for the specific code points required to build MI programs.

Use CLCRTPG to create an MI program

Assume that the source is in a member named MI01 in the source file MISRC, which is created with a

default record length (RCDLEN) of 92. The following CLCRTPG CL program can be used to create an MI

program called MI01. (An MI program to call the Create Program (QPRCRTPG) API is developed in

Creating an MI version of CLCRTPG.)

Note: All non-MI source examples are provided in CL, because CL is the one language (other than

REXX) that is standard on all systems. Other high-level languages (HLLs) could be used in place of

the CL programs (and in many cases would have been easier).

The following program reads a source file member into a program variable (&MIPGMSRC) and then does

a CALL to the QPRCRTPG API. This program has many limitations (the major limitation is a program

variable-size limit of 2000 bytes for the source), but provides for a reasonably simple MI program creation

scenario.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 575.
/**/

/**/

/* */

/* Program Name: CLCRTPG */

/* */

/* Programming Language: CL */

/* */

/* Description: Create an MI program using the QPRCRTPG API. */

/* */

/* */

/* Header Files Included: None */

/* */

/* */

/**/

 PGM PARM(&SRCMBR)

 DCLF FILE(MISRC)

 DCL VAR(&SRCMBR) TYPE(*CHAR) LEN(10)

 DCL VAR(&MIPGMSRC) TYPE(*CHAR) LEN(2000)

 DCL VAR(&MIPGMSRCSZ) TYPE(*CHAR) LEN(4)

 DCL VAR(&OFFSET) TYPE(*DEC) LEN(5 0) VALUE(1)

 DCL VAR(&PGMNAM) TYPE(*CHAR) LEN(20) +

 VALUE(’ *CURLIB ’)

 DCL VAR(&PGMTXT) TYPE(*CHAR) LEN(50) +

 VALUE(’Compare two packed arguments and +

 return larger’)

 DCL VAR(&PGMSRCF) TYPE(*CHAR) LEN(20) +

 VALUE(’*NONE’)

 DCL VAR(&PGMSRCM) TYPE(*CHAR) LEN(10) VALUE(’ ’)

 DCL VAR(&PGMSRCCHG) TYPE(*CHAR) LEN(13) VALUE(’ ’)

 DCL VAR(&PRTFNAM) TYPE(*CHAR) LEN(20) +

 VALUE(’QSYSPRT *LIBL ’)

 DCL VAR(&PRTSTRPAG) TYPE(*CHAR) LEN(4) +

 VALUE(X’00000001’)

 DCL VAR(&PGMPUBAUT) TYPE(*CHAR) LEN(10) +

 VALUE(’*ALL ’)

 DCL VAR(&PGMOPTS) TYPE(*CHAR) LEN(22) +

 VALUE(’*LIST *REPLACE ’)

 DCL VAR(&NUMOPTS) TYPE(*CHAR) LEN(4) +

 VALUE(X’00000002’)

 LOOP: RCVF

 MONMSG MSGID(CPF0864) EXEC(GOTO CMDLBL(CRTPGM))

 CHGVAR VAR(%SST(&MIPGMSRC &OFFSET 80)) VALUE(&SRCDTA)

APIs 505

CHGVAR VAR(&OFFSET) VALUE(&OFFSET + 80)

 GOTO CMDLBL(LOOP)

 CRTPGM: CHGVAR VAR(%SST(&PGMNAM 1 10)) VALUE(&SRCMBR)

 CHGVAR VAR(%BIN(&MIPGMSRCSZ)) VALUE(&OFFSET)

 CALL PGM(QSYS/QPRCRTPG) PARM(&MIPGMSRC +

 &MIPGMSRCSZ &PGMNAM &PGMTXT &PGMSRCF +

 &PGMSRCM &PGMSRCCHG &PRTFNAM &PRTSTRPAG +

 &PGMPUBAUT &PGMOPTS &NUMOPTS)

 ENDPGM

Create the MI example program

After creating the CL program (assumed to be called CLCRTPG), the following statements create the

previous MI program MI01:

DLTOVR MISRC

OVRDBF MISRC MBR(MI01)

CALL CLCRTPG MI01

Note: If the creation of MI01 fails, you should closely compare your source to that shown in this chapter.

In general, consider the QPRCRTPG error messages that refer to ″probable compiler error″ as

referring to your input source and not that the QPRCRTPG API itself is in error. (QPRCRTPG

assumes its input is probably from a high-level language (HLL) compiler.)

Further, if the error message is CPF6399 (Identifier not declared), you can get an object definition table

(ODT) listing by adding *XREF to the option template parameter (variable &PGMOPTS in the CLCRTPG

program) when calling the QPRCRTPG API. Add *XREF to the existing *LIST and *REPLACE options,

and change the number of option template entries parameter (variable &NUMOPTS) to 3.

Test MI01

In this topic, assume that MI01 was successfully created.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 575.

/**/

/**/

/* */

/* Program Name: CL01 */

/* */

/* Programming Language: CL */

/* */

/* Description: Test the MI program MI01. */

/* */

/* */

/* Header Files Included: None */

/* */

/* */

/**/

 PGM PARM(&ARG1 &ARG2)

 DCL VAR(&ARG1) TYPE(*DEC) LEN(15 5)

 DCL VAR(&ARG2) TYPE(*DEC) LEN(15 5)

 DCL VAR(&RESULT) TYPE(*DEC) LEN(15 5)

 DCL VAR(&MSG) TYPE(*CHAR) LEN(20)

 DCL VAR(&USR) TYPE(*CHAR) LEN(10)

 RTVJOBA USER(&USR)

 CALL PGM(MI01) PARM(&ARG1 &ARG2 &RESULT)

 CHGVAR VAR(&MSG) VALUE(&RESULT)

 SNDMSG MSG(&MSG) TOUSR(&USR)

 ENDPGM

The following statement calls the CL01 program:

506 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

CALL CL01 (-5 6)

This test should cause a message to be sent to your user message queue with the following value:

00000000000006.00000

Debug the MI program

The MI program (MI01) that you created is a standard *PGM object on the iSeries system. As you would

expect, you can call MI01 from other high-level languages. You can delete MI01 with the Delete Program

(DLTPGM) command, save and restore MI01 using the standard save (SAV) and restore (RST) commands,

and so on.

You can also debug it using the standard debugger on the system. To debug it, you need to look at the

listing produced by the QPRCRTPG API to determine the MI instruction number. Then use that number

with the Add Breakpoint (ADDBKP) CL command. For example, when creating MI01 in the previous

exercise, the following listing was generated by QPRCRTPG:

 5763SS1 V3R1M0 940909 Generated Output 08/08/94 09:46:36 Page 1

 SEQ (1)INST Offset Generated Code *... ... 1 2 3 4 5 6 7 8

 00001 ENTRY * (PARM_LIST) EXT ;

 00002 DCL SPCPTR ARG1@ PARM ;

 00003 DCL SPCPTR ARG2@ PARM ;

 00004 DCL SPCPTR RESULT@ PARM ;

 00005 DCL OL PARM_LIST (ARG1@, ARG2@, RESULT@) PARM EXT ;

 00006 DCL DD ARG1 PKD(15,5) BAS(ARG1@) ;

 00007 DCL DD ARG2 PKD(15,5) BAS(ARG2@) ;

 00008 DCL DD RESULT PKD(15,5) BAS(RESULT@) ;

 00009 0001 000004 3C46 2000 0006 0007 CMPNV(B) ARG1,ARG2 / LO(ITS2) ;

 0009

 00010 0002 00000E 1042 0008 0006 CPYNV RESULT,ARG1 ;

 00011 0003 000014 1011 000A B RETURN ;

 00012 0004 000018 3042 0008 0007 ITS2: CPYNV RESULT,ARG2 ;

 00013 0005 00001E 22A1 0000 (2) RETURN: RTX * ;

 00014 0006 000022 0260 PEND ;

 5763SS1 V3R1M0 940909 Generated Output 08/08/94 09:46:36 Page 2

 MSGID ODT ODT Name Semantics and ODT Syntax Diagnostics

 5763SS1 V3R1M0 940909 Generated Output 08/08/94 09:46:36 Page 3

 MSGID MI Instruction Stream Semantic Diagnostics

Set breakpoints in the MI program

To view the value of RESULT at label RETURN, you first determine that RETURN corresponds to MI

instruction ((1)) 0005 ((2)) and enter the following CL commands:

STRDBG PGM(MI01)

ADDBKP STMT(’/0005’) PGMVAR((RESULT ()))

CALL CL01 (-5 6)

The following display is shown:

+--+

| |

| Display Breakpoint |

| |

| Statement/Instruction : /0005 |

| Program : MI01 |

| Recursion level : 1 |

| Start position : 1 |

| Format : *CHAR |

| Length : *DCL |

| |

| Variable : RESULT |

| Type : PACKED |

| Length : 15 5 |

| ’ 6.00000’ |

| |

+--+

APIs 507

Breakpoints also can be set with a directive statement. Given that the MI01 program is able to be

debugged and a break directive was not used, the purpose for which you use the directive may not be

obvious. As mentioned in “Create the MI example program” on page 506, many expected users of the

QPRCRTPG API are compilers of HLLs. The break (BRK) directive allows users of the QPRCRTPG API to

associate an HLL statement identifier with a generated MI instruction. For example, assume that MI01

was developed to be an implementation of a fictional HLL language statement such as:

RESULT = MAX(ARG1, ARG2)

This assigns the MAX (defined as the largest argument) of ARG1 or ARG2 to RESULT. Also assume that

an HLL programmer had written a program called HLLEXAMPLE with the following statements:

00001 RESULT = MAX(ARG1, ARG2)

00002 EXIT

By using break (BRK) directives, the QPRCRTPG user or compiler could associate the HLL statements

with the generated MI instructions in the following way.

/**/

/**/

/* */

/* Program Name: MI01 */

/* */

/* Programming Language: MI */

/* */

/* Description: Demonstrate how to associate HLL statement */

/* identifiers with MI instructions using BRK */

/* directives. */

/* */

/* Header Files Included: None */

/* */

/* */

/**/

ENTRY * (PARM_LIST) EXT;

DCL SPCPTR ARG1@ PARM;

DCL SPCPTR ARG2@ PARM;

DCL SPCPTR RESULT@ PARM;

DCL OL PARM_LIST

 (ARG1@,

 ARG2@,

 RESULT@)

 PARM EXT;

DCL DD ARG1 PKD(15,5) BAS(ARG1@);

DCL DD ARG2 PKD(15,5) BAS(ARG2@);

DCL DD RESULT PKD(15,5) BAS(RESULT@);

BRK "00001";

 CMPNV(B) ARG1,ARG2 / LO(ITS2);

 CPYNV RESULT,ARG1;

 B RETURN;

ITS2: CPYNV RESULT,ARG2;

BRK "00002";

RETURN: RTX *;

 PEND;

This allows the HLL programmer to use the following to debug the HLL program by using the statement

identifiers of the HLL:

STRDBG PGM(HLLEXAMPLE)

ADDBKP STMT(00002) PGMVAR((RESULT ()))

The following display shows that the HLL statement 00002 has been equated with MI instruction 0005

due to the use of BRK directives:

+--+

| |

| |

| |

508 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

| Display Breakpoint |

| |

| Statement/Instruction : 00002 /0005 |

| Program : HLLEXAMPLE |

| Recursion level : 1 |

| Start position : 1 |

| Format : *CHAR |

| Length : *DCL |

| |

| Variable : RESULT |

| Type : PACKED |

| Length : 15 5 |

| ’ 6.00000’ |

| |

+--+

Handle exceptions in the MI program

As coded, the MI01 program works fine when it is passed packed decimal parameters. But when the

MI01 program is passed other data types, such as in CALL CL01 (abc 6), exceptions occur. To handle

these exceptions, additional statements could be added to MI01 so that:

v A 1-character return code parameter returns a status where 0 indicates no error and 1 indicates an error

occurred.

v An exception description is defined to handle MCH1202 decimal data errors.

Add the following statements to MI01:

1. Declare a fourth space parameter to receive the return code parameter:

DCL SPCPTR RC@ PARM;

2. Update the operand list directive for PARM_LIST:

DCL OL PARM_LIST

 (ARG1@,

 ARG2@,

 RESULT@,

 RC@) /* the new parameter */

 PARM EXT;

3. Declare the storage addressed by RC@ as a 1-byte character data element:

DCL DD RC CHAR(1) BAS(RC@);

4. Declare an exception handler for MCH1202. With this exception description, all occurrences of

MCH1202 will cause an immediate (IMD) branch to label M1202.

DCL EXCM DATAERROR EXCID(H’0C02’) BP (M1202) IMD;

Note: The EXCID is the hexadecimal representation of the message identifier string 1202 where 12 =

X’0C’ and 02 = X’02’. While most MCH errors follow this relationship of message ID string to

hexadecimal EXCID, you should always refer to the iSeries Machine Interface instructions to

determine what specific exception IDs may be signaled by a given MI statement.

5. Because label M1202 is being used to indicate an error, set the return code to 1 by using copy bytes

left-justified and then end:

M1202: CPYBLA RC,’1’;

 RTX *;

 PEND;

A more complete example of how to handle exceptions is provided in Handling exceptions in the

MICRTPG2 program.

6. Because the non-M1202 path indicates that no error was detected, update the normal return path:

RETURN: CPYBLA RC,’0’;

7. Because M1202 was appended to the end of the MI01 source, remove the original MI01 PEND

directive.

APIs 509

The an updated view of the MI01 program is as follows:

/**/

/**/

/* */

/* Program Name: MI01 */

/* */

/* Programming Language: MI */

/* */

/* Description: Enhanced version of MI program MI01 that */

/* demonstrates enabling an exception monitor. */

/* */

/* Header Files Included: None */

/* */

/* */

/**/

ENTRY * (PARM_LIST) EXT;

DCL SPCPTR ARG1@ PARM;

DCL SPCPTR ARG2@ PARM;

DCL SPCPTR RESULT@ PARM;

DCL SPCPTR RC@ PARM;

DCL OL PARM_LIST

 (ARG1@,

 ARG2@,

 RESULT@,

 RC@)

 PARM EXT;

DCL DD ARG1 PKD(15,5) BAS(ARG1@);

DCL DD ARG2 PKD(15,5) BAS(ARG2@);

DCL DD RESULT PKD(15,5) BAS(RESULT@);

DCL DD RC CHAR(1) BAS(RC@);

DCL EXCM DATAERROR EXCID(H’0C02’) BP (M1202) IMD;

 CMPNV(B) ARG1,ARG2 / LO(ITS2);

 CPYNV RESULT,ARG1;

 B RETURN;

ITS2: CPYNV RESULT,ARG2;

RETURN: CPYBLA RC,’0’;

 RTX *;

M1202: CPYBLA RC,’1’;

 RTX *;

 PEND;

The following example updates CL01 to support the new return code parameter:

/**/

/**/

/* */

/* Program Name: CL01 */

/* */

/* Programming Language: CL */

/* */

/* Description: Enhanced version of CL program CL01 that */

/* demonstrates the use of enhanced MI01. */

/* */

/* Header Files Included: None */

/* */

/* */

/**/

 PGM PARM(&ARG1 &ARG2)

 DCL VAR(&ARG1) TYPE(*DEC) LEN(15 5)

 DCL VAR(&ARG2) TYPE(*DEC) LEN(15 5)

 DCL VAR(&RESULT) TYPE(*DEC) LEN(15 5)

 DCL VAR(&RC) TYPE(*CHAR) LEN(1)

 DCL VAR(&MSG) TYPE(*CHAR) LEN(20)

 DCL VAR(&USR) TYPE(*CHAR) LEN(10)

 RTVJOBA USER(&USR)

 CALL PGM(MI01) PARM(&ARG1 &ARG2 &RESULT &RC)

 IF COND(&RC = ’0’) +

510 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

THEN(CHGVAR VAR(&MSG) VALUE(&RESULT))

 ELSE +

 CHGVAR VAR(&MSG) VALUE(’ERROR FOUND’)

 SNDMSG MSG(&MSG) TOUSR(&USR)

 ENDPGM

After recompiling the MI01 program and the CL01 program, CALL CL01 (abc 6) now results in the

following message (not the previous MCH1202):

ERROR FOUND

 Related reference

 Create Program (QPRCRTPG)

 iSeries Machine Interface instructions

 Creating an MI version of CLCRTPG

 “Create the MICRTPG2 program” on page 524

This topic shows how to create the MICRTPG2 program and how to handle exceptions in the

MICRTPG2 program.

Creating an MI version of CLCRTPG

This topic discusses how to create an MI version of the CLCRTPG program that can be used to create MI

programs. This program is called MICRTPG.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Because the CLCRTPG program is used to create the initial version of MICRTPG and CLCRTPG can

support only as many as 2000 bytes of source in the &MIPGMSRC variable, MICRTPG is initially defined

with a minimal set of function. Significant additions to the MICRTPG program can be made after it is

used as a building block in the creation of MI programs.

In the initial design (see the program flow in “Source for the CL03 program” on page 512), there are four

programs. The first program is a CL program (CL03) that does the following:

v Creates a user space (*USRSPC) object of 64KB size to hold the MI source.

v Overrides the MISRC file to the appropriate source physical file and member (1).

v Calls a second CL program (CL04), which loads the selected MISRC member into the user space

(*USRSPC) (2).

v Calls an MI program (MICRTPG) (3). The MICRTPG program calls CL program CL05 (4) and passes

addressability to the *USRSPC, where CL05 then calls the QPRCRTPG API (5).

The MICRTPG program demonstrates how to do the following:

v Define a structure

v Initialize declared storage

v Use two different approaches to resolve a system pointer to an external object

v Assign a space pointer to address a user space

v Call a program and pass three parameters

The overall program flow for creating the MICRTPG program appears as follows:

APIs 511

MIcrever.htm

Source for the CL03 program

The source for CL03 follows:

/**/

/**/

/* */

/* Program Name: CL03 */

/* */

/* Programming Language: CL */

/* */

/* Description: Main driver program for initial version of */

/* MI program MICRTPG. This program creates a */

/* *USRSPC, calls CL04 to load MI source from */

/* a *SRC physical file into the *USRSPC, and */

/* then calls MICRTPG to create MI programs. */

/* */

/* Header Files Included: None */

/* */

/* */

/**/

 PGM PARM(&FILE &MBR)

 DCL VAR(&FILE) TYPE(*CHAR) LEN(10)

 DCL VAR(&MBR) TYPE(*CHAR) LEN(10)

 DCL VAR(&SPCNAM) TYPE(*CHAR) LEN(20) +

 VALUE(’ *CURLIB ’)

 DCL VAR(&SPCEXTATR) TYPE(*CHAR) LEN(10) VALUE(’ ’)

512 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

DCL VAR(&SPCSIZ) TYPE(*CHAR) LEN(4) +

 VALUE(X’00010000’)

 DCL VAR(&SPCINTVAL) TYPE(*CHAR) LEN(1) VALUE(X’00’)

 DCL VAR(&SPCSPCAUT) TYPE(*CHAR) LEN(10) +

 VALUE(’*ALL’)

 DCL VAR(&SPCTXTDSC) TYPE(*CHAR) LEN(50) VALUE(’ ’)

 DCL VAR(&SPCRPLOPT) TYPE(*CHAR) LEN(10) +

 VALUE(’*YES’)

 DCL VAR(&ERRCOD) TYPE(*CHAR) LEN(4) +

 VALUE(X’00000000’)

 DCL VAR(&SPCDMN) TYPE(*CHAR) LEN(10) VALUE(’*USER’)

 DCL VAR(&BINOFFSET) TYPE(*CHAR) LEN(4) +

 VALUE(X’00000001’)

 CHGVAR VAR(%SST(&SPCNAM 1 10)) VALUE(&MBR)

 CALL PGM(QUSCRTUS) PARM(&SPCNAM &SPCEXTATR +

 &SPCSIZ &SPCINTVAL &SPCSPCAUT &SPCTXTDSC +

 &SPCRPLOPT &ERRCOD &SPCDMN)

 OVRDBF FILE(MISRC) TOFILE(&FILE) MBR(&MBR)

 CALL PGM(CL04) PARM(&MBR &BINOFFSET)

 CALL PGM(MICRTPG) PARM(&MBR &BINOFFSET)

 ENDPGM

Source for the CL04 program

The source for CL04 follows:

/**/

/**/

/* */

/* Program Name: CL04 */

/* */

/* Programming Language: CL */

/* */

/* Description: Load a source physical file member into the */

/* *USRSPC named &MBR. */

/* */

/* */

/* Header Files Included: None */

/* */

/* */

/**/

 PGM PARM(&MBR &BINOFFSET)

 DCLF FILE(MISRC)

 DCL VAR(&MBR) TYPE(*CHAR) LEN(10)

 DCL VAR(&BINOFFSET) TYPE(*CHAR) LEN(4)

 DCL VAR(&OFFSET) TYPE(*DEC) LEN(8 0) VALUE(1)

 DCL VAR(&LENGTH) TYPE(*CHAR) LEN(4) +

 VALUE(X’00000050’)

 DCL VAR(&SPCNAM) TYPE(*CHAR) LEN(20) +

 VALUE(’ *LIBL ’)

 CHGVAR VAR(%SST(&SPCNAM 1 10)) VALUE(&MBR)

LOOP: RCVF

 MONMSG MSGID(CPF0864) EXEC(GOTO CMDLBL(DONE))

 CALL PGM(QUSCHGUS) PARM(&SPCNAM &BINOFFSET +

 &LENGTH &SRCDTA ’0’)

 CHGVAR VAR(&OFFSET) VALUE(&OFFSET + 80)

 CHGVAR VAR(%BIN(&BINOFFSET)) VALUE(&OFFSET)

 GOTO CMDLBL(LOOP)

DONE: ENDPGM

Source for the CL05 program

The source for CL05 follows:

/**/

/**/

/* */

APIs 513

/* Program Name: CL05 */

/* */

/* Programming Language: CL */

/* */

/* Description: Create an MI program using the QPRCRTPG API. */

/* */

/* */

/* Header Files Included: None */

/* */

/* */

/**/

 PGM PARM(&SRCMBR &MIPGMSRC &MIPGMSRCSZ)

 DCL VAR(&SRCMBR) TYPE(*CHAR) LEN(10)

 DCL VAR(&MIPGMSRC) TYPE(*CHAR) LEN(1)

 DCL VAR(&MIPGMSRCSZ) TYPE(*CHAR) LEN(4)

 DCL VAR(&PGMNAM) TYPE(*CHAR) LEN(20) +

 VALUE(’ *CURLIB ’)

 DCL VAR(&PGMTXT) TYPE(*CHAR) LEN(50) +

 VALUE(’ ’)

 DCL VAR(&PGMSRCF) TYPE(*CHAR) LEN(20) +

 VALUE(’*NONE’)

 DCL VAR(&PGMSRCM) TYPE(*CHAR) LEN(10) VALUE(’ ’)

 DCL VAR(&PGMSRCCHG) TYPE(*CHAR) LEN(13) VALUE(’ ’)

 DCL VAR(&PRTFNAM) TYPE(*CHAR) LEN(20) +

 VALUE(’QSYSPRT *LIBL ’)

 DCL VAR(&PRTSTRPAG) TYPE(*CHAR) LEN(4) +

 VALUE(X’00000001’)

 DCL VAR(&PGMPUBAUT) TYPE(*CHAR) LEN(10) +

 VALUE(’*ALL ’)

 DCL VAR(&PGMOPTS) TYPE(*CHAR) LEN(22) +

 VALUE(’*LIST *REPLACE ’)

 DCL VAR(&NUMOPTS) TYPE(*CHAR) LEN(4) +

 VALUE(X’00000002’)

 CHGVAR VAR(%SST(&PGMNAM 1 10)) VALUE(&SRCMBR)

 CALL PGM(QSYS/QPRCRTPG) PARM(&MIPGMSRC +

 &MIPGMSRCSZ &PGMNAM &PGMTXT &PGMSRCF +

 &PGMSRCM &PGMSRCCHG &PRTFNAM &PRTSTRPAG +

 &PGMPUBAUT &PGMOPTS &NUMOPTS)

 ENDPGM

Source for the MICRTPG program

The source for MICRTPG follows:

/**/

/**/

/* */

/* Program Name: MICRTPG */

/* */

/* Programming Language: MI */

/* */

/* Description: Initial version of MI program to create */

/* additional MI programs using the QPRCRTPG API. */

/* */

/* */

/* Header Files Included: None */

/* */

/* */

/**/

ENTRY * (PARM_LIST) EXT;

DCL SPCPTR MBR@ PARM;

DCL SPCPTR BINOFFSET@ PARM;

DCL OL PARM_LIST (MBR@, BINOFFSET@) PARM EXT;

DCL DD MBR CHAR(10) BAS(MBR@);

DCL DD BINOFFSET BIN(4) BAS(BINOFFSET@);

DCL DD RSLVOBJ CHAR(34);

 DCL DD RSLVTYPE CHAR(1) DEF(RSLVOBJ) POS(1) INIT(X’19’);

514 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

DCL DD RSLVSUBTYPE CHAR(1) DEF(RSLVOBJ) POS(2) INIT(X’34’);

 DCL DD RSLVNAME CHAR(30) DEF(RSLVOBJ) POS(3);

 DCL DD RSLVAUTH CHAR(2) DEF(RSLVOBJ) POS(33) INIT(X’0000’);

DCL SYSPTR USRSPCOBJ;

DCL SPCPTR USRSPC;

DCL SYSPTR CL05 INIT("CL05", TYPE(PGM));

DCL OL CL05OL (MBR@, USRSPC, BINOFFSET@) ARG;

CPYBLAP RSLVNAME, MBR, ’ ’;

RSLVSP USRSPCOBJ, RSLVOBJ, *, *;

SETSPPFP USRSPC, USRSPCOBJ;

CALLX CL05, CL05OL, *;

RTX *;

PEND;

Understanding the MICRTPG program (by sections of code)

You will recognize some of these statements from the MI01 example, but others are new.

The following statements, which you have seen, for example, in MI01 program complete code example,

define the entry point to this program and the parameters being passed on the call:

ENTRY * (PARM_LIST) EXT;

DCL SPCPTR MBR@ PARM;

DCL SPCPTR BINOFFSET@ PARM;

DCL OL PARM_LIST (MBR@, BINOFFSET@) PARM EXT;

DCL DD MBR CHAR(10) BAS(MBR@);

DCL DD BINOFFSET BIN(4) BAS(BINOFFSET@);

Declaring the structure

The following, however, are new statements:

DCL DD RSLVOBJ CHAR(34);

 DCL DD RSLVTYPE CHAR(1) DEF(RSLVOBJ) POS(1) INIT(X’19’);

 DCL DD RSLVSUBTYPE CHAR(1) DEF(RSLVOBJ) POS(2) INIT(X’34’);

 DCL DD RSLVNAME CHAR(30) DEF(RSLVOBJ) POS(3);

 DCL DD RSLVAUTH CHAR(2) DEF(RSLVOBJ) POS(33) INIT(X’0000’);

These statements declare a structure named RSLVOBJ that comprises four subelements defined within it.

The subelements specify their position relative to the start of the structure RSLVOBJ. In the cases of the

RSLVTYPE, RSLVSUBTYPE, and RSLVAUTH data elements, they initialize the associated storage.

The RSLVOBJ structure is used later in the program as an input to the resolve system pointer (RSLVSP)

MI instruction. The RSLVSP instruction resolves (establishes addressability) to a user space (*USRSPC)

(the X’1934’ object type and subtype) named RSLVNAME (assigned from the source member name (MBR)

data element). This user space is the one created in “Source for the CL03 program” on page 512. If you

are interested in the details of this structure, see iSeries Machine Interface instructions under RSLVSP. For

other valid object types and subtypes, see Object types.

Note: In the declare (DCL) statement of RSLVOBJ, the leading blanks used to indent the subelements (for

example, RSLVTYPE and RSLVSUBTYPE) are strictly to enhance the readability of the source. They

are not a requirement of the QPRCRTPG API. In general, you can use strings of blanks of any

length in the source of a program. Blanks, one or more, are simply used as delimiters in

identifying tokens. The major exception is the INIT argument of a DCL statement where the

number of blanks is important. For example, the previous declare statement could have been

written as follows and other than readability, nothing would have been lost:

DCL DD RSLVOBJ CHAR(34); DCL DD RSLVTYPE CHAR(1)

DEF(RSLVOBJ) POS(1) INIT(X’19’); DCL DD RSLVSUBTYPE CHAR(1)

DEF(RSLVOBJ) POS(2)

INIT(X’34’); DCL DD RSLVNAME CHAR(30) DEF(RSLVOBJ) POS(3); DCL

DD RSLVAUTH CHAR(2) DEF(RSLVOBJ) POS(33) INIT(X’0000’);

APIs 515

Declaring pointers

The next statements declare a system pointer named USRSPCOBJ and a space pointer named USRSPC.

USRSPCOBJ contains the address of the *USRSPC object after the execution of the RSLVSP instruction

later in the instruction stream. USRSPC addresses the first byte of the *USRSPC:

DCL SYSPTR USRSPCOBJ;

DCL SPCPTR USRSPC;

Defining an external call

Because this program also uses the call external (CALLX) instruction to call the CL program CL05, define

a system pointer for CL05:

DCL SYSPTR CL05 INIT("CL05", TYPE(PGM));

The preceding statement causes the QPRCRTPG API to initialize the system pointer CL05 to the name of

the PGM CL05. The CL05 pointer is not set to the address of the CL05 object--this happens the first time

the CL05 pointer is referred to in the instruction stream. If you review the declare statement in the

QPRCRTPG API, notice that the context (CTX) argument uses the default. Using the context default

(better known as library to most programmers) is equivalent to specifying *LIBL. *LIBL is referred to as

the process name resolution list in the iSeries Machine Interface instructions.

Because this program calls the CL05 program (CALLX CL05) with parameters, it now defines an operand

list CL05OL, which specifies the arguments to be passed on the CALLX:

DCL OL CL05OL (MBR@, USRSPC, BINOFFSET@) ARG;

When you get to the instruction stream of MICRTPG, copy the passed parameter MBR to the data

structure element RSLVNAME. As RSLVNAME is defined as CHAR(30) and MBR is CHAR(10), the

program uses the copy bytes left-justified with pad (CPYBLAP) instruction to set the rightmost 20 bytes

of RSLVNAME to the value of the third argument (in this case, blanks):

CPYBLAP RSLVNAME, MBR, ’ ’;

Having established the *USRSPC name, use the RSLVSP instruction to get addressability to the object

itself:

RSLVSP USRSPCOBJ, RSLVOBJ, *, *;

Note: Similar to how the *USRSPC name was resolved, RSLVSP could be used with a type of X’02’ and a

subtype of X’01’ to resolve a system pointer to the CL05 *PGM object. The two different

approaches were used to demonstrate the different styles (RSLVSP is clearly more flexible) and also

to stay within the 2000-byte limit of the program source size imposed by the CLCRTPG program.

Then set the USRSPC space pointer to the first byte of the *USRSPC:

SETSPPFP USRSPC, USRSPCOBJ;

Calling the CL05 Program

Now the program will call the CL05 program (CALLX CL05) and pass the address of the *USRSPC as a

parameter (along with the member name, program name, and the size of the source stream). When you

call CL05 with the operand list CL05OL, CL05 passes the actual space pointer USRSPC. CL05 does not

pass a space pointer that refers to the space pointer USRSPC (as opposed to how MBR@ and

BINOFFSET@ are passed to refer to MBR and BINOFFSET, respectively). This has the effect of having the

CL05 program treat the *USRSPC storage as the parameter:

CALLX CL05, CL05OL, *;

Finally, as the program comes to an end, this is the return external instruction and pend directive for the

initial version of MICRTPG:

516 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

RTX *;

PEND;

Creating the MICRTPG program

To create MICRTPG, use the following CL commands:

DLTOVR MISRC

OVRDBF MISRC MBR(MICRTPG)

CALL CLCRTPG MICRTPG

Assuming a successful creation, the CLCRTPG program is not used again because of the MI base with

which to work (for example, MICRTPG is used as a boot-strap for further compiler enhancement).

 Related reference

 “Example: Writing an MI program” on page 502

This topic shows how to write a simple MI program that receives two packed-decimal parameters and

returns the larger value through a third parameter.

 iSeries Machine Interface instructions

 “Internal object types” on page 64
This topic provides the i5/OS internal object types and their corresponding predefined values.

 QPRCRTPG API

Enhanced version of the MICRTPG program

A new version of MICRTPG (named MICRTPG2) incorporateS the functions of the CL03 program and the

CL05 program.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

A modified form of CL04 (renamed to CL06) is used in these examples to read the MISRC source

physical file because MI instruction support for database access is beyond the scope of this chapter.

The MICRTPG2 program demonstrates how to do the following tasks:

v Receive a variable number of parameters

v Use static and automatic storage

v Create a space object

v Perform arithmetic operations
 Related concepts

 “Program storage” on page 532

Two steps are needed to run a program: program activation and program invocation.
 Related reference

 iSeries Machine Interface instructions

Understand the MICRTPG2 program (by sections of code)

Writing the program code for MICRTPG2:

 1. Define the entry point and associated parameters:

ENTRY * (PARM_LIST) EXT;

DCL SPCPTR FIL@ PARM;

DCL SPCPTR MBR@ PARM;

DCL OL PARM_LIST (MBR@, FIL@) PARM EXT MIN(1);

DCL DD FIL CHAR(10) BAS(FIL@);

DCL DD MBR CHAR(10) BAS(MBR@);

DCL DD NUM_PARMS BIN(4);

APIs 517

2. Have MICRTPG2 create an automatically extendable space (it can automatically increase to as many

as 16MB in size) using the Create Space (CRTS) instruction. Because the CRTS instruction requires a

definition template, you need to define it (see iSeries Machine Interface instructions for details).

The following template creates a space (type and subtype equal to X’19EF’) that is defined through

the OBJCRTOPT data element (1). The space is defined as temporary (the next initial program load

(IPL) will free up the storage occupied by the space), extendable up to as many as 16MB, and within

a context (a library).

DCL DD CRTSTMPLT CHAR(160) BDRY(16);

 DCL DD TMPLTSPEC CHAR(8) DEF(CRTSTMPLT) POS(1);

 DCL DD TMPLTSIZE BIN(4) DEF(TMPLTSPEC) POS(1) INIT(160);

 DCL DD TMPLTBA BIN(4) DEF(TMPLTSPEC) POS(5) INIT(0);

 DCL DD OBJID CHAR(32) DEF(CRTSTMPLT) POS(9);

 DCL DD SPCTYPE CHAR(1) DEF(OBJID) POS(1) INIT(X’19’);

 DCL DD SPCSUBTYPE CHAR(1) DEF(OBJID) POS(2) INIT(X’EF’);

 DCL DD SPCNAME CHAR(30) DEF(OBJID) POS(3) INIT(" ");

 DCL DD OBJCRTOPT CHAR(4) DEF(CRTSTMPLT) POS(41) INIT(X’60020000’); (1)

 DCL DD OBJRCVOPTS CHAR(4) DEF(CRTSTMPLT) POS(45);

 DCL DD * CHAR(2) DEF(OBJRCVOPTS) POS(1) INIT(X’0000’);

 DCL DD ASP CHAR(2) DEF(OBJRCVOPTS) POS(3) INIT(X’0000’);

 DCL DD SPCSIZ BIN(4) DEF(CRTSTMPLT) POS(49) INIT(1);

 DCL DD INTSPCVAL CHAR(1) DEF(CRTSTMPLT) POS(53) INIT(X’00’);

 DCL DD PERFCLASS CHAR(4) DEF(CRTSTMPLT) POS(54) INIT(X’00000000’);

 DCL DD * CHAR(1) DEF(CRTSTMPLT) POS(58) INIT(X’00’);

 DCL DD PUBAUT CHAR(2) DEF(CRTSTMPLT) POS(59) INIT(X’0000’);

 DCL DD TMPLTEXTN BIN(4) DEF(CRTSTMPLT) POS(61) INIT(96);

 DCL SYSPTR CONTEXT DEF(CRTSTMPLT) POS(65);

 DCL SYSPTR ACCESSGRP DEF(CRTSTMPLT) POS(81);

 DCL SYSPTR USRPRF DEF(CRTSTMPLT) POS(97);

 DCL DD MAXSPCSIZ BIN(4) DEF(CRTSTMPLT) POS(113) INIT(0);

 DCL DD DOMAIN CHAR(2) DEF(CRTSTMPLT) POS(117) INIT(X’0001’);

 DCL DD * CHAR(42) DEF(CRTSTMPLT) POS(119) INIT((42)X’00’);

 3. Establish addressability to the CRTS template:

DCL SPCPTR CRTSTMPLT@ INIT(CRTSTMPLT);

 4. Because the space is defined to be in a context, supply the address of the context in the previous

CRTS template. This program uses the QTEMP context that is identified by the following:

DCL SYSPTR QTEMP@ BASPCO POS(65);

Use the copy bytes with pointers instruction (CPYBWP) to set the template context data element.

CPYBWP CONTEXT, QTEMP@;

 5. In the instruction stream, create the space:

CRTS USRSPC@, CRTSTMPLT@;

This returns a system pointer to the created space in the system pointer:

DCL SYSPTR USRSPC@;

 6. Declare a space pointer for addressability to the space through a space pointer (as opposed to the

system pointer returned by the CRTS instruction):

DCL SPCPTR USRSPC;

 7. To keep track of how many bytes of source are loaded into the *USRSPC, define BINOFFSET.

BINOFFSET is also being defined very specifically as an integer (BIN(4)) because it will be used later

in the program with the set space pointer offset (SETSPPO) MI instruction. This requires an integer

argument to refer to the space:

DCL DD BINOFFSET BIN(4) AUTO INIT(0);

 8. Because the size of the source is also a parameter to the QPRCRTPG API, define a space pointer to

refer to BINOFFSET:

DCL SPCPTR BINOFFSET@ AUTO INIT(BINOFFSET);

The two previous declare statements have also introduced a new attribute to the DCL statement.

Previously, all of the DCLs used the default of static (STAT) storage. BINOFFSET and BINOFFSET@,

on the other hand, are being allocated from automatic (AUTO) storage. Many hours of debug time

518 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

can be saved if you clearly understand how the iSeries manages these two types of storage. For

more information on the types of storage, see Program storage.

So that the program does not retain the size of the source loaded from previous invocations of the

program, you can declare BINOFFSET as being automatic. Because BINOFFSET@ needs to be set to

the address of BINOFFSET (so that BINOFFSET can be passed as a parameter to CL06), you will also

declare it as automatic. An alternative to using automatic storage would have been to explicitly set a

static storage BINOFFSET to 0 by using CPYNV, but this does not allow for a discussion of the

storage management differences.

 9. Use the CL06 program to load the space after it is created. Because CL06 is limited to only 2000

bytes of addressability per parameter per call (CALLX), the MICRTPG2 program uses the Override

with Database File (OVRDBF) CL command to cause the CL06 program to read and load twenty

80-byte source records per call. The source records are read starting at 1 on the first call, 21 on the

second, 41 on the third, and so on. To run CL commands from the MICRTPG2 program, the program

uses the Execute Command (QCMDEXC) API:

DCL SYSPTR QCMDEXC INIT("QCMDEXC", CTX("QSYS"), TYPE(PGM));

10. Format the appropriate character strings for the Override with Database File (OVRDBF) CL

command:

Note: In the following declare (DCL) statement for CLOVRCMD, the 3 strings of ’1234567890’ are

used strictly so that you can see that 10 bytes are being used. The strings themselves are

overridden by the subsequent subelement DCLs for FILNAM, MBRNAM, and RECNUM, and

could be replaced by 10 blanks:
DCL DD CLOVRCMD CHAR(65);

 DCL DD OVRSTR CHAR(39) DEF(CLOVRCMD) POS(1)

 INIT("OVRDBF MISRC 1234567890 MBR(1234567890)");

 DCL DD OVRSTR2 CHAR(26) DEF(CLOVRCMD) POS(40)

 INIT(" POSITION(*RRN 1234567890)");

 DCL DD FILNAM CHAR(10) DEF(CLOVRCMD) POS(14);

 DCL DD MBRNAM CHAR(10) DEF(CLOVRCMD) POS(29);

 DCL DD RECNUM ZND(10,0) DEF(CLOVRCMD) POS(55);

11. Format the appropriate character strings for the Delete Override (DLTOVR) CL command. Because

the OVRDBF commands are issued repetitively to progress through the source, the previous

overrides need to be deleted:

DCL DD CLDLTCMD CHAR(12) INIT("DLTOVR MISRC");

12. Establish space pointers to the CL command parameters, and, because the QCMDEXC API is being

used, define the CL command string lengths as parameters:

DCL SPCPTR CLOVRCMD@ INIT(CLOVRCMD);

DCL SPCPTR CLDLTCMD@ INIT(CLDLTCMD);

DCL DD CLOVRLNG PKD(15,5) INIT(P’65’); /* Length of OVRDBF CL cmd */

DCL SPCPTR CLOVRLNG@ INIT(CLOVRLNG);

DCL DD CLDLTLNG PKD(15,5) INIT(P’12’); /* Length of DLTOVR CL cmd */

DCL SPCPTR CLDLTLNG@ INIT(CLDLTLNG);

13. Define the operand list (OL) definitions for calling the QCMDEXC API under the two different

conditions:

DCL OL QCMDOVROL (CLOVRCMD@, CLOVRLNG@) ARG;

DCL OL QCMDDLTOL (CLDLTCMD@, CLDLTLNG@) ARG;

14. Because CALLX CL06 is called to load the space, declare its system pointer, parameters, and OL:

DCL SYSPTR CL06 INIT("CL06", TYPE(PGM));

DCL DD OFFSET PKD(15,5);

DCL SPCPTR OFFSET@ INIT(OFFSET);

DCL OL CL06OL (USRSPC, OFFSET@) ARG;

15. Declare the system pointer, parameters, and OL for the QPRCRTPG API:

DCL DD PGM CHAR(20);

 DCL DD PGMNAM CHAR(10) DEF(PGM) POS(1);

 DCL DD PGMLIBNAM CHAR(10) DEF(PGM) POS(11) INIT("*CURLIB ");

DCL SPCPTR PGM@ INIT(PGM);

APIs 519

DCL DD PGMTXT CHAR(50) INIT(" ");

DCL SPCPTR PGMTXT@ INIT(PGMTXT);

DCL DD PGMSRCF CHAR(20) INIT("*NONE");

DCL SPCPTR PGMSRCF@ INIT(PGMSRCF);

DCL DD PGMSRCM CHAR(10) INIT(" ");

DCL SPCPTR PGMSRCM@ INIT(PGMSRCM);

DCL DD PGMSRCCHG CHAR(13) INIT(" ");

DCL SPCPTR PGMSRCCHG@ INIT(PGMSRCCHG);

DCL DD PRTFNAM CHAR(20) INIT("QSYSPRT *LIBL ");

DCL SPCPTR PRTFNAM@ INIT(PRTFNAM);

DCL DD PRTSTRPAG BIN(4) INIT(1);

DCL SPCPTR PRTSTRPAG@ INIT(PRTSTRPAG);

DCL DD PGMPUBAUT CHAR(10) INIT("*ALL ");

DCL SPCPTR PGMPUBAUT@ INIT(PGMPUBAUT);

DCL DD PGMOPTS(16) CHAR(11) INIT((1)"*LIST", *(2)(1)"*REPLACE");

DCL SPCPTR PGMOPTS@ INIT(PGMOPTS);

DCL DD NUMOPTS BIN(4) INIT(2);

DCL SPCPTR NUMOPTS@ INIT(NUMOPTS);

DCL OL QPRCRTPGOL (USRSPC, BINOFFSET@, PGM@, PGMTXT@, PGMSRCF@,

 PGMSRCM@, PGMSRCCHG@, PRTFNAM@, PRTSTRPAG@,

 PGMPUBAUT@, PGMOPTS@, NUMOPTS@) ARG;

DCL SYSPTR QPRCRTPG INIT("QPRCRTPG", CTX("QSYS"), TYPE(PGM));

Beginning the instruction stream

Begin the instruction stream definition by doing the following:

1. Use the store parameter list length (STPLLEN) instruction to determine the number of parameters that

were passed to the program:

 STPLLEN NUM_PARMS;

2. If the number of parameters is 1, assign FILNAM to the value MISRC (the default that this program

supports for the source physical file) and branch to label PARM1 to set the source member name:

 CMPNV(B) NUM_PARMS, 2 / EQ(PARM2);

 CPYBLAP FILNAM, ’MISRC’, ’ ’;

 B PARM1;

3. If the number of parameters is 2, assign FILNAM to the value of the second parameter:

 PARM2: CPYBLA FILNAM, FIL;

4. Assign the source member name:

 PARM1: CPYBLA MBRNAM, MBR;

5. Assign the proper context for the space:

 CPYBWP CONTEXT, QTEMP@;

6. After establishing the context of the space, now create the space:

 CRTS USRSPC@, CRTSTMPLT@;

7. Assign the space pointer USRSPC to address the first byte of the space:

 SETSPPFP USRSPC, USRSPC@;

8. Set the OVRDBF CL command to start with POSITION(1):

 CPYNV RECNUM, 1;

Using static storage to your advantage

In “Beginning the instruction stream,” the instructions in steps 5, 6, and 7 can be done once and the space

reused on subsequent invocations of the program. As a performance enhancement, add a check to see if

this program has been previously called. To do the check, add a control field, and conditionally branch

around the CRTS-oriented instructions if this call is not the initial call:

 STPLLEN NUM_PARMS;

 CMPNV(B) NUM_PARMS, 2 / EQ(PARM2);

 CPYBLAP FILNAM, ’MISRC’, ’ ’;

 B PARM1;

PARM2: CPYBLA FILNAM, FIL;

520 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

PARM1: CPYBLA MBRNAM,MBR;

 CMPBLA(B) READY, ’1’ / EQ(SKIP);

 CPYBWP CONTEXT, QTEMP@;

 CRTS USRSPC@, CRTSTMPLT@;

 SETSPPFP USRSPC,USRSPC@;

 CPYBLA READY, ’1’;

SKIP: CPYNV RECNUM, 1;

Resuming the program flow of the MICRTPG2 program from “Beginning the instruction stream” on page

520, you should have the program perform the following:

 1. Fall into a loop (the MORE label) until all source records are loaded as the source physical file

member position is overridden:

MORE: CALLX QCMDEXC, QCMDOVROL, *;

 2. Instruct the CL06 program to load source records from the start of the input buffer, which is actually

the BINOFFSET into the space created earlier:

 CPYNV OFFSET,1;

 CALLX CL06, CL06OL, *;

 3. Back out (subtract) the base-1 nature of CL using the short (the (S) extender) form of the subtract

numeric (SUBN) instruction:

 SUBN(S) OFFSET, 1;

 4. Add the number of MI source bytes processed by CL06 to the offset into the space (for the next call):

 ADDN(S) BINOFFSET, OFFSET;

 SETSPPO USRSPC, BINOFFSET;

 5. Update the Override with Database File (OVRDBF) position parameter for the next call to CL06:

 ADDN(S) RECNUM, 20;

 6. Delete the previous OVRDBF:

 CALLX QCMDEXC, QCMDDLTOL, *;

 7. Check to see if all records were processed, and if not, branch to label MORE to load more source

records:

 CMPNV(B) OFFSET, 1600 /EQ(MORE);

Otherwise, assume that all source was loaded and prepare for calling the QPRCRTPG API by setting

the program name:

 CPYBLA PGMNAM, MBR;

 8. Reset the space pointer from the source of the input program to the start of the space. This resetting

of the static storage USRSPC is also assumed in the branch to label SKIP earlier in the program:

 SETSPPO USRSPC,0;

 9. Call the QPRCRTPG API to create the MI program:

 CALLX QPRCRTPG, QPRCRTPGOL, *;

10. Indicate that the program is done:

 RTX *;

 PEND;

MI code example: MICRTPG2 complete program

In its consolidated state, this is the new MICRTPG2 program:

/**/

/**/

/* */

/* program Name: MICRTPG2 */

/* */

/* programming Language: MI */

/* */

/* Description: Initial version of MI program MICRTPG2, */

/* which calls QPRCRTPG API. */

/* */

APIs 521

/* */

/* Header Files Included: None */

/* */

/* */

/**/

/* Entry point and associated parameters */

ENTRY * (*ENTRY) EXT;

DCL SPCPTR FIL@ PARM;

DCL SPCPTR MBR@ PARM;

DCL OL *ENTRY (MBR@, FIL@) PARM EXT MIN(1);

DCL DD FIL CHAR(10) BAS(FIL@);

DCL DD MBR CHAR(10) BAS(MBR@);

DCL DD NUM_PARMS BIN(4);

/* Control field for first time initialization */

DCL DD READY CHAR(1) INIT("0");

/* Binary offset into the space */

DCL DD BINOFFSET BIN(4) AUTO INIT(0);

DCL SPCPTR BINOFFSET@ AUTO INIT(BINOFFSET);

/* Pointers for accessing the space */

DCL SPCPTR USRSPC;

DCL SYSPTR USRSPC@;

/* QCMDEXC and associated CL commands */

DCL SYSPTR QCMDEXC INIT("QCMDEXC", CTX("QSYS"), TYPE(PGM));

DCL DD CLOVRCMD CHAR(65);

 DCL DD OVRSTR CHAR(39) DEF(CLOVRCMD) POS(1)

 INIT("OVRDBF MISRC 1234567890 MBR(1234567890)");

 DCL DD OVRSTR2 CHAR(26) DEF(CLOVRCMD) POS(40)

 INIT(" POSITION(*RRN 1234567890)");

 DCL DD FILNAM CHAR(10) DEF(CLOVRCMD) POS(14);

 DCL DD MBRNAM CHAR(10) DEF(CLOVRCMD) POS(29);

 DCL DD RECNUM ZND(10,0) DEF(CLOVRCMD) POS(55);

DCL SPCPTR CLOVRCMD@ INIT(CLOVRCMD);

DCL DD CLOVRLNG PKD(15,5) INIT(P’65’);

DCL SPCPTR CLOVRLNG@ INIT(CLOVRLNG);

DCL OL QCMDOVROL (CLOVRCMD@, CLOVRLNG@) ARG;

DCL DD CLDLTCMD CHAR(12) INIT("DLTOVR MISRC");

DCL SPCPTR CLDLTCMD@ INIT(CLDLTCMD);

DCL DD CLDLTLNG PKD(15,5) INIT(P’12’);

DCL SPCPTR CLDLTLNG@ INIT(CLDLTLNG);

DCL OL QCMDDLTOL (CLDLTCMD@, CLDLTLNG@) ARG;

/* CL06 and associated parameters */

DCL SYSPTR CL06 INIT("CL06", TYPE(PGM));

DCL DD OFFSET PKD(15,5);

DCL SPCPTR OFFSET@ INIT(OFFSET);

DCL OL CL06OL (USRSPC, OFFSET@) ARG;

/* Access QTEMP address */

DCL SYSPTR QTEMP@ BASPCO POS(65);

/* Template for CRTS MI instruction */

DCL DD CRTSTMPLT CHAR(160) BDRY(16);

 DCL DD TMPLTSPEC CHAR(8) DEF(CRTSTMPLT) POS(1);

 DCL DD TMPLTSIZE BIN(4) DEF(TMPLTSPEC) POS(1) INIT(160);

 DCL DD TMPLTBA BIN(4) DEF(TMPLTSPEC) POS(5) INIT(0);

522 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

DCL DD OBJID CHAR(32) DEF(CRTSTMPLT) POS(9);

 DCL DD SPCTYPE CHAR(1) DEF(OBJID) POS(1) INIT(X’19’);

 DCL DD SPCSUBTYPE CHAR(1) DEF(OBJID) POS(2) INIT(X’EF’);

 DCL DD SPCNAME CHAR(30) DEF(OBJID) POS(3) INIT("MICRTPG2");

 DCL DD OBJCRTOPT CHAR(4) DEF(CRTSTMPLT) POS(41) INIT(X’60020000’);

 DCL DD OBJRCVOPTS CHAR(4) DEF(CRTSTMPLT) POS(45);

 DCL DD * CHAR(2) DEF(OBJRCVOPTS) POS(1) INIT(X’0000’);

 DCL DD ASP CHAR(2) DEF(OBJRCVOPTS) POS(3) INIT(X’0000’);

 DCL DD SPCSIZ BIN(4) DEF(CRTSTMPLT) POS(49) INIT(1);

 DCL DD INTSPCVAL CHAR(1) DEF(CRTSTMPLT) POS(53) INIT(X’00’);

 DCL DD PERFCLASS CHAR(4) DEF(CRTSTMPLT) POS(54) INIT(X’00000000’);

 DCL DD * CHAR(1) DEF(CRTSTMPLT) POS(58) INIT(X’00’);

 DCL DD PUBAUT CHAR(2) DEF(CRTSTMPLT) POS(59) INIT(X’0000’);

 DCL DD TMPLTEXTN BIN(4) DEF(CRTSTMPLT) POS(61) INIT(96);

 DCL SYSPTR CONTEXT DEF(CRTSTMPLT) POS(65);

 DCL SYSPTR ACCESSGRP DEF(CRTSTMPLT) POS(81);

 DCL SYSPTR USRPRF DEF(CRTSTMPLT) POS(97);

 DCL DD MAXSPCSIZ BIN(4) DEF(CRTSTMPLT) POS(113) INIT(0);

 DCL DD DOMAIN CHAR(2) DEF(CRTSTMPLT) POS(117) INIT(X’0001’);

 DCL DD * CHAR(42) DEF(CRTSTMPLT) POS(119) INIT((42)X’00’);

DCL SPCPTR CRTSTMPLT@ INIT(CRTSTMPLT);

/* QPRCRTPG and associated parameters */

DCL DD PGM CHAR(20);

 DCL DD PGMNAM CHAR(10) DEF(PGM) POS(1);

 DCL DD PGMLIBNAM CHAR(10) DEF(PGM) POS(11) INIT("*CURLIB ");

DCL SPCPTR PGM@ INIT(PGM);

DCL DD PGMTXT CHAR(50) INIT(" ");

DCL SPCPTR PGMTXT@ INIT(PGMTXT);

DCL DD PGMSRCF CHAR(20) INIT("*NONE");

DCL SPCPTR PGMSRCF@ INIT(PGMSRCF);

DCL DD PGMSRCM CHAR(10) INIT(" ");

DCL SPCPTR PGMSRCM@ INIT(PGMSRCM);

DCL DD PGMSRCCHG CHAR(13) INIT(" ");

DCL SPCPTR PGMSRCCHG@ INIT(PGMSRCCHG);

DCL DD PRTFNAM CHAR(20) INIT("QSYSPRT *LIBL ");

DCL SPCPTR PRTFNAM@ INIT(PRTFNAM);

DCL DD PRTSTRPAG BIN(4) INIT(1);

DCL SPCPTR PRTSTRPAG@ INIT(PRTSTRPAG);

DCL DD PGMPUBAUT CHAR(10) INIT("*ALL ");

DCL SPCPTR PGMPUBAUT@ INIT(PGMPUBAUT);

DCL DD PGMOPTS(16) CHAR(11) INIT((1)"*LIST", *(2)(1)"*REPLACE",

 *(3)(1)"*XREF");

DCL SPCPTR PGMOPTS@ INIT(PGMOPTS);

DCL DD NUMOPTS BIN(4) INIT(3);

DCL SPCPTR NUMOPTS@ INIT(NUMOPTS);

DCL OL QPRCRTPGOL (USRSPC, BINOFFSET@, PGM@, PGMTXT@, PGMSRCF@,

 PGMSRCM@, PGMSRCCHG@, PRTFNAM@, PRTSTRPAG@,

 PGMPUBAUT@, PGMOPTS@, NUMOPTS@) ARG;

DCL SYSPTR QPRCRTPG INIT("QPRCRTPG", CTX("QSYS"), TYPE(PGM));

/* Start of instruction stream */

 STPLLEN NUM_PARMS;

 CMPNV(B) NUM_PARMS, 2 / EQ(PARM2);

 CPYBLAP FILNAM, ’MISRC’, ’ ’;

 B PARM1;

PARM2: CPYBLA FILNAM, FIL;

PARM1: CPYBLA MBRNAM,MBR;

 CMPBLA(B) READY, ’1’ / EQ(SKIP);

 CPYBWP CONTEXT, QTEMP@;

 CRTS USRSPC@, CRTSTMPLT@;

 SETSPPFP USRSPC,USRSPC@;

 CPYBLA READY, ’1’;

SKIP: CPYNV RECNUM, 1;

MORE: CALLX QCMDEXC, QCMDOVROL, *;

APIs 523

CPYNV OFFSET,1;

 CALLX CL06, CL06OL, *;

 SUBN(S) OFFSET, 1;

 ADDN(S) BINOFFSET, OFFSET;

 SETSPPO USRSPC, BINOFFSET;

 ADDN(S) RECNUM, 20;

 CALLX QCMDEXC, QCMDDLTOL, *;

 CMPNV(B) OFFSET, 1600 /EQ(MORE);

 CPYBLA PGMNAM, MBR;

 SETSPPO USRSPC, 0;

 CALLX QPRCRTPG, QPRCRTPGOL, *;

 RTX *;

 PEND;

Updated CL06 program

Following is the updated CL06 program:

/**/

/**/

/* */

/* program Name: CL06 */

/* */

/* programming Language: CL */

/* */

/* Description: Load a source physical file member into the */

/* *USRSPC addressed by &BUFFER. */

/* */

/* */

/* Header Files Included: None */

/* */

/* */

/**/

 PGM PARM(&BUFFER &OFFSET)

 DCLF FILE(MISRC)

 DCL VAR(&BUFFER) TYPE(*CHAR) LEN(1600)

 DCL VAR(&OFFSET) TYPE(*DEC) LEN(15 5)

LOOP: RCVF

 MONMSG MSGID(CPF0864 CPF4137) EXEC(GOTO CMDLBL(DONE))

 CHGVAR VAR(%SST(&BUFFER &OFFSET 80)) VALUE(&SRCDTA)

 CHGVAR VAR(&OFFSET) VALUE(&OFFSET + 80)

 IF COND(&OFFSET *GT 1600) THEN(GOTO CMDLBL(DONE))

 GOTO CMDLBL(LOOP)

DONE: ENDPGM

Create the MICRTPG2 program

This topic shows how to create the MICRTPG2 program and how to handle exceptions in the MICRTPG2

program.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

To create the MICRTPG2 program, use:

DLTOVR MISRC

CALL CL03 (MISRC MICRTPG2)

After the successful creation of MICRTPG2, you can create any new MI programs by entering the

following, where SourceFileName is an optional parameter:

CALL MICRTPG2 (MemberName SourceFileName)

Handle exceptions in the MICRTPG2 program

Some exceptions that are not being handled by the MICRTPG2 program might occur. For example, if you

used MICRTPG2 to compile MICRTPG2 two times in succession, the exception MCH1401 occurs. This

524 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

occurs because the most recent activation of the MICRTPG2 program has its own static storage and is not

aware of the earlier instances of MICRTPG2 creating the space named MICRTPG2 in QTEMP.

To correct this problem do the following:

1. Define an exception description that passes control to an internal exception handler:

 DCL EXCM DUPERROR EXCID(H’0E01’) INT(M1401) IMD;

2. Define the internal entry point:

 ENTRY M1401 INT;

3. Define related data elements for the M1401 exception:

 /* Exception description template for RETEXCPD */

 DCL DD EXCPDBUF CHAR(200) BDRY(16);

 DCL DD BYTPRV BIN(4) DEF(EXCPDBUF) POS(1) INIT(200);

 DCL DD BYTAVL BIN(4) DEF(EXCPDBUF) POS(5);

 DCL DD EXCPID CHAR(2) DEF(EXCPDBUF) POS(9);

 DCL DD CMPLEN BIN(2) DEF(EXCPDBUF) POS(11);

 DCL DD CMPDTA CHAR(32) DEF(EXCPDBUF) POS(13);

 DCL DD MSGKEY CHAR(4) DEF(EXCPDBUF) POS(45);

 DCL DD EXCDTA CHAR(50) DEF(EXCPDBUF) POS(49);

 DCL SYSPTR EXC_OBJ@ DEF(EXCDTA) POS(1);

 DCL DD EXC_OBJ CHAR(32) DEF(EXCDTA) POS(17);

 DCL PTR INV_PTR DEF(EXCPDBUF) POS(97);

 DCL DD * CHAR(87) DEF(EXCPDBUF) POS(113);

 DCL SPCPTR EXCPDBUF@ INIT(EXCPDBUF);

 /* Template for RTNEXCP */

 DCL DD RTNTMPLT CHAR(19) BDRY(16);

 DCL PTR INV_PTR2 DEF(RTNTMPLT) POS(1);

 DCL DD * CHAR(1) DEF(RTNTMPLT) POS(17) INIT(X’00’);

 DCL DD ACTION CHAR(2) DEF(RTNTMPLT) POS(18);

 DCL SPCPTR RTNTMPLT@ INIT(RTNTMPLT);

4. Retrieve the exception data associated with the MCH1401 exception:

 RETEXCPD EXCPDBUF@, X’01’;

5. Compare the exception data object identifier to the space identifier you create. If they are the same,

branch to label SAME:

 CMPBLA(B) EXC_OBJ, OBJID / EQ(SAME);

a. If the exception data object identifier and the space identifier are not the same, the program is

truly in an unexpected error condition and the exception description needs to be disabled:

 MODEXCPD DUPERROR, X’2000’, X’01’;

Retry the failing instruction. As the exception description is disabled, the exception is sent to the

caller of the program:

 CPYBLA ACTION, X’0000’;

 B E1401;

b. If the exception data object identifier and the space identifier are the same, the static storage must

have been effectively reset. The program reassigns USRSPC@ by using the returned system pointer

in the exception data and continues with the next instruction following the failed CRTS:

 SAME: CPYBWP USRSPC@, EXC_OBJ@;

 CPYBLA ACTION, X’0100’;

 E1401: CPYBWP INV_PTR2, INV_PTR;

 RTNEXCP RTNTMPLT@;

 PEND;

MI code example: MICRTPG2 complete program (enhanced)

In its consolidated state, this is the new MICRTPG2 program:

APIs 525

/**/

/**/

/* */

/* program Name: MICRTPG2 */

/* */

/* programming Language: MI */

/* */

/* Description: Enhanced version of MI program MICRTPG2, */

/* which provides for exception handling. */

/* */

/* */

/* Header Files Included: None */

/* */

/* */

/**/

/* Entry point and associated parameters */

ENTRY * (*ENTRY) EXT;

DCL SPCPTR FIL@ PARM;

DCL SPCPTR MBR@ PARM;

DCL OL *ENTRY (MBR@, FIL@) PARM EXT MIN(1);

DCL DD FIL CHAR(10) BAS(FIL@);

DCL DD MBR CHAR(10) BAS(MBR@);

DCL DD NUM_PARMS BIN(4);

/* Control field for first time initialization */

DCL DD READY CHAR(1) INIT("0");

/* Binary offset into the space */

DCL DD BINOFFSET BIN(4) AUTO INIT(0);

DCL SPCPTR BINOFFSET@ AUTO INIT(BINOFFSET);

/* Pointers for accessing the space */

DCL SPCPTR USRSPC;

DCL SYSPTR USRSPC@;

/* QCMDEXC and associated CL commands */

DCL SYSPTR QCMDEXC INIT("QCMDEXC", CTX("QSYS"), TYPE(PGM));

DCL DD CLOVRCMD CHAR(65);

 DCL DD OVRSTR CHAR(39) DEF(CLOVRCMD) POS(1)

 INIT("OVRDBF MISRC 1234567890 MBR(1234567890)");

 DCL DD OVRSTR2 CHAR(26) DEF(CLOVRCMD) POS(40)

 INIT(" POSITION(*RRN 1234567890)");

 DCL DD FILNAM CHAR(10) DEF(CLOVRCMD) POS(14);

 DCL DD MBRNAM CHAR(10) DEF(CLOVRCMD) POS(29);

 DCL DD RECNUM ZND(10,0) DEF(CLOVRCMD) POS(55);

DCL SPCPTR CLOVRCMD@ INIT(CLOVRCMD);

DCL DD CLOVRLNG PKD(15,5) INIT(P’65’);

DCL SPCPTR CLOVRLNG@ INIT(CLOVRLNG);

DCL OL QCMDOVROL (CLOVRCMD@, CLOVRLNG@) ARG;

DCL DD CLDLTCMD CHAR(12) INIT("DLTOVR MISRC");

DCL SPCPTR CLDLTCMD@ INIT(CLDLTCMD);

DCL DD CLDLTLNG PKD(15,5) INIT(P’12’);

DCL SPCPTR CLDLTLNG@ INIT(CLDLTLNG);

DCL OL QCMDDLTOL (CLDLTCMD@, CLDLTLNG@) ARG;

/* CL06 and associated parameters */

DCL SYSPTR CL06 INIT("CL06", TYPE(PGM));

DCL DD OFFSET PKD(15,5);

DCL SPCPTR OFFSET@ INIT(OFFSET);

DCL OL CL06OL (USRSPC, OFFSET@) ARG;

526 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* Access QTEMP address */

DCL SYSPTR QTEMP@ BASPCO POS(65);

/* Template for CRTS MI instruction */

DCL DD CRTSTMPLT CHAR(160) BDRY(16);

 DCL DD TMPLTSPEC CHAR(8) DEF(CRTSTMPLT) POS(1);

 DCL DD TMPLTSIZE BIN(4) DEF(TMPLTSPEC) POS(1) INIT(160);

 DCL DD TMPLTBA BIN(4) DEF(TMPLTSPEC) POS(5) INIT(0);

 DCL DD OBJID CHAR(32) DEF(CRTSTMPLT) POS(9);

 DCL DD SPCTYPE CHAR(1) DEF(OBJID) POS(1) INIT(X’19’);

 DCL DD SPCSUBTYPE CHAR(1) DEF(OBJID) POS(2) INIT(X’EF’);

 DCL DD SPCNAME CHAR(30) DEF(OBJID) POS(3) INIT("MICRTPG2");

 DCL DD OBJCRTOPT CHAR(4) DEF(CRTSTMPLT) POS(41) INIT(X’60020000’);

 DCL DD OBJRCVOPTS CHAR(4) DEF(CRTSTMPLT) POS(45);

 DCL DD * CHAR(2) DEF(OBJRCVOPTS) POS(1) INIT(X’0000’);

 DCL DD ASP CHAR(2) DEF(OBJRCVOPTS) POS(3) INIT(X’0000’);

 DCL DD SPCSIZ BIN(4) DEF(CRTSTMPLT) POS(49) INIT(1);

 DCL DD INTSPCVAL CHAR(1) DEF(CRTSTMPLT) POS(53) INIT(X’00’);

 DCL DD PERFCLASS CHAR(4) DEF(CRTSTMPLT) POS(54) INIT(X’00000000’);

 DCL DD * CHAR(1) DEF(CRTSTMPLT) POS(58) INIT(X’00’);

 DCL DD PUBAUT CHAR(2) DEF(CRTSTMPLT) POS(59) INIT(X’0000’);

 DCL DD TMPLTEXTN BIN(4) DEF(CRTSTMPLT) POS(61) INIT(96);

 DCL SYSPTR CONTEXT DEF(CRTSTMPLT) POS(65);

 DCL SYSPTR ACCESSGRP DEF(CRTSTMPLT) POS(81);

 DCL SYSPTR USRPRF DEF(CRTSTMPLT) POS(97);

 DCL DD MAXSPCSIZ BIN(4) DEF(CRTSTMPLT) POS(113) INIT(0);

 DCL DD DOMAIN CHAR(2) DEF(CRTSTMPLT) POS(117) INIT(X’0001’);

 DCL DD * CHAR(42) DEF(CRTSTMPLT) POS(119) INIT((42)X’00’);

DCL SPCPTR CRTSTMPLT@ INIT(CRTSTMPLT);

/* QPRCRTPG and associated parameters */

DCL DD PGM CHAR(20);

 DCL DD PGMNAM CHAR(10) DEF(PGM) POS(1);

 DCL DD PGMLIBNAM CHAR(10) DEF(PGM) POS(11) INIT("*CURLIB ");

DCL SPCPTR PGM@ INIT(PGM);

DCL DD PGMTXT CHAR(50) INIT(" ");

DCL SPCPTR PGMTXT@ INIT(PGMTXT);

DCL DD PGMSRCF CHAR(20) INIT("*NONE");

DCL SPCPTR PGMSRCF@ INIT(PGMSRCF);

DCL DD PGMSRCM CHAR(10) INIT(" ");

DCL SPCPTR PGMSRCM@ INIT(PGMSRCM);

DCL DD PGMSRCCHG CHAR(13) INIT(" ");

DCL SPCPTR PGMSRCCHG@ INIT(PGMSRCCHG);

DCL DD PRTFNAM CHAR(20) INIT("QSYSPRT *LIBL ");

DCL SPCPTR PRTFNAM@ INIT(PRTFNAM);

DCL DD PRTSTRPAG BIN(4) INIT(1);

DCL SPCPTR PRTSTRPAG@ INIT(PRTSTRPAG);

DCL DD PGMPUBAUT CHAR(10) INIT("*ALL ");

DCL SPCPTR PGMPUBAUT@ INIT(PGMPUBAUT);

DCL DD PGMOPTS(16) CHAR(11) INIT((1)"*LIST", *(2)(1)"*REPLACE",

 *(3)(1)"*XREF");

DCL SPCPTR PGMOPTS@ INIT(PGMOPTS);

DCL DD NUMOPTS BIN(4) INIT(3);

DCL SPCPTR NUMOPTS@ INIT(NUMOPTS);

DCL OL QPRCRTPGOL (USRSPC, BINOFFSET@, PGM@, PGMTXT@, PGMSRCF@,

 PGMSRCM@, PGMSRCCHG@, PRTFNAM@, PRTSTRPAG@,

 PGMPUBAUT@, PGMOPTS@, NUMOPTS@) ARG;

DCL SYSPTR QPRCRTPG INIT("QPRCRTPG", CTX("QSYS"), TYPE(PGM));

/* Exception Description Monitor for MCH1401 */

DCL EXCM DUPERROR EXCID(H’0E01’) INT(M1401) IMD;

/* Start of instruction stream */

APIs 527

STPLLEN NUM_PARMS;

 CMPNV(B) NUM_PARMS, 2 / EQ(PARM2);

 CPYBLAP FILNAM, ’MISRC’, ’ ’;

 B PARM1;

PARM2: CPYBLA FILNAM, FIL;

PARM1: CPYBLA MBRNAM,MBR;

 CMPBLA(B) READY, ’1’ / EQ(SKIP);

 CPYBWP CONTEXT, QTEMP@;

 CRTS USRSPC@, CRTSTMPLT@;

 SETSPPFP USRSPC,USRSPC@;

 CPYBLA READY, ’1’;

SKIP: CPYNV RECNUM, 1;

MORE: CALLX QCMDEXC, QCMDOVROL, *;

 CPYNV OFFSET,1;

 CALLX CL06, CL06OL, *;

 SUBN(S) OFFSET, 1;

 ADDN(S) BINOFFSET, OFFSET;

 SETSPPO USRSPC, BINOFFSET;

 ADDN(S) RECNUM, 20;

 CALLX QCMDEXC, QCMDDLTOL, *;

 CMPNV(B) OFFSET, 1600 /EQ(MORE);

 CPYBLA PGMNAM, MBR;

 SETSPPO USRSPC, 0;

 CALLX QPRCRTPG, QPRCRTPGOL, *;

 RTX *;

/* Entry point for internal exception handler */

ENTRY M1401 INT;

/* Exception description template for RETEXCPD */

DCL DD EXCPDBUF CHAR(200) BDRY(16);

 DCL DD BYTPRV BIN(4) DEF(EXCPDBUF) POS(1) INIT(200);

 DCL DD BYTAVL BIN(4) DEF(EXCPDBUF) POS(5);

 DCL DD EXCPID CHAR(2) DEF(EXCPDBUF) POS(9);

 DCL DD CMPLEN BIN(2) DEF(EXCPDBUF) POS(11);

 DCL DD CMPDTA CHAR(32) DEF(EXCPDBUF) POS(13);

 DCL DD MSGKEY CHAR(4) DEF(EXCPDBUF) POS(45);

 DCL DD EXCDTA CHAR(50) DEF(EXCPDBUF) POS(49);

 DCL SYSPTR EXC_OBJ@ DEF(EXCDTA) POS(1);

 DCL DD EXC_OBJ CHAR(32) DEF(EXCDTA) POS(17);

 DCL PTR INV_PTR DEF(EXCPDBUF) POS(97);

 DCL DD * CHAR(87) DCF(EXCPDBUF) POS(113);

DCL SPCPTR EXCPDBUF@ INIT(EXCPDBUF);

/* Template for RTNEXCP */

DCL DD RTNTMPLT CHAR(19) BDRY(16);

 DCL PTR INV_PTR2 DEF(RTNTMPLT) POS(1);

 DCL DD * CHAR(1) DEF(RTNTMPLT) POS(17) INIT(X’00’);

 DCL DD ACTION CHAR(2) DEF(RTNTMPLT) POS(18);

DCL SPCPTR RTNTMPLT@ INIT(RTNTMPLT);

/* Start of internal handler */

 RETEXCPD EXCPDBUF@, X’01’;

 CMPBLA(B) EXC_OBJ, OBJID / EQ(SAME);

 MODEXCPD DUPERROR, X’2000’, X’01’;

 CPYBLA ACTION, X’0000’;

 B E1401;

SAME: CPYBWP USRSPC@, EXC_OBJ@;

 CPYBLA ACTION, X’0100’;

E1401: CPYBWP INV_PTR2, INV_PTR;

 RTNEXCP RTNTMPLT@;

 PEND;

528 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Related reference

 “Compile an MI program” on page 504

To compile an MI program, use the Create Program (QPRCRTPG) API.

Examples: Common MI programming techniques

This example MI program demonstrates some additional programming techniques.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.
/**/

/**/

/* */

/* Program Name: MISC1 */

/* */

/* Programming Language: MI */

/* */

/* Description: This program materializes the objects found */

/* within the QTEMP library (context). For each */

/* object found, a message is sent to the */

/* interactive user message queue showing the */

/* name of the object and the object’s type and */

/* subtype. */

/* */

/* Several new MI instructions are used by this */

/* program: */

/* */

/* 1. Materialize Context (MATCTX) */

/* 2. Modify Automatic Storage (MODASA) */

/* 3. Divide (DIV) */

/* 4. Convert Hex to Character (CVTHC) */

/* 5. Override Program Attributes (OVRPGATR) */

/* */

/* */

/* Header Files Included: None */

/* */

/* */

/**/

/* Entry point */

ENTRY * EXT;

/* Declare layout of Process Communications Object (PCO) */

/* The PCO is a control area that is unique to each job on the */

/* system. Within the PCO, there are two data elements that can */

/* be used. The first is a space pointer to the system entry */

/* point table (SEPT), the second is the address of the QTEMP */

/* library. The use of any other data element in the PCO is NOT */

/* supported. */

DCL DD PCO CHAR(80) BASPCO;

 DCL SPCPTR SEPT@ DEF(PCO) POS(1);

 DCL SYSPTR QTEMP@ DEF(PCO) POS(65);

/* The SEPT is an array of system pointers that address IBM */

/* programs in QSYS. Within this array of pointers, some of the */

/* offsets represent fixed (upward compatible) assignments. All */

/* i5/OS APIs, for instance, are fixed at certain offsets within */

/* the SEPT and you can call these APIs directly via the SEPT. */

/* Calling APIs in this way avoids having to resolve to the API */

/* (that is, performance is improved) and prevents someone from */

/* placing their version of the API earlier in the library list */

/* than the IBM-supplied API (that is, avoids counterfeits). */

/* All APIs, and their offsets, can be found in the source member */

/* QLIEPTI of file H in the optionally installed QSYSINC library. */

APIs 529

/* You should only use the SEPT for those programs identified in */

/* member QLIEPTI. The use of any other SEPT offsets is NOT */

/* supported. */

/* Because the offset values in member QLIEPTI are oriented to the */

/* C language, they are assuming a base of 0. Because MI arrays */

/* use a default base of 1, we will declare the SEPT array with */

/* an explicit base of 0. Because the array can grow over time */

/* (and we don’t necessarily want to have to change the upper */

/* bound every release), we’ll just define the array as having 2 */

/* elements and use the OVRPGATR instruction later in the program */

/* to instruct the translator to ignore the array bounds when */

/* referring to the array. For example, later we will use */

/* SEPT(4267) to call the Send Nonprogram Message (QMHSNDM) API. */

DCL SYSPTR SEPT(0:1) BAS(SEPT@); /* use Base 0 to match QLIEPTI */

/* Declare template for Materialize Context (MATCTX) */

DCL DD MATCTXOPTS CHAR(44);

 DCL DD MATCTXCTL CHAR(2) DEF(MATCTXOPTS) POS(1) INIT(X’0500’);

 DCL DD MATCTXSELCTL CHAR(42) DEF(MATCTXOPTS) POS(3);

/* Declare Small Receiver for initial MATCTX */

DCL DD S_RECEIVER CHAR(8) BDRY(16);

 DCL DD S_BYTPRV BIN(4) DEF(S_RECEIVER) POS(1) INIT(8);

 DCL DD S_BYTAVL BIN(4) DEF(S_RECEIVER) POS(5);

DCL SPCPTR S_RECEIVER@ INIT(S_RECEIVER);

/* Declare Large Receiver Layout for second MATCTX */

DCL DD L_RECEIVER CHAR(129) BAS(L_RECEIVER@);

 DCL DD L_BYTPRV BIN(4) DEF(L_RECEIVER) POS(1);

 DCL DD L_BYTAVL BIN(4) DEF(L_RECEIVER) POS(5);

 DCL DD L_CONTEXT CHAR(32) DEF(L_RECEIVER) POS(9);

 DCL DD L_OBJ_TYPE CHAR(1) DEF(L_CONTEXT) POS(1);

 DCL DD L_OBJ_STYPE CHAR(1) DEF(L_CONTEXT) POS(2);

 DCL DD L_OBJ_NAME CHAR(30) DEF(L_CONTEXT) POS(3);

 DCL DD L_CTX_OPTS CHAR(4) DEF(L_RECEIVER) POS(41);

 DCL DD L_RCV_OPTS CHAR(4) DEF(L_RECEIVER) POS(45);

 DCL DD L_SPC_SIZ BIN(4) DEF(L_RECEIVER) POS(49);

 DCL DD L_SPC_IVAL CHAR(1) DEF(L_RECEIVER) POS(53);

 DCL DD L_PERF_CLS CHAR(4) DEF(L_RECEIVER) POS(54);

 DCL DD * CHAR(7) DEF(L_RECEIVER) POS(58);

 DCL DD * CHAR(16) DEF(L_RECEIVER) POS(65);

 DCL SYSPTR L_ACC_GROUP;

 DCL DD L_EXT_ATTR CHAR(1) DEF(L_RECEIVER) POS(81);

 DCL DD * CHAR(7) DEF(L_RECEIVER) POS(82);

 DCL DD L_TIMESTAMP CHAR(8) DEF(L_RECEIVER) POS(89);

 DCL DD L_ENTRY CHAR(32) DEF(L_RECEIVER) POS(97);

/* Individual object entry layout */

DCL DD OBJ_ENTRY CHAR(32) BAS(OBJ_ENTRY@);

 DCL DD OBJ_INFO_X CHAR(2) DEF(OBJ_ENTRY) POS(1);

 DCL DD OBJ_TYPE_X CHAR(1) DEF(OBJ_INFO_X) POS(1);

 DCL DD OBJ_STYPE_X CHAR(1) DEF(OBJ_INFO_X) POS(2);

 DCL DD OBJ_NAME CHAR(30) DEF(OBJ_ENTRY) POS(3);

/* Define basing pointers: */

DCL SPCPTR L_RECEIVER@;

DCL SPCPTR OBJ_ENTRY@;

/* Define various working variables */

530 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

DCL DD SIZE BIN(4); /* number of objects materialized */

DCL DD NUM_DONE BIN(4) /* number of objects processed */

 AUTO INIT(0);

/* Define needed parameters for QMHSNDM API */

DCL DD MSG_ID CHAR (7) INIT(" ");

DCL SPCPTR MSG_ID@ INIT(MSG_ID);

DCL DD MSG_FILE CHAR(20) INIT(" ");

DCL SPCPTR MSG_FILE@ INIT(MSG_FILE);

DCL DD MSG_TEXT CHAR(57);

 DCL DD * CHAR(8) DEF(MSG_TEXT) POS(1)

 INIT("OBJECT: ");

 DCL DD OBJ_NAME_T CHAR(30) DEF(MSG_TEXT) POS(9);

 DCL DD * CHAR(15) DEF(MSG_TEXT) POS(39)

 INIT(" TYPE/SUBTYPE: ");

 DCL DD OBJ_INFO_C CHAR(4) DEF(MSG_TEXT) POS(54);

 DCL DD OBJ_TYPE_C CHAR(2) DEF(OBJ_INFO_C) POS(1);

 DCL DD OBJ_STYPE_C CHAR(2) DEF(OBJ_INFO_C) POS(3);

DCL SPCPTR MSG_TEXT@ INIT(MSG_TEXT);

DCL DD MSG_SIZE BIN(4) INIT(57);

DCL SPCPTR MSG_SIZE@ INIT(MSG_SIZE);

DCL DD MSG_TYPE CHAR(10) INIT("*INFO ");

DCL SPCPTR MSG_TYPE@ INIT(MSG_TYPE);

DCL DD MSG_QS CHAR(20) INIT("*REQUESTER ");

DCL SPCPTR MSG_QS@ INIT(MSG_QS);

DCL DD MSG_QSN BIN(4) INIT(1);

DCL SPCPTR MSG_QSN@ INIT(MSG_QSN);

DCL DD REPLY_Q CHAR(20) INIT(" ");

DCL SPCPTR REPLY_Q@ INIT(REPLY_Q);

DCL DD MSG_KEY CHAR(4);

DCL SPCPTR MSG_KEY@ INIT(MSG_KEY);

DCL DD ERR_COD BIN(4) INIT(0);

DCL SPCPTR ERR_COD@ INIT(ERR_COD);

DCL OL QMHSNDMOL (MSG_ID@, MSG_FILE@, MSG_TEXT@, MSG_SIZE@,

 MSG_TYPE@, MSG_QS@, MSG_QSN@, REPLY_Q@,

 MSG_KEY@, ERR_COD@) ARG;

/* Start the instruction stream */

/* Materialize the amount of storage needed to store object info */

 MATCTX S_RECEIVER@, QTEMP@, MATCTXOPTS;

/* If no objects are in the library, then exit */

 CMPNV(B) S_BYTAVL, 96 / EQ(DONE);

/* Allocate the necessary storage (we could also have used CRTS

 to allocate the storage and a SPCPTR to the space for the

 large receiver variable) */

 MODASA L_RECEIVER@, S_BYTAVL;

/* Set the bytes provided field to indicate the allocated storage */

 CPYNV L_BYTPRV, S_BYTAVL;

/* Materialize the objects within the library */

 MATCTX L_RECEIVER@, QTEMP@, MATCTXOPTS;

/* Calculate how many objects were returned: */

/* 1. Find the lower of bytes provided and bytes available */

/* (L_BYTPRV and L_BYTAVL) as the number of objects could have */

/* changed since the first materialize */

/* 2. Subtract the size of the fixed MATCTX header (96) */

/* 3. Divide the remainder by the size of each entry returned */

APIs 531

CMPNV(B) L_BYTPRV, L_BYTAVL / HI(ITS_AVL);

 CPYNV SIZE, L_BYTPRV;

 B CONTINUE;

ITS_AVL: CPYNV SIZE, L_BYTAVL;

CONTINUE: SUBN(SB) SIZE, 96 / ZER(DONE);

 DIV SIZE, SIZE, 32;

/* Address the first object returned */

 SETSPP OBJ_ENTRY@, L_ENTRY;

/* Loop through all materialized entries */

MORE:

/* Convert the hex object type and subtype to character form */

 CVTHC OBJ_INFO_C, OBJ_INFO_X;

/* Copy the object name to the message variable */

 CPYBLA OBJ_NAME_T, OBJ_NAME;

/* Unconstrain the array bounds (at compile time) */

 OVRPGATR 1,3;

/* Send a message to caller’s msg queue containing the object info */

 CALLX SEPT(4267), QMHSNDMOL, *;

/* resume normal array constraint */

 OVRPGATR 1,4;

/* and move on to the next entry */

 ADDN(S) NUM_DONE, 1;

 ADDSPP OBJ_ENTRY@, OBJ_ENTRY@, 32;

 CMPNV(B) NUM_DONE, SIZE / LO(MORE);

/* When all entries are processed, end the program. */

/* */

/* Note that this program may not actually display all objects */

/* in QTEMP. If L_BYTAVL is greater than L_BYTPRV, additional */

/* objects were inserted into QTEMP between the time of the */

/* "small" MATCTX and the "large" MATCTX. The processing of these */

/* additional objects is not addressed in this program and is */

/* the responsibility of the user of this program. */

/* */

DONE: RTX *;

 PEND;

Program storage

Two steps are needed to run a program: program activation and program invocation.

Program activation is the process of allocating and initializing static storage for the program. Program

invocation is the process of allocating and initializing automatic storage.

532 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Program activation and static storage

Program activation can be done explicitly through the Activate Program (ACTPG) instruction or

implicitly by using a call external (CALLX) instruction when the called program has not been previously

activated. Program activation typically occurs only once within a job or process. Program activation is not

reset by an RTX instruction within the called program (the program is still considered to be in an

activated state). This means that all static storage on subsequent calls (CALLXs) to the program are found

in a last-used state, not in a reinitialized state. If a programmer wants to reinitialize the static storage

associated with a program activation, this can be accomplished through the deactivate program

(DEACTPG) instruction so that the next call (CALLX or ACTPG) causes a new activation of the program.

Program invocation and automatic storage

Program invocation, on the other hand, occurs every time a program is called with a CALLX instruction.

Automatic storage is reinitialized if a discrete INIT value was specified on the declare (DCL) statement.

(If the INIT was allowed to be the default, then whether or not initialization occurs for the field is

determined by an option of the QPRCRTPG API when the program was created.) If you have not already

done so, review all of the option template values available on the QPRCRTPG API before developing

your MI applications.

 Related tasks

 “Enhanced version of the MICRTPG program” on page 517

A new version of MICRTPG (named MICRTPG2) incorporateS the functions of the CL03 program and

the CL05 program.

Common API programming errors

Provides information about common programming errors, as well as examples of correct and incorrect

coding.

This topic contains information about common programming errors encountered when using APIs within

application programs. The topic provides two program examples for each common error. The first

program example is incorrectly coded and is followed by the correctly coded example. If you encounter

errors or problems while working with APIs, these examples may provide ideas or solutions.

Note: Do not assume that an API will do things other than what the API documentation mentions. If the

API documentation does not say specifically that it is allowed, it probably is not.

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

APIs 533

|
|
|
|
|

|
|

|

|
|

|

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

Use the error code parameter

The examples in this topic present a program used for creating a user space.

The error code parameter provides a way for you to determine whether the API encountered any errors.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Example of incorrect coding: Use the error code parameter

The common error shown in the following example is the use of the error code structure to indicate to

the API not to send exception messages for errors found. Additionally, the example does not examine the

error code structure to determine if the API call was successful or not. To demonstrate the improper use

of the error code structure, an incorrect value is used on the replace parameter of the QUSCRTUS API.

The replace parameter is a required parameter. The coded error (*XXXXXXX) is shown at location (1) in

the incorrect and also at location (2) in the correct coding.

Both the incorrect (3) and correct coding (4) show the program monitoring for any error from the call to

the API. However, the program does not examine the bytes available field after calling the QUSCRTUS

API.

Because of the error on the replace parameter, the requested user space is not created. The calling

program, however, is not aware of this as shown at (5).

 *

 *Program Name: PGM1

 *

 *Program Language: RPG

 *

 *Description: This sample program illustrates the incorrect

 * way of using the error code parameter.

 *

 *Header Files Included: QUSEC - Error Code Parameter

 *

 *APIs Used: QUSCRTUS - Create User Space

 *

 * BRING IN THE ERROR STRUCTURE FROM QSYSINC

I/COPY QSYSINC/QRPGSRC,QUSEC

 **

ISPCNAM DS

I I ’SPCNAME ’ 1 10 SPC

I I ’PAM ’ 11 20 LIB

 ** OTHER ASSORTED VARIABLES

I DS

I I 2000 B 1 40SIZ

I B 5 80START

I I X’00’ 9 9 INTVAL

 *

 * Initialize the bytes provided field (QUSBNDB) of the error code

 * structure. Languages such as RPG and CL tend to initialize the bytes

 * provided field to blanks, which when passed to an API is viewed as a

 * very large (and incorrect) binary value. If you receive CPF3CF1 when

 * calling an API, the bytes provided field should be the first field

 * you examine as part of problem determination.

C Z-ADD16 QUSBNB (3)

 *

 * CREATE THE SPACE TO HOLD THE DATA

534 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

|
|
|

C CALL ’QUSCRTUS’

C PARM SPCNAM

C PARM ’EXT_ATTR’EXTATR 10

C PARM SIZ

C PARM INTVAL

C PARM ’*ALL ’PUBAUT 10

C PARM ’NO TEXT ’TXTDSC 50

C PARM ’*XXXXXXX’REPLAC 10 (1)

C PARM QUSBN

 ** Program does not check the error code parameter (5)

 **

C SETON LR

Example: Use the error code parameter of correct coding

You can add code to help you discover what errors may be in a program. In the following example

program, code has been added to monitor error information passed back in the error code parameter

(QUSBN). The code at (6) has been added to check the error code parameter for any messages and to

display the exception identifier to the user if any errors are found. The incorrectly coded program does

no checking for the error code parameter, as shown at (5).

 *

 *Program Name: PGM2

 *

 *Program Language: RPG

 *

 *Description: This sample program illustrates the correct

 * way of using the error code parameter.

 *

 *Header Files Included: QUSEC - Error Code Parameter

 *

 *APIs Used: QUSCRTUS - Create User Space

 *

 * BRING IN THE ERROR STRUCTURE FROM QSYSINC

I/COPY QSYSINC/QRPGSRC,QUSEC

 **

ISPCNAM DS

I I ’SPCNAME ’ 1 10 SPC

I I ’QTEMP ’ 11 20 LIB

 ** OTHER ASSORTED VARIABLES

I DS

I I 2000 B 1 40SIZ

I B 5 80START

I I X’00’ 9 9 INTVAL

 *

C Z-ADD16 QUSBNB (4)

 *

 * CREATE THE SPACE TO HOLD THE DATA

C CALL ’QUSCRTUS’

C PARM SPCNAM

C PARM ’EXT_ATTR’EXTATR 10

C PARM SIZ

C PARM INTVAL

C PARM ’*ALL ’PUBAUT 10

C PARM ’NO TEXT ’TXTDSC 50

C PARM ’*XXXXXXX’REPLAC 10 (2)

C PARM QUSBN

 **

 * DISPLAY EXCEPTION IDENTIFIER TO THE USER

C QUSBNC IFGT *ZEROS (6)

C EXSR DSPERR

C END

 *

C SETON LR

APIs 535

*

C DSPERR BEGSR

C DSPLY QUSBND

C ENDSR

Define data structures

When a data structure is defined for use with an API, the structure must be built to receive what the API

returns.

The use of IBM-supplied data structures eliminates having to create your own data structures. For

information on IBM-supplied data structures that are contained in library QSYSINC, see Include files and

the QSYSINC Library.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Example of incorrect coding: Define a data structure

When the program that defines a data structure is run, it does the following:

v Creates a user space

v Retrieves a list of active jobs

v Displays the first part of a job name

v Deletes the user space that held the data

In this example, the data structure to be used with the QUSLJOB API has been defined incorrectly. The

incorrectly defined variables are JNAME and USRNAM. The JNAME length is defined as 1 through 12

and the USRNAM length as 13 through 20. This is shown at (1). The data displayed (JNAME variable)

will be incorrect. The correct coding is shown at (2).

 *

 *Program Name: PGM1

 *

 *Program Language: RPG

 *

 *Description: This sample program illustrates the incorrect

 * way of defining data structures.

 *

 *Header Files Included: QUSEC - Error Code Parameter

 * QUSGEN - User Space Format for Generic Header

 *

 *APIs Used: QUSCRTUS - Create User Space

 * QUSLJOB - List Job

 * QUSRTVUS - Retrieve User Space

 * QUSDLTUS - Delete User Space

 * THIS PROGRAM WILL CREATE THE NECESSARY SPACE AND THEN CALL

 * THE QUSLJOB API TO GET A LIST OF ALL ACTIVE JOBS ON THE SYSTEM.

 * THE FIRST JOB NAME/USER WILL BE DISPLAYED TO THE USER.

 *

 * BRING IN THE USER SPACE GENERIC HEADER

I/COPY QSYSINC/QRPGSRC,QUSGEN

 * BRING IN THE ERROR STRUCTURE FROM QSYSINC

I/COPY QSYSINC/QRPGSRC,QUSEC

 ** JOB NAME STRUCTURE FOR CALLING QUSLJOB

IJOBNAM DS

I I ’*ALL ’ 1 10 JOB

I I ’*ALL ’ 11 20 USER

I I ’*ALL ’ 21 26 JOBNUM

 ** JOBL0100 FORMAT RETURNED FROM QUSLJOB API

 ** INCORRECTLY CODE THE JNAME/USRNAM LENGTHS

IRECVR DS

536 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

I 1 12 JNAME (1)

I 13 20 USRNAM (1)

I 21 26 JOBNBR

I 27 42 JOBID

I 43 52 JSTAT

I 53 53 JTYPE

I 54 54 JSUBT

I 55 56 RESRV

 **

ISPCNAM DS

I I ’SPCNAME ’ 1 10 SPC

I I ’QTEMP ’ 11 20 LIB

** OTHER ASSORTED VARIABLES

I DS

I I 2000 B 1 40SIZ

I I B 5 80START

I I B 9 120LENDTA

I I X’00’ 13 13INTVAL

 *

 * SET UP TO ACCEPT EXCEPTIONS

C Z-ADD*ZEROS QUSBNB

 *

 * CREATE THE SPACE TO HOLD THE DATA

C CALL ’QUSCRTUS’

C PARM SPCNAM

C PARM ’EXT_ATTR’EXTATR 10

C PARM SIZ

C PARM INTVAL

C PARM ’*ALL ’PUBAUT 10

C PARM ’TEXT DSC’TXTDSC 50

C PARM ’*YES ’REPLAC 10

C PARM QUSBN

 *

 * CALL THE API TO LIST THE ACTIVE JOBS

C CALL ’QUSLJOB’

C PARM SPCNAM

C PARM ’JOBL0100’FORMAT 8

C PARM JOBNAM

C PARM ’*ACTIVE ’STAT 10

C PARM QUSBN

 *

 * RETRIEVE THE OFFSET OF THE FIRST LIST ENTRY FROM THE SPACE

C Z-ADD1 START

C Z-ADD140 LENDTA

C CALL ’QUSRTVUS’

C PARM SPCNAM

C PARM START

C PARM LENDTA

C PARM QUSBP

C PARM QUSBN

 *

 * RETRIEVE THE FIRST LIST ENTRY

C QUSBPQ ADD 1 START

C Z-ADD56 LENDTA

C CALL ’QUSRTVUS’

C PARM SPCNAM

C PARM START

C PARM LENDTA

C PARM RECVR

C PARM QUSBN

 *

 * DISPLAY THE JOB NAME

C DSPLY JNAME

 * When displayed, JNAME *

 * will look something like *

 * ’QCPF QS’ *

APIs 537

 * DELETE THE SPACE THAT HELD THE DATA

C CALL ’QUSDLTUS’

C PARM SPCNAM

C PARM QUSBN

 **

C SETON LR

Example: Define a data structure of correct coding

The following program uses a data structure that is supplied from the QSYSINC library. When you use

this data structure, you can prevent errors in data structure creation from happening. If the data

structures change from release to release, updates to programs do not have to be done. The application

program would have to be updated only if a new field was added to the data structure and you wanted to

use the field. The copying of the QSYSINC data structure is shown at (2).

 *

 *

 *

 *Program Name: PGM2

 *

 *Program Language: RPG

 *

 *Description: This sample program illustrates the correct

 * way of defining data structures.

 *

 *Header Files Included: QUSEC - Error Code Parameter

 * QUSGEN - User Space Format for Generic Header

 * QUSLJOB - List Job API

 *

 *APIs Used: QUSCRTUS - Create User Space

 * QUSLJOB - List Job

 * QUSRTVUS - Retrieve User Space

 * QUSDLTUS - Delete User Space

 *

 *

 * THIS PROGRAM WILL CREATE THE NECESSARY SPACE AND THEN CALL

 * THE QUSLJOB API TO GET A LIST OF ALL ACTIVE JOBS ON THE SYSTEM.

 * THE FIRST JOB NAME/USER WILL BE DISPLAYED TO THE USER.

 *

I/COPY QSYSINC/QRPGSRC,QUSGEN

I/COPY QSYSINC/QRPGSRC,QUSEC

I/COPY QSYSINC/QRPGSRC,QUSLJOB (2)

 ** JOB NAME STRUCTURE FOR CALLING QUSLJOB

IJOBNAM DS

I I ’*ALL ’ 1 10 JOB

I I ’*ALL ’ 11 20 USER

I I ’*ALL’ 21 26 JOBNUM

 ** JOBL0100 FORMAT RETURNED FROM QUSLJOB API

 **

 **

ISPCNAM DS

I I ’SPCNAME ’ 1 10 SPC

I I ’QTEMP ’ 11 20 LIB

 ** OTHER ASSORTED VARIABLES

I DS

I I 2000 B 1 40SIZ

I I B 5 80START

I I B 9 120LENDTA

I I X’00’ 13 13 INTVAL

 *

 * SET UP TO ACCEPT EXCEPTIONS

C Z-ADD*ZEROS QUSBNB

 *

 * CREATE THE SPACE TO HOLD THE DATA

538 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C CALL ’QUSCRTUS’

C PARM SPCNAM

C PARM ’EXT_ATTR’EXTATR 10

C PARM SIZ

C PARM INTVAL

C PARM ’*ALL ’PUBAUT 10

C PARM ’TEXT DSC’TXTDSC 50

C PARM ’*YES ’REPLAC 10

C PARM QUSBN

 *

 * CALL THE API TO LIST THE ACTIVE JOBS

C CALL ’QUSLJOB’

C PARM SPCNAM

C PARM ’JOBL0100’FORMAT 8

C PARM JOBNAM

C PARM ’*ACTIVE ’STAT 10

C PARM QUSBN

 *

 * RETRIEVE THE OFFSET OF THE FIRST LIST ENTRY FROM THE SPACE

C Z-ADD1 START

C Z-ADD140 LENDTA

C CALL ’QUSRTVUS’

C PARM SPCNAM

C PARM START

C PARM LENDTA

C PARM QUSBP

C PARM QUSBN

 *

 * RETRIEVE THE FIRST LIST ENTRY

C QUSBPQ ADD 1 START

C Z-ADD56 LENDTA

C CALL ’QUSRTVUS’

C PARM SPCNAM

C PARM START

C PARM LENDTA

C PARM QUSDD

C PARM QUSBN

 *

 * DISPLAY THE JOB NAME

C DSPLY QUSDDB

 * Correct job name *

 * will now show as *

 * ’QCPF ’ *

 * DELETE THE SPACE THAT HELD THE DATA

C CALL ’QUSDLTUS’

C PARM SPCNAM

C PARM QUSBN

 **

C SETON LR

 Related concepts

 “Data types” on page 69

APIs support character data and binary data.

Examples: Define receiver variables

When defining receiver variables, the most common error is to create them too small for the amount of

data that they are to receive. Both of these example programs are coded in RPG and, when run, list all

active jobs on the system.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

APIs 539

Example of incorrect coding: Defining receiver variables

The following example program may fail because the receiver variable has been defined as 50 bytes, as

shown at (1), but 60 bytes are being requested to be passed back from the API, as shown at (2) in the

incorrect program and at (3) in the correct program. The correct coding is shown at (4).

When this happens, other variables are overwritten with unintended data. This causes the other variables

to be incorrect. For example, the first 10 characters of QUSBN may be written over with these extra

characters. On the call to the next API, the error code parameter may appear to contain meaningless

characters that would cause the next call to an API to fail.

 *

 *Program Name: PGM1

 *

 *Program Language: RPG

 *

 *Description: This sample program illustrates the incorrect

 * way of defining receiver variables.

 *

 *Header Files Included: QUSEC - Error Code Parameter

 * QUSLJOB - List Job API

 * QUSGEN - User Space Format for Generic Header

 *

 *APIs Used: QUSCRTUS - Create User Space

 * QUSLJOB - List Job

 * QUSRTVUS - Retrieve User Space

 * QUSDLTUS - Delete User Space

 * THIS PROGRAM WILL CREATE THE NECESSARY SPACE AND THEN CALL

 * THE QUSLJOB API TO GET A LIST OF ALL ACTIVE JOBS ON THE SYSTEM.

 * BRING IN THE GENERIC USER SPACE HEADER FROM QSYSINC

I/COPY QSYSINC/QRPGSRC,QUSGEN

 *

 * BRING IN THE ERROR STRUCTURE FROM QSYSINC

I/COPY QSYSINC/QRPGSRC,QUSEC

 *

** JOBL0100 FORMAT RETURNED FROM QUSLJOB API

I/COPY QSYSINC/QRPGSRC,QUSLJOB

 *

 ** JOB NAME STRUCTURE FOR CALLING QUSLJOB

IJOBNAM DS

I I ’*ALL ’ 1 10 JOB

I I ’*ALL ’ 11 20 USER

I I ’*ALL’ 21 26 JOBNUM

ISPCNAM DS

I I ’SPCNAME ’ 1 10 SPC

I I ’QTEMP ’ 11 20 LIB

 ** OTHER ASSORTED VARIABLES

I DS

I I 2000 B 1 40SIZ

I B 5 80START

I B 9 120LENDTA

I I X’00’ 13 13 INTVAL

 *

 * SET UP TO ACCEPT EXCEPTIONS

C Z-ADD*ZEROS QUSBNB

 *

 * CREATE THE SPACE TO HOLD THE DATA

C CALL ’QUSCRTUS’

C PARM SPCNAM

C PARM ’EXT_ATTR’EXTATR 10

C PARM SIZ

C PARM INTVAL

C PARM ’*ALL ’PUBAUT 10

C PARM ’TEXT DSC’TXTDSC 50

540 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C PARM ’*YES ’REPLAC 10

C PARM QUSBN

 *

 * CALL THE API TO LIST THE ACTIVE JOBS

C CALL ’QUSLJOB’

C PARM SPCNAM

C PARM ’JOBL0100’FORMAT 8

C PARM JOBNAM

C PARM ’*ACTIVE ’STAT 10

C PARM QUSBN

 *

 * RETRIEVE THE OFFSET OF THE FIRST LIST ENTRY FROM THE SPACE

C Z-ADD1 START

C Z-ADD140 LENDTA

C CALL ’QUSRTVUS’

C PARM SPCNAM

C PARM START

C PARM LENDTA

C PARM QUSBP

C PARM QUSBN

 *

 * RETRIEVE THE LIST ENTRIES

C QUSBPQ ADD 1 START

 *

C Z-ADD60 LENDTA (2)

 *

C Z-ADD1 X 90

C X DOWLEQUSBPS

C CALL ’QUSRTVUS’

C PARM SPCNAM

C PARM START

C PARM LENDTA

C PARM RECVR 50 (1)

C PARM QUSBN

 *

C MOVEL RECVR QUSDD

 *

C ADD QUSBPT START

C ADD 1 X

C END

 * DELETE THE SPACE THAT HELD THE DATA

C CALL ’QUSDLTUS’

C PARM SPCNAM

C PARM QUSBN

 *

C SETON LR

Example: Defining receiver variables of correct coding

The following example program defines a larger receiver variable: 60 bytes. This is shown at position (4).

This increase in the receiver variable allows up to 60 bytes of data to be received.

 *

 *Program Name: PGM2

 *

 *Program Language: RPG

 *

 *Description: This sample program illustrates the correct

 * way of defining receiver variables.

 *

 *Header Files Included: QUSEC - Error Code Parameter

 * QUSLJOB - List Job API

 * QUSGEN - User Space Format for Generic Header

 *

 *APIs Used: QUSCRTUS - Create User Space

 * QUSLJOB - List Job

APIs 541

* QUSRTVUS - Retrieve User Space

 * QUSDLTUS - Delete User Space

 *

 * BRING IN THE ERROR STRUCTURE FROM QSYSINC

I/COPY QSYSINC/QRPGSRC,QUSEC

 * BRING IN THE GENERIC USER SPACE HEADER FROM QSYSINC

I/COPY QSYSINC/QRPGSRC,QUSGEN

 *

 ** JOBL0100 FORMAT RETURNED FROM QUSLJOB API

I/COPY QSYSINC/QRPGSRC,QUSLJOB

 *

 ** JOB NAME STRUCTURE FOR CALLING QUSLJOB

IJOBNAM DS

I I ’*ALL ’ 1 10 JOB

I I ’*ALL ’ 11 20 USER

I I ’*ALL’ 21 26 JOBNUM

ISPCNAM DS

I I ’SPCNAME ’ 1 10 SPC

I I ’QTEMP ’ 11 20 LIB

 ** OTHER ASSORTED VARIABLES

I DS

I I 2000 B 1 40SIZ

I B 5 80START

I B 9 120LENDTA

I I X’00’ 13 13 INTVAL

 *

 * SET UP TO ACCEPT EXCEPTIONS

C Z-ADD*ZEROS QUSBNB

 *

 * CREATE THE SPACE TO HOLD THE DATA

C CALL ’QUSCRTUS’

C PARM SPCNAM

C PARM ’EXT_ATTR’EXTATR 10

C PARM SIZ

C PARM INTVAL

C PARM ’*ALL ’PUBAUT 10

C PARM ’TEXT DSC’TXTDSC 50

C PARM ’*YES ’REPLAC 10

C PARM QUSBN

 *

 * CALL THE API TO LIST THE ACTIVE JOBS

C CALL ’QUSLJOB’

C PARM SPCNAM

C PARM ’JOBL0100’FORMAT 8

C PARM JOBNAM

C PARM ’*ACTIVE ’STAT 10

C PARM QUSBN

 *

 * RETRIEVE THE OFFSET OF THE FIRST LIST ENTRY FROM THE SPACE

C Z-ADD1 START

C Z-ADD140 LENDTA

C CALL ’QUSRTVUS’

C PARM SPCNAM

C PARM START

C PARM LENDTA

C PARM QUSBP

C PARM QUSBN

 *

 * RETRIEVE LIST ENTRIES

C QUSBPQ ADD 1 START

 *

C Z-ADD60 LENDTA (3)

*

C Z-ADD1 X 90

C X DOWLEQUSBPS

C CALL ’QUSRTVUS’

542 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C PARM SPCNAM

C PARM START

C PARM LENDTA

C PARM RECVR 60 (4)

C PARM QUSBN

 *

C MOVELRECVR QUSDD

C ADD QUSBPT START

C ADD 1 X

C END

 * DELETE THE SPACE THAT HELD THE DATA

C CALL ’QUSDLTUS’

C PARM SPCNAM

C PARM QUSBN

 *

C SETON LR

 *

Define list entry format lengths

The example programs in this topic show how to code flexibility into your program as it works its way

through the formats used by an API.

A common error, or trap, when working with list entry format lengths is to hard code the format length

into your program. The format length is used by the program to advance to the next list entry in the user

space. From release to release, the length of the format may change. Therefore, when the format length

changes, your program can be susceptible to being pointed to an incorrect position in the user space and

nonsense data placed in the receiver variable.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Example of incorrect coding: Define list entry format lengths

The program has the length of the list entry format hard coded. This is shown at (1). If your program

runs on a Version 2 Release 2 system, that value would work. However, with Version 2 Release 3, the

format size increased from 52 to 56 bytes. The correct coding is shown at (2).

 *

 *Program Name: PGM1

 *

 *Program Language: RPG

 *

 *Description: This sample program illustrates the incorrect

 * way of using list entry length formats.

 *

 *Header Files Included: QUSEC - Error Code Parameter

 * QUSLJOB - List Job API

 * QUSGEN - User Space Format for Generic Header

 *

 *APIs Used: QUSCRTUS - Create User Space

 * QUSLJOB - List Job

 * QUSRTVUS - Retrieve User Space

 * QUSDLTUS - Delete User Space

 *

 * THIS PROGRAM WILL CREATE THE NECESSARY SPACE AND THEN CALL

 * THE QUSLJOB API TO GET A LIST OF ALL ACTIVE JOBS ON THE SYSTEM.

 * THE FIRST JOB NAME/USER WILL BE DISPLAYED TO THE USER.

I/COPY QSYSINC/QRPGSRC,QUSGEN

I/COPY QSYSINC/QRPGSRC,QUSLJOB

 *

 * BRING IN THE ERROR STRUCTURE FROM QSYSINC

I/COPY QSYSINC/QRPGSRC,QUSEC

 *

APIs 543

** JOB NAME STRUCTURE FOR CALLING QUSLJOB

IJOBNAM DS

I I ’*ALL ’ 1 10 JOB

I I ’*ALL ’ 11 20 USER

I I ’*ALL’ 21 26 JOBNUM

 * FORMAT JOBL0100 FOR QUSLJOB API

 *

 ** DATA STRUCTURE CONTAINING SPACE NAME/LIB

ISPCNAM DS

I I ’SPCNAME ’ 1 10 SPC

I I ’QTEMP ’ 11 20 LIB

 ** OTHER ASSORTED VARIABLES

I DS

I I 2000 B 1 40SIZ

I B 5 80START

I B 9 120LENDTA

I I X’00’ 13 13 INTVAL

 *

 * SET UP TO ACCEPT EXCEPTIONS

C Z-ADD*ZEROS QUSBNB

 *

 * CREATE THE SPACE TO HOLD THE DATA

C CALL ’QUSCRTUS’

C PARM SPCNAM

C PARM ’EXT_ATTR’EXTATR 10

C PARM SIZ

C PARM INTVAL

C PARM ’*ALL ’PUBAUT 10

C PARM ’TEXT DSC’TXTDSC 50

C PARM ’*YES ’REPLAC 10

C PARM QUSBN

 *

 * CALL THE API TO LIST THE ACTIVE JOBS

C CALL ’QUSLJOB’

C PARM SPCNAM

C PARM ’JOBL0100’FORMAT 8

C PARM JOBNAM

C PARM ’*ACTIVE ’STAT 10

C PARM QUSBN

 *

 * RETRIEVE INFORMATION ABOUT THE USER SPACE AND ITS CONTENTS

C Z-ADD1 START

C Z-ADD140 LENDTA

C CALL ’QUSRTVUS’

C PARM SPCNAM

C PARM START

C PARM LENDTA

C PARM QUSBP

C PARM QUSBN

 *

 * RETRIEVE LIST ENTRIES

C QUSBPQ ADD 1 START

C Z-ADD52 LENDTA

C Z-ADD1 X 90

C X DOWLEQUSBPS

C CALL ’QUSRTVUS’

C PARM SPCNAM

C PARM START

C PARM LENDTA

C PARM QUSDD

C PARM QUSBN

 *

 * RETRIEVE THE NEXT LIST ENTRY (SPECIFYING LAST RELEASE’S

 * FORMAT LENGTH AS THE AMOUNT TO BUMP THE POINTER - THIS

 * WILL RESULT IN "GARBAGE" IN THE RECEIVER VARIABLE BECAUSE THE

 * FORMAT IS NOW 56 BYTES LONG)

 *

544 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

* DISPLAY THE INFORMATION RETURNED

C MOVELQUSDD RECVR 52

C DSPLY RECVR

C ADD 52 START (1)

C ADD 1 X

C END

 *

 * DELETE THE SPACE THAT HELD THE DATA

C CALL ’QUSDLTUS’

C PARM SPCNAM

C PARM QUSBN

 *

C SETON LR

Example: Define list entry format lengths of correct coding

The following program correctly uses the list entry length that is defined in the space header for the

QUSRTVUS API to advance from one entry to the next. This is shown at (2). If you use this value in your

program, you will always have the correct list entry length regardless of the version or release level of

the API.

 *

 *Program Name: PGM2

 *

 *Program Language: RPG

 *

 *Description: This sample program illustrates the correct

 * way of using list entry length formats.

 *

 *Header Files Included: QUSEC - Error Code Parameter

 * QUSLJOB - List Job API

 * QUSGEN - User Space Format for Generic Header

 *

 *APIs Used: QUSCRTUS - Create User Space

 * QUSLJOB - List Job

 * QUSRTVUS - Retrieve User Space

 * QUSDLTUS - Delete User Space

 *

 * THIS PROGRAM WILL CREATE THE NECESSARY SPACE AND THEN CALL

 * THE QUSLJOB API TO GET A LIST OF ALL ACTIVE JOBS ON THE SYSTEM.

 *

I/COPY QSYSINC/QRPGSRC,QUSGEN

I/COPY QSYSINC/QRPGSRC,QUSLJOB

I/COPY QSYSINC/QRPGSRC,QUSEC

 *

 ** JOB NAME STRUCTURE FOR CALLING QUSLJOB

IJOBNAM DS

I I ’*ALL ’ 1 10 JOB

I I ’*ALL ’ 11 20 USER

I I ’*ALL’ 21 26 JOBNUM

 *

 ** DATA STRUCTURE TO HOLD SPACE NAME

ISPCNAM DS

I I ’SPCNAME ’ 1 10 SPC

I I ’QTEMP ’ 11 20 LIB

 ** OTHER ASSORTED VARIABLES

I DS

I I 2000 B 1 40SIZ

I B 5 80START

I B 9 120LENDTA

I I X’00’ 13 13 INTVAL

 *

 * SET UP TO ACCEPT EXCEPTIONS

C Z-ADD*ZEROS QUSBNB

APIs 545

*

 * CREATE THE SPACE TO HOLD THE DATA

C CALL ’QUSCRTUS’

C PARM SPCNAM

C PARM ’EXT_ATTR’EXTATR 10

C PARM SIZ

C PARM INTVAL

C PARM ’*ALL ’PUBAUT 10

C PARM ’TEXT DSC’TXTDSC 50

C PARM ’*YES ’REPLAC 10

C PARM QUSBN

 *

 * CALL THE API TO LIST THE ACTIVE JOBS

C CALL ’QUSLJOB’

C PARM SPCNAM

C PARM ’JOBL0100’FORMAT 8

C PARM JOBNAM

C PARM ’*ACTIVE ’STAT 10

C PARM QUSBN

 *

 * RETRIEVE INFORMATION ABOUT THE USER SPACE AND ITS CONTENTS

C Z-ADD1 START

C Z-ADD140 LENDTA

C CALL ’QUSRTVUS’

C PARM SPCNAM

C PARM START

C PARM LENDTA

C PARM QUSBP

C PARM QUSBN

*

 * RETRIEVE THE FIRST LIST ENTRY BASED ON THE LIST ENTRY OFFSET

 * FOUND IN THE SPACE HEADER

C QUSBPQ ADD 1 START

C Z-ADD52 LENDTA

C Z-ADD1 X 90

C X DOWLEQUSBPS

C CALL ’QUSRTVUS’

C PARM SPCNAM

C PARM START

C PARM LENDTA

C PARM QUSDD

C PARM QUSBN

 *

 * RETRIEVE THE NEXT LIST ENTRY (SPECIFYING LIST ENTRY LENGTH

 * RETRIEVED FROM THE SPACE HEADER)

C ADD QUSBPT START (2)

 *

 * DISPLAY THE INFORMATION RETURNED

C MOVELQUSDD RECVR 52

C DSPLY RECVR

C ADD 1 X

C END

 *

 * DELETE THE SPACE THAT HELD THE DATA

C CALL ’QUSDLTUS’

C PARM SPCNAM

C PARM QUSBN

 **

C SETON LR

 Related reference

 “Example in RPG: List Object API” on page 89

This example program prints a report that shows all objects that adopt owner authority.

546 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Use null pointers with OPM APIs

Many programmers, especially those with a C programming background, view ignored parameters and

NULL parameters as being the same. This expectation can lead to unexpected results when OPM-based

APIs are used.

Note: Using NULL with ignored parameters is primarily a consideration with OPM-based APIs.

ILE-based APIs allow you to pass NULL parameters to indicate omitted parameter values.

Even though the value assigned to a parameter is not used, the parameter itself must be addressable.

When you use NULL for a parameter value, the system conceptually passes an address that can be

equated with 0, where 0 indicates that the parameter cannot be addressed. This lack of addressability

often results in a function check (MCH3601). Additionally, other error messages may also occur.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Example of incorrect coding: Use null pointers with OPM APIs

The following program has two parameter values coded as NULL. They are the ignored parameters of

the member and record format used in the List Database Relations (QDBLDBR) API, which is shown at

(1). The correct coding is shown at (2).

When the program is called, a machine function check of MCH3601 is reported because the address of

the required parameters member and record format are specified as NULL.

/**/

/* */

/*Program Name: PGM1 */

/* */

/*Program Language: ILE C */

/* */

/*Description: This sample program illustrates the incorrect */

/* use of ignored and null parameters. */

/* */

/*Header Files Included: <stdio.h> */

/* <qusec.h> */

/* <qusgen.h> */

/* <qdbldbr.h> */

/* <quscrtus.h> */

/* <qusptrus.h> */

/* <qliept.h> */

/* */

/*APIs Used: QUSCRTUS - Create User Space */

/* QDBLDBR - List Database Relations */

/* QUSPTRUS - Retrieve Pointer to User Space */

/**/

#include <stdio.h>

#include <qusec.h>

#include <qusgen.h>

#include <qdbldbr.h>

#include <quscrtus.h>

#include <qusptrus.h>

#include <qliept.h>

main()

 {

 /***/

 /* initialize program data elements */

 /***/

 char initial_value = 0x00;

 char text_description[50] =

 "test of QDBLDBR API ";

 char qualified_usrspc_name[20] = "GETLDBR QTEMP ";

APIs 547

Qus_EC_t error_code;

 Qus_Generic_Header_0100_t *header_ptr;

 error_code.Bytes_Provided = 0;

 /***/

 /* Create the user space to hold API results */

 /***/

 QUSCRTUS(qualified_usrspc_name, "SPACE ", 1,

 &initial_value, "*ALL ", text_description,

 "*YES ", &error_code, "*USER ");

 /***/

 /* Get list of file dependencies in current library */

 /* */

 /* Note that in this API call NULL pointers are being */

 /* used for the "ignored" parameters Member and */

 /* Record_Format. This convention is not valid as the */

 /* parameters must address a valid storage address. */

 /* The value */

 /* assigned to a storage location is not important, the */

 /* passing of a valid storage location is. */

 /* */

 /* The next statement will cause a MCH3601 */

 /***/

 QDBLDBR(qualified_usrspc_name, "DBRL0100", "*ALL *CURLIB ",

 NULL, NULL, &error_code); (1)

 /***/

 /* Get pointer to user space which contains dependencies */

 /***/

 QUSPTRUS(qualified_usrspc_name, &header_ptr, &error_code);

 /***/

 /* and display number of entries generated */

 /***/

 printf("The number of entries returned is %d\n",

 header_ptr->Number_List_Entries);

 }

Example: Use null pointers with OPM APIs of correct coding

The following program specifies that blanks be used as the values for both the member and record

format parameters. This coding is shown at (2) in the example program. By using blanks, the storage or

address location of those parameters is identified and passed when needed.

/**/

/* */

/*Program Name: PGM2 */

/* */

/*Program Language: ILE C */

/* */

/*Description: This sample program illustrates the correct */

/* use of ignored and null parameters. */

/* */

/*Header Files Included: <stdio.h> */

/* <qusec.h> */

/* <qusgen.h> */

/* <qdbldbr.h> */

/* <quscrtus.h> */

/* <qusptrus.h> */

/* <qliept.h> */

/* */

/*APIs Used: QUSCRTUS - Create User Space */

/* QDBLDBR - List Database Relations */

548 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* QUSPTRUS - Retrieve Pointer to User Space */

/**/

#include <stdio.h>

#include <qusec.h>

#include <qusgen.h>

#include <qdbldbr.h>

#include <quscrtus.h>

#include <qusptrus.h>

#include <qliept.h>

main()

 {

 /***/

 /* initialize program data elements */

 /***/

 char initial_value = 0x00;

 char text_description[50] =

 "test of QDBLDBR API ";

 char qualified_usrspc_name[20] = "GETLDBR QTEMP ";

 Qus_EC_t error_code;

 Qus_Generic_Header_0100_t *header_ptr;

 error_code.Bytes_Provided = 0;

 /***/

 /* Create the user space to hold API results */

 /***/

 QUSCRTUS(qualified_usrspc_name, "SPACE ", 1,

 &initial_value, "*ALL ", text_description,

 "*YES ", &error_code, "*USER ");

 /***/

 /* Get list of file dependencies in current library */

 /* */

 /* Note that in this API call, blank characters are being */

 /* used for the "ignored" parameters Member and */

 /* Record_Format. While the value is ignored, a valid */

 /* parameter storage location must still be passed */

 /***/

 QDBLDBR(qualified_usrspc_name, "DBRL0100", "*ALL *CURLIB ",

 " ", " ", &error_code); (2)

 /***/

 /* Get pointer to user space which contains dependencies */

 /***/

 QUSPTRUS(qualified_usrspc_name, &header_ptr, &error_code);

 /***/

 /* and display number of entries generated */

 /***/

 printf("The number of entries returned is %d\n",

 header_ptr->Number_List_Entries);

 }

Define byte alignment

Correct byte alignment ensures that data used with an API is correct. Byte alignment is also essential

when APIs are used to retrieve and then print or display data.

When byte alignment is off, it causes the API to read the data at some point other than at the beginning

of a record.

APIs 549

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Example of incorrect coding: Defining byte alignment

This program illustrates byte alignment while defining a structure. This is shown at (1). Four-byte

alignment is required when using this program.

Variable-length records must begin on a 4-byte boundary. As shown at (1), the variable-length record

CCSID_rec is not beginning on a 4-byte boundary. When the API accesses the CCSID_rec record, 4-byte

alignment is forced by padding the first 3 bytes of the CCSID_rec between the replace field and the start

of the CCSID_rec record. (2) shows that the variable-length record is not 4-byte aligned (the value is 13,

which is not divisible by 4). The correct coding is shown at (3).

Note: Not all APIs require a 4-byte boundary. ILE APIs, such as QusAddExitProgram, do.
/*** */

/* */

/*Program Name: PGM1 */

/* */

/*Program Language: ILE C */

/* */

/*Description: This program illustrates improper byte */

/* alignment when using variable length */

/* records. */

/* */

/* */

/*Header Files Included: <stdio.h> */

/* <signal.h> */

/* <string.h> */

/* <stdlib.h> */

/* <qusrgfa1.h> */

/* <qusec.h> */

/* <qliept.h> */

/* */

/* APIs Used: QusAddExitProgram - Add an exit program */

/* */

/**/

/**/

/* Includes */

/**/

#include <stdio.h>

#include <signal.h>

#include <string.h>

#include <stdlib.h>

#include <qusrgfa1.h>

#include <qusec.h>

#include <qliept.h>

/**/

/* Structures */

/* */

/**/

typedef struct { /* Error code */

 Qus_EC_t ec_fields;

 char exception_data[100];

} error_code_struct;

typedef struct { /* Exit program attribute keys*/

 int num_rec;

 Qus_Vlen_Rec_4_t replace_rec;

 char replace;

 Qus_Vlen_Rec_4_t CCSID_rec; (1)

 int CCSID;

 Qus_Vlen_Rec_4_t desc_rec;

 char desc[50];

550 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

} addep_attributes;

/**/

/* */

/* main */

/* */

/**/

int main()

{

 error_code_struct error_code;

 addep_attributes attrib_keys;

 /**/

 /* Initialize the error code parameter. */

 /**/

 error_code.ec_fields.Bytes_Provided=sizeof(error_code_struct);

 /**/

 /* Set the total number of exit program attributes that we are */

 /* specifying on the call. We will let the API take the default */

 /* for the attributes that we are not specifying. */

 /**/

 attrib_keys.num_rec=3;

 /**/

 /* Set the values for the three attributes that we will be */

 /* specifying: */

 /* Replace exit program = 1 (CHAR(1) field) */

 /* Exit program data CCSID = 37 (BIN(4) field) */

 /* Exit program description=’THIS IS A TEST EXIT PROGRAM’ */

 /* (CHAR(50) field) */

 /* */

 /* The structure for the exit program attributes defined above is */

 /* as follows: */

 /* */

 /* typedef struct { */

 /* int num_rec; */

 /* Qus_Vlen_Rec_4_t replace_rec; */

 /* char replace; */

 /* Qus_Vlen_Rec_4_t CCSID_rec; */

 /* int CCSID; */

 /* Qus_Vlen_Rec_4_t desc_rec; */

 /* char desc[50]; */

 /* } addep_attributes; */

 /* */

 /* and the Qus_Vlen_Rec_4_t structure is defined in */

 /* qus.h (included by qusrgfa1) as: */

 /* */

 /* typedef _Packed struct Qus_Vlen_Rec_4 { */

 /* int Length_Vlen_Record; */

 /* int Control_Key; */

 /* int Length_Data; */

 /* **char Data[];-> this field is supplied by */

 /* the user */

 /* } Qus_Vlen_Rec_4_t; */

 /* */

 /* This structure is mapped in bytes as follows: */

 /* { */

 /* BIN(4) - num_rec */

 /* BIN(4) - length variable length record for replace key */

 /* BIN(4) - replace key */

 /* BIN(4) - length replace data */

 /* CHAR(1) - replace data */

 /* BIN(4) - length variable length record for CCSID key */

 /* BIN(4) - CCSID key */

 /* BIN(4) - length CCSID data */

 /* BIN(4) - CCSID data */

 /* BIN(4) - length variable length record for description */

 /* key */

APIs 551

/* BIN(4) - description key */

 /* BIN(4) - length description key */

 /* CHAR(50) - description data */

 /* } */

 /* */

 /**/

 attrib_keys.replace_rec.Length_Vlen_Record=13; (2)

 attrib_keys.replace_rec.Control_Key=4;

 attrib_keys.replace_rec.Length_Data=1;

 attrib_keys.replace=’1’;

 attrib_keys.CCSID_rec.Length_Vlen_Record=16;

 attrib_keys.CCSID_rec.Control_Key=3;

 attrib_keys.CCSID_rec.Length_Data=4;

 attrib_keys.CCSID=37;

 attrib_keys.desc_rec.Length_Vlen_Record=39;

 attrib_keys.desc_rec.Control_Key=2;

 attrib_keys.desc_rec.Length_Data=27;

 memcpy(&attrib_keys.desc,

 "THIS IS A TEST EXIT PROGRAM",27);

 /**/

 /* Call the API to add the exit program. */

 /**/

 QusAddExitProgram("EXAMPLE_EXIT_POINT ",

 "EXMP0100",

 1,

 "EXAMPLEPGMEXAMPLELIB",

 "EXAMPLE EXIT PROGRAM DATA",

 25,

 &attrib_keys,

 &error_code);

 if (error_code.ec_fields.Bytes_Available != 0)

 {

 printf("ATTEMPT TO ADD AN EXIT PROGRAM FAILED WITH EXCEPTION:%.7s",

 error_code.ec_fields.Exception_Id);

 exit(1);

 }

} /* end program */

Example: Defining byte alignment of correct coding

The following example program shows a CHAR(3) bytes reserved field being added to the structure to

maintain 4-byte alignment as shown at (4). This corresponds to (1) in the incorrect coding example. The 3

reserved bytes are included in the length of the replace variable-length record. (3) shows the

variable-length record is now 4-byte aligned (record length of 16 is divisible by 4). This corresponds to (2)

in the incorrect coding example.

/**/

/* */

/*Program Name: PGM2 */

/* */

/*Program Language: ILE C */

/* */

/*Description: This program illustrates proper byte */

/* alignment when using variable length */

/* records. */

/* */

/* */

/*Header Files Included: <stdio.h> */

/* <signal.h> */

/* <string.h> */

552 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

/* <stdlib.h> */

/* <qusrgfa1.h> */

/* <qusec.h> */

/* <qliept.h> */

/* */

/* APIs Used: QusAddExitProgram - Add an exit program */

/* */

/* */

/**/

/* Includes */

/**/

#include <stdio.h>

#include <signal.h>

#include <string.h>

#include <stdlib.h>

#include <qusrgfa1.h>

#include <qusec.h>

#include <qliept.h>

/**/

/* Structures */

/**/

typedef struct { /* Error code */

 Qus_EC_t ec_fields;

 char exception_data[100];

} error_code_struct;

typedef struct { /* Exit program attribute keys*/

 int num_rec;

 Qus_Vlen_Rec_4_t replace_rec;

 char replace;

 char Reserved[3]; (4)

 Qus_Vlen_Rec_4_t CCSID_rec;

 int CCSID;

 Qus_Vlen_Rec_4_t desc_rec;

 char desc[100];

} addep_attributes;

/**/

/* */

/* main */

/* */

/**/

int main()

{

 error_code_struct error_code;

 addep_attributes attrib_keys;

 /**/

 /* Initialize the error code parameter. */

 /**/

 error_code.ec_fields.Bytes_Provided=sizeof(error_code_struct);

 /**/

 /* Set the total number of exit program attributes that we are */

 /* specifying on the call. We will let the API take the default */

 /* for the attributes that we are not specifying. */

 /**/

 attrib_keys.num_rec=3;

 /**/

 /* Set the values for the three attributes that we will be */

 /* specifying: */

 /* Replace exit program = 1 (CHAR(1) field) */

 /* Exit program data CCSID = 37 (BIN(4) field) */

 /* Exit program description=’THIS IS A TEST EXIT PROGRAM’ */

 /* (CHAR(50) field) */

APIs 553

/**/

 attrib_keys.replace_rec.Length_Vlen_Record=16; (3)

 attrib_keys.replace_rec.Control_Key=4;

 attrib_keys.replace_rec.Length_Data=1;

 attrib_keys.replace=’1’;

 attrib_keys.CCSID_rec.Length_Vlen_Record=16;

 attrib_keys.CCSID_rec.Control_Key=3;

 attrib_keys.CCSID_rec.Length_Data=4;

 attrib_keys.CCSID=37;

 attrib_keys.desc_rec.Length_Vlen_Record=39;

 attrib_keys.desc_rec.Control_Key=2;

 attrib_keys.desc_rec.Length_Data=27;

 memcpy(&attrib_keys.desc,"THIS IS A TEST EXIT PROGRAM",27);

 /**/

 /* Call the API to add the exit program. */

 /**/

 QusAddExitProgram("EXAMPLE_EXIT_POINT ",

 "EXMP0100",

 1,

 "EXAMPLEPGMEXAMPLELIB",

 "EXAMPLE EXIT PROGRAM DATA",

 25,

 &attrib_keys,

 &error_code);

 if (error_code.ec_fields.Bytes_Available != 0)

 {

 printf("ATTEMPT TO ADD AN EXIT PROGRAM FAILED WITH EXCEPTION: %.7s",

 error_code.ec_fields.Exception_Id);

 exit(1);

 }

} /* end program */

 Related concepts

 “Receiver variables” on page 75

A receiver variable is a program variable that is used as an output field to contain information that is

returned from an API.

Using offsets in a user space

An offset indicates the point in a structure that specific information should start. When offsets are

correctly used, programs can extract specific pieces of data from a structure and perform actions on that

data.

Using offsets incorrectly can produce errors when coding in a base 1 language such as RPG and COBOL.

One way to determine the base of a language is to determine how the first element of an array is

specified. In a base 0 language, the first element is number 0. In base 1 languages, the first element is

number 1.

The example programs in the following topics are coded using RPG. RPG is a base 1 language. However,

APIs produce information using a base of 0. To compensate, the API user must add 1 to all decimal and

hexadecimal offsets to the formats.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

554 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Example of incorrect coding: Use offsets in a user space

The beginning point for reading a user space is shown at (1). The data is read and placed into a user

space. However, the data in the user space is incorrect because the position to start was off by 1. This

program started to retrieve the data one character (or position) too soon. The correct coding is shown at

(2).

I***

I***

I*

I*Program Name: APIUG1

I*

I*Programming Language: RPG

I*

I*Description: This sample program illustrates the incorrect

I* way of using the offset in a user space.

I*

I*Header Files Included: QUSGEN - Generic Header of a User Space

I* QUSEC - Error Code Parameter

I* (Copied into Program)

I* QUSLOBJ - List Objects API

I*

I*APIs Used: QUSCRTUS - Create User Space

I* QUSLOBJ - List Objects

I* QUSRTVUS - Retrieve User Space

I* QUSDLTUS - Delete User Space

I***

I***

I*

I* Generic Header of a User Space Include

I*

I/COPY QSYSINC/QRPGSRC,QUSGEN

I*

I* Error Code Parameter Include for the APIs

I*

I* The following QUSEC include is copied into this program

I* so that the variable length field can be defined as a

I* fixed length.

I*

I*** START HEADER FILE SPECIFICATIONS ****************************

I*

I*Header File Name: H/QUSEC

I*

I*Descriptive Name: Error Code Parameter.

I*

I*5763-SS1 (C) Copyright IBM Corp. 1994,1994

I*All rights reserved.

I*US Government Users Restricted Rights -

I*Use, duplication or disclosure restricted

I*by GSA ADP Schedule Contract with IBM Corp.

I*

I*Licensed Materials-Property of IBM

I*

I*

I*Description: Include header file for the error code parameter.

I*

I*Header Files Included: None.

I*

I*Macros List: None.

I*

I*Structure List: Qus_EC_t

I*

I*Function Prototype List: None.

I*

I*Change Activity:

I*

I*CFD List:

APIs 555

I*

I*FLAG REASON LEVEL DATE PGMR CHANGE DESCRIPTION

I*---- ------------ ----- ------ --------- ----------------------

I*$A0= D2862000 3D10 931201 DPOHLSON: New Include

I*

I*End CFD List.

I*

I*Additional notes about the Change Activity

I*End Change Activity.

I*** END HEADER FILE SPECIFICATIONS ******************************

I***

I*Record structure for Error Code Parameter

I**** ***

I*NOTE: The following type definition only defines the corrected

I* portion of the format. Varying length field Exception

I* Data will not be defined here.

I***

IQUSBN DS

I* Qus EC

I B 1 40QUSBNB

I* Bytes Provided

I B 5 80QUSBNC

I* Bytes Available

I 9 15 QUSBND

I* Exception Id

I 16 16 QUSBNF

I* Reserved

I* 17 17 QUSBNG

I*

I* Varying length

I 17 100 QUSBNG

I*

I* List Objects API Include

I*

I/COPY QSYSINC/QRPGSRC,QUSLOBJ

I*

I* Qualified User Space Data Structure

I*

IUSERSP DS

I I ’APIUG1 ’ 1 10 USRSPC

I I ’QGPL ’ 11 20 SPCLIB

I* Qualified Object Name Data Structure

IOBJECT DS

I I ’*ALL ’ 1 10 OBJNAM

I I ’QGPL ’ 11 20 OBJLIB

I*

I* Miscellaneous Data Structure

I*

I DS

I* Set up parameters for the Create User Space API

I I ’TESTUSRSPC’ 1 10 EXTATR

I I X’00’ 11 11 INTVAL

I 12 12 RSVD1

I I 256 B 13 160INTSIZ

I I ’*USE ’ 17 26 PUBAUT

I I ’TEXT DESCRIPTION - 27 76 TEXT

I ’FOR USER SPACE -

I ’CALLED APIUG1 ’

I I ’*YES ’ 77 87 REPLAC

I* Set up parameters for the List Objects API

I I ’OBJL0100’ 88 95 FORMAT

I I ’*ALL ’ 96 105 OBJTYP

I 106 108 RSVD2

I* Set up parameters for the Retrieve User Space API

I I 1 B 109 1120STRPOS

I I 192 B 113 1160LENDTA

I B 117 1200COUNT

556 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C*

C* Create a user space called APIUG1 in library QGPL.

C*

C Z-ADD100 QUSBNB

C CALL ’QUSCRTUS’

C PARM USERSP

C PARM EXTATR

C PARM INTSIZ

C PARM INTVAL

C PARM PUBAUT

C PARM TEXT

C PARM REPLAC

C PARM QUSBN

C* See if any errors were returned in the error code parameter.

C EXSR ERRCOD

C*

C* Get a list of all objects in the QGPL library.

C*

C CALL ’QUSLOBJ’

C PARM USERSP

C PARM FORMAT

C PARM OBJECT

C PARM OBJTYP

C PARM QUSBN

C* See if any errors were returned in the error code parameter.

C EXSR ERRCOD

C*

C* Look at the generic header.

C* The generic header contains information

C* about the list data section that is needed when processing

C* the entries.

C*

C CALL ’QUSRTVUS’

C PARM USERSP

C PARM STRPOS

C PARM LENDTA

C PARM QUSBP

C PARM QUSBN

C* See if any errors were returned in the error code parameter.

C EXSR ERRCOD

C*

C* Check the information status field, QUSBPJ, to see if

C* the API was able to return all the information.

C* Possible values are:

C* C -- Complete and accurate

C* P -- Partial but accurate

C* I -- Incomplete

C*

C QUSBPJ IFEQ ’C’

C QUSBPJ OREQ ’P’

C*

C* Check to see if any entries were put into the user space.

C*

C QUSBPS IFGT 0

C Z-ADD1 COUNT

C Z-ADDQUSBPQ STRPOS (1)

C Z-ADD30 LENDTA

C* Walk through all the entries in the user space.

C COUNT DOWLEQUSBPS

C CALL ’QUSRTVUS’

C PARM USERSP

C PARM STRPOS

C PARM LENDTA

C PARM QUSDM

C PARM QUSBN

C* See if any errors were returned in the error code parameter.

C EXSR ERRCOD

APIs 557

C*

C*

C* Process the objects.

C*

C ADD 1 COUNT

C ADD QUSBPT STRPOS

C ENDDO

C ENDIF

C*

C* Information in the user space is not accurate

C*

C ENDIF

C*

C* Delete the user space called APIUG1 in library QGPL.

C*

C CALL ’QUSDLTUS’

C PARM USERSP

C PARM QUSBN

C* See if any errors were returned in the error code parameter.

C EXSR ERRCOD

C*

C SETON LR

C RETRN

C*

C* End of MAINLINE

C*

C* Subroutine to handle errors returned in the error code

C* parameter.

C*

C ERRCOD BEGSR

C QUSBNC IFGT 0

C*

C* Process errors returned from the API.

C*

C END

C ENDSR

Example: Use offsets in a user space of correct coding

The following example program has code in it that compensates for the API offset convention of that

starts at 0. The code adds 1 to the starting position (STRPOS) offset. This is shown at (2).

I*

I*Program Name: APIUG2

I*

I*Programming Language: RPG

I*

I*Description: This sample program illustrates the correct

I* way of using offsets in user space.

I*

I*Header Files Included: QUSGEN - Generic Header of a User Space

I* QUSEC - Error Code Parameter

I* (Copied into Program)

I* QUSLOBJ - List Objects API

I*

I*APIs Used: QUSCRTUS - Create User Space

I* QUSLOBJ - List Objects

I* QUSRTVUS - Retrieve User Space

I* QUSDLTUS - Delete User Space

I***

I***

I*

I* Generic Header of a User Space Include

I*

I/COPY QSYSINC/QRPGSRC,QUSGEN

I*

I* Error Code Parameter Include for the APIs

558 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

I*

I* The following QUSEC include is copied into this program

I* so that the variable length field can be defined as a

I* fixed length.

I*

I*** START HEADER FILE SPECIFICATIONS ****************************

I*

I*Header File Name: H/QUSEC

I*

I*Descriptive Name: Error Code Parameter.

I*

I*5763-SS1 (C) Copyright IBM Corp. 1994,1994

I*All rights reserved.

I*US Government Users Restricted Rights -

I*Use, duplication or disclosure restricted

I*by GSA ADP Schedule Contract with IBM Corp.

I*

I*Licensed Materials-Property of IBM

I*

I*

I*Description: Include header file for the error code parameter.

I*

I*Header Files Included: None.

I*

I*Macros List: None.

I*

I*Structure List: Qus_EC_t

I*

I*Function Prototype List: None.

I*

I*Change Activity:

I*

I*CFD List:

I*

I*FLAG REASON LEVEL DATE PGMR CHANGE DESCRIPTION

I*---- ------------ ----- ------ --------- ----------------------

I*$A0= D2862000 3D10 931201 DPOHLSON: New Include

I*

I*End CFD List.

I*

I*Additional notes about the Change Activity

I*End Change Activity.

I*** END HEADER FILE SPECIFICATIONS ******************************

I***

I*Record structure for Error Code Parameter

I**** ***

I*NOTE: The following type definition only defines the corrected

I* portion of the format. Varying length field Exception

I* Data will not be defined here.

I***

IQUSBN DS

I* Qus EC

I B 1 40QUSBNB

I* Bytes Provided

I B 5 80QUSBNC

I* Bytes Available

I 9 15 QUSBND

I* Exception Id

I 16 16 QUSBNF

I* Reserved

I* 17 17 QUSBNG

I*

I* Varying length

I 17 100 QUSBNG

I*

I* List Objects API Include

I*

APIs 559

I/COPY QSYSINC/QRPGSRC,QUSLOBJ

I*

I* Qualified User Space Data Structure

I*

IUSERSP DS

I I ’APIUG1 ’ 1 10 USRSPC

I I ’QGPL ’ 11 20 SPCLIB

I* Qualified Object Name Data Structure

IOBJECT DS

I I ’*ALL ’ 1 10 OBJNAM

I I ’QGPL ’ 11 20 OBJLIB

I*

I* Miscellaneous Data Structure

I*

I DS

I* Set up parameters for the Create User Space API

I I ’TESTUSRSPC’ 1 10 EXTATR

I I X’00’ 11 11 INTVAL

I 12 12 RSVD1

I I 256 B 13 160INTSIZ

I I ’*USE ’ 17 26 PUBAUT

I I ’TEXT DESCRIPTION - 27 76 TEXT

I ’FOR USER SPACE -

I ’CALLED APIUG2 ’

I I ’*YES ’ 77 87 REPLAC

I* Set up parameters for the List Objects API

I I ’OBJL0100’ 88 95 FORMAT

I I ’*ALL ’ 96 105 OBJTYP

I 106 108 RSVD2

I* Set up parameters for the Retrieve User Space API

I I 1 B 109 1120STRPOS

I I 192 B 113 1160LENDTA

I B 117 1200COUNT

C*

C* Create a user space called APIUG1 in library QGPL.

C*

C Z-ADD100 QUSBNB

C CALL ’QUSCRTUS’

C PARM USERSP

C PARM EXTATR

C PARM INTSIZ

C PARM INTVAL

C PARM PUBAUT

C PARM TEXT

C PARM REPLAC

C PARM QUSBN

C* See if any errors were returned in the error code parameter.

C EXSR ERRCOD

C*

C* Get a list of all objects in the QGPL library.

C*

C CALL ’QUSLOBJ’

C PARM USERSP

C PARM FORMAT

C PARM OBJECT

C PARM OBJTYP

C PARM QUSBN

C* See if any errors were returned in the error code parameter.

C EXSR ERRCOD

C*

C* Look at the generic header. This contains information

C* about the list data section that is needed when processing

C* the entries.

C*

C CALL ’QUSRTVUS’

C PARM USERSP

C PARM STRPOS

560 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C PARM LENDTA

C PARM QUSBP

C PARM QUSBN

C* See if any errors were returned in the error code parameter.

C EXSR ERRCOD

C*

C*

C* Check the information status field, QUSBPJ, to see if the

C* API was able to return all the information. Possible values

C* are: C -- Complete and accurate

C* P -- Partial but accurate

C* I -- Incomplete.

C*

C QUSBPJ IFEQ ’C’

C QUSBPJ OREQ ’P’

C*

C* Check to see if any entries were put into the user space.

C*

C QUSBPS IFGT 0

C Z-ADD1 COUNT

C* Because RPG is Base 1, the offset must be increased by one.

C*

C QUSBPQ ADD 1 STRPOS (2)

C Z-ADD30 LENDTA

C* Walk through all the entries in the user space.

C COUNT DOWLEQUSBPS

C CALL ’QUSRTVUS’

C PARM USERSP

C PARM STRPOS

C PARM LENDTA

C PARM QUSDM

C PARM QUSBN

C* See if any errors were returned in the error code parameter.

C EXSR ERRCOD

C*

C*

C* Process the objects.

C*

C ADD 1 COUNT

C ADD QUSBPT STRPOS

C ENDDO

C ENDIF

C*

C* Information in the user space is not accurate.

C*

C ENDIF

C*

C*

C* Delete the user space called APIUG1 in library QGPL.

C*

C CALL ’QUSDLTUS’

C PARM USERSP

C PARM QUSBN

C* See if any errors were returned in the error code parameter.

C EXSR ERRCOD

C*

C SETON LR

C RETRN

C*

C* End of MAINLINE

C*

C* Subroutine to handle errors returned in the error code

C* parameter.

C*

C ERRCOD BEGSR

C QUSBNC IFGT 0

C*

APIs 561

C* Process errors returned from the API.

C*

C END

C ENDSR

Code for new function

The example programs in this topic create a list of all objects that adopt authority and then process the

objects based on their object type.

New function from IBM can cause programs to fail if the programs do not allow for the handling of a

new function.

The new function added is the addition of another object type, *SRVPGM, which can adopt owner

authority.

A general theme of this example is never to assume that the values returned by an API are static. i5/OS

is continually evolving. While the example is based on the addition of a new object type, this philosophy

should be applied to any output of an API. For example, if an API today can return *YES or *NO, you

should discretely check for these values because *MAYBE might be valid in the future. Similarly, if your

application assumes a particular integer output has a positive nonzero value (an offset for instance), you

should check for a positive nonzero value because future releases could return a negative value to

indicate new function.

Note: Read the “Code license and disclaimer information” on page 575 for important legal information.

Example of incorrect coding: Code for new function

In this example program, a check is made to determine the object type. This is shown at (1). The example

program considers only object types of *SQLPKG or *PGMs. This is because they are the only object types

that could adopt owner authority before Version 2 Release 3. Since that time, a new object type of

*SRVPGM has been introduced. *SRVPGM can adopt owner authority. Hence, this example program

processes *SRVPGM objects as if they were *PGM objects. The correct coding is shown at (2).

D***

D*

D*Program Name: PGM1

D*

D*Program Language: ILE RPG

D*

D*Description: This example program demonstrates how a program can

D* be "broken" by new functions introduced on the system.

D*

D*

D*

D*Header Files Included: QUSGEN - Generic Header of a User Space

D* (Copied Into Program)

D* QUSEC - Error Code Parameter

D* (Copied Into Program)

D* QSYLOBJP - List Objects API

D* (Copied Into Program)

D*

D*APIs Used: QUSCRTUS - Create User Space

D* QSYLOBJP - List Objects That Adopt Owner Authority

D* QUSROBJD - Retrieve Object Description

D* QUSPTRUS - Retrieve Pointer to User Space

D***

D***

D*

D* This program demonstrates how a program can be "broken" by

C* new functions introduced on the system.

D*

D***

562 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

D/COPY QSYSINC/QRPGLESRC,QUSEC

D*

DSPC_NAME S 20 INZ(’ADOPTS QTEMP ’)

DSPC_SIZE S 9B 0 INZ(1)

DSPC_INIT S 1 INZ(X’00’)

DLSTPTR S *

DSPCPTR S *

DARR S 1 BASED(LSTPTR) DIM(32767)

DRCVVAR S 8

DRCVVARSIZ S 9B 0 INZ(%SIZE(RCVVAR))

D***

D*

D* The following QUSGEN include is copied into this program so

D* that it can be declared as BASED on SPCPTR, as shown at (3)

D* in the incorrect programs and at (4) in the correct program.

D*

D***

D*

D*Header File Name: H/QUSGEN

D*

D*Descriptive Name: Format structures for User Space for ILE/C

D*

D*5763-SS1 (C) Copyright IBM Corp. 1994, 1994

D*All rights reserved.

D*US Government Users Restricted Rights -

D*Use, duplication or disclosure restricted

D*by GSA ADP Schedule Contract with IBM Corp.

D*

D*Description: Contains the Generic Record format headers

D* for the user space.

D*

D*Header Files Included: none.

D*

D*Macros List: none.

D*

D*Structure List: Qus_Generic_Header_0100

D* Qus_Generic_Header_0300

D*

D*Function Prototype List: none.

D*

D*Change Activity:

D*

D*CFD List:

D*

D*FLAG REASON LEVEL DATE PGMR CHANGE DESCRIPTION

D*---- ------------ ----- ------ --------- ----------------------

D*$A0= D2862000 3D10 940213 LUPA: New Include

D*End CFD List.

D*

D*Additional notes about the Change Activity

D*End Change Activity.

D*** END HEADER FILE SPECIFICATIONS ******************************

D***

D*Type Definition for the User Space Generic Header.

D***

DQUSH0100 DS BASED(SPCPTR) (3)

D* Qus Generic Header 0100

D QUSUA 1 64

D* User Area

D QUSSGH 65 68B 0

D* Size Generic Header

D QUSSRL 69 72

D* Structure Release Level

D QUSFN 73 80

D* Format Name

D QUSAU 81 90

D* API Used

APIs 563

D QUSDTC 91 103

D* Date Time Created

D QUSIS 104 104

D* Information Status

D QUSSUS 105 108B 0

D* Size User Space

D QUSOIP 109 112B 0

D* Offset Input Parameter

D QUSSIP 113 116B 0

D* Size Input Parameter

D QUSOHS 117 120B 0

D* Offset Header Section

D QUSSHS 121 124B 0

D* Size Header Section

D QUSOLD 125 128B 0

D* Offset List Data

D QUSSLD 129 132B 0

D* Size List Data

D QUSNBRLE 133 136B 0

D* Number List Entries

D QUSSEE 137 140B 0

D* Size Each Entry

D QUSSIDLE 141 144B 0

D* CCSID List Ent

D QUSCID 145 146

D* Country ID

D QUSLID 147 149

D* Language ID

D QUSSLI 150 150

D* Partial List Indicator

D QUSERVED00 151 192

D* Reserved

D***

D*

D* The following QSYLOBJP include is copied into this program so

D* that it can be declared as BASED on LSTPTR, as shown at (5)

D* in the incorrect coding and (6) in the correct coding.

D*

D***

D*** START HEADER FILE SPECIFICATIONS ****************************

D*

D*Header File Name: H/QSYLOBJP

D*

D*Descriptive Name: List Objects That Adopt Owner Authority.

D*

D*

D*Description: Include header file for the QSYLOBJP API.

D*

D*Header Files Included: H/QSYLOBJP

D* H/QSY

D*

D*Macros List: None.

D*

D*Structure List: OBJP0100

D* OBJP0200

D* Qsy_OBJP_Header

D*

D*Function Prototype List: QSYLOBJP

D*

D*Change Activity:

D*

D*CFD List:

D*

D*FLAG REASON LEVEL DATE PGMR CHANGE DESCRIPTION

D*---- ------------ ----- ------ --------- ----------------------

D*$A0= D2862000 3D10 931222 XZY0432: New Include

D*

564 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

D*End CFD List.

D*

D*Additional notes about the Change Activity

D*End Change Activity.

D*** END HEADER FILE SPECIFICATIONS ******************************

D***

D*Prototype for calling Security API QSYLOBJP

D***

D QSYLOBJP C ’QSYLOBJP’

D***

D*Header structure for QSYLOBJP

D***

DQSYOBJPH DS BASED(LSTPTR) (5)

D* Qsy OBJP Header

D QSYUN00 1 10

D* User name

D QSYCV00 11 30

D* Continuation Value

D***

D*Record structure for OBJP0100 format

D***

DQSY0100L02 DS BASED(LSTPTR) (5)

D* Qsy OBJP0100 List

D QSYNAME05 1 10

D QSYBRARY05 11 20

D* Qualified object name

D QSYOBJT12 21 30

D* Object type

D QSYOBJIU 31 31

D* Object in use

C*

C* Start of mainline

C*

C EXSR INIT

C EXSR PROCES

C EXSR DONE

C*

C* Start of subroutines

C*

C***

C PROCES BEGSR

C*

C* This subroutine processes each entry returned by QSYLOBJP

C*

C*

C* Do until the list is complete

C*

C MOVE QUSIS LST_STATUS 1

C LST_STATUS DOUEQ ’C’

C*

C* If valid information was returned

C*

C QUSIS IFEQ ’C’

C QUSIS OREQ ’P’

C*

C* and list entries were found

C*

C QUSNBRLE IFGT 0

C*

C* set LSTPTR to the first byte of the user space

C*

C EVAL LSTPTR = SPCPTR

C*

C* increment LSTPTR to the first list entry

C*

C EVAL LSTPTR = %ADDR(ARR(QUSOLD + 1))

C*

APIs 565

C* and process all of the entries

C*

C DO QUSNBRLE

C QSYOBJT12 IFEQ ’*SQLPKG’

C*

C* Process *SQLPKG type

C*

C ELSE (1)

C* |

C* This ’ELSE’ logic is the potential bug in this program. In |

C* releases prior to V2R3 only *SQLPKGs and *PGMs could adopt |

C* owner authority, and this program is assuming that if the |

C* object type is not *SQLPKG then it must be a *PGM. In V2R3 |

C* a new type of object (the *SRVPGM) was introduced. As this |

C* program is written, all *SRVPGMs that adopt the owner profile |

C* will be processed as if they were *PGMs -- this erroneous |

C* processing could definitely cause problems. |

C* |

C QSYNAME05 DSPLY |

C END V

C*

C* after each entry, increment LSTPTR to the next entry

C*

C EVAL LSTPTR = %ADDR(ARR(QUSSEE + 1))

C END

C END

C*

C* When all entries in this user space have been processed, check

C* if more entries exist than can fit in one user space

C*

C QUSIS IFEQ ’P’

C*

C* by resetting LSTPTR to the start of the user space

C*

C EVAL LSTPTR = SPCPTR

C*

C* and then incrementing LSTPTR to the input parameter header

C*

C EVAL LSTPTR = %ADDR(ARR(QUSOIP + 1))

C*

C* If the continuation handle in the input parameter header is

C* blank, then set the list status to Complete

C*

C QSYCV00 IFEQ *BLANKS

C MOVE ’C’ LST_STATUS

C ELSE

C*

C* Else, call QSYLOBJP reusing the User Space to get more

C* List entries

C*

C MOVE QSYCV00 CONTIN_HDL

C EXSR GETLST

C MOVE QUSIS LST_STATUS

C END

C END

C ELSE

C*

C* And if an unexpected status, log an error (not shown) and exit

C*

C EXSR DONE

C END

C END

C ENDSR

C***

C GETLST BEGSR

C*

C* Call QSYLOBJP to generate a list

566 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C* The continuation handle is set by the caller of this subroutine.

C*

C CALL QSYLOBJP

C PARM SPC_NAME

C PARM ’OBJP0100’ MBR_LIST 8

C PARM ’*CURRENT’ USR_PRF 10

C PARM ’*ALL’ OBJ_TYPE 10

C PARM CONTIN_HDL 20

C PARM QUSEC

C*

C* Check for errors on QSYLOBJP

C*

C QUSBAVL IFGT 0

C MOVEL ’QSYLOBJP’ APINAM 10

C EXSR APIERR

C END

C ENDSR

C***

C INIT BEGSR

C*

C* One-time initialization code for this program

C*

C* Set error code structure to not use exceptions

C*

C EVAL QUSBPRV = %SIZE(QUSEC)

C*

C* Check to see if the user space was previously created in

C* QTEMP. If it was, simply reuse it.

C*

C CALL ’QUSROBJD’

C PARM RCVVAR

C PARM RCVVARSIZ

C PARM ’OBJD0100’ ROBJD_FMT 8

C PARM SPC_NAME

C PARM ’*USRSPC’ OBJ_TYPE 10

C PARM QUSEC

C*

C* Check for errors on QUSROBJD

C*

C QUSBAVL IFGT 0

C*

C* If CPF9801, then user space was not found

C*

C QUSEI IFEQ ’CPF9801’

C*

C* So create a user space for the list generated by QSYLOBJP

C*

C CALL ’QUSCRTUS’

C PARM SPC_NAME

C PARM ’QSYLOBJP ’ EXT_ATTR 10

C PARM SPC_SIZE

C PARM SPC_INIT

C PARM ’*ALL’ SPC_AUT 10

C PARM *BLANKS SPC_TEXT 50

C PARM ’*YES’ SPC_REPLAC 10

C PARM QUSEC

C PARM ’*USER’ SPC_DOMAIN 10

C*

C* Check for errors on QUSCRTUS

C*

C QUSBAVL IFGT 0

C MOVEL ’QUSCRTUS’ APINAM 10

C EXSR APIERR

C END

C*

C* Else, an error occurred accessing the user space

C*

APIs 567

C ELSE

C MOVEL ’QUSROBJD’ APINAM 10

C EXSR APIERR

C END

C END

C*

C* Set QSYLOBJP (using GETLST) to start a new list

C*

C MOVE *BLANKS CONTIN_HDL

C EXSR GETLST

C*

C* Get a resolved pointer to the user space for performance

C*

C CALL ’QUSPTRUS’

C PARM SPC_NAME

C PARM SPCPTR

C PARM QUSEC

C*

C* Check for errors on QUSPTRUS

C*

C QUSBAVL IFGT 0

C MOVEL ’QUSPTRUS’ APINAM 10

C EXSR APIERR

C END

C ENDSR

C***

C APIERR BEGSR

C*

C* Log any error encountered, and exit the program

C*

C APINAM DSPLY QUSEI

C EXSR DONE

C ENDSR

C***

C DONE BEGSR

C*

C* Exit the program

C*

C EVAL *INLR = ’1’

C RETURN

C ENDSR

Example: Code for new function of correct coding

In the following example program, code has been written that checks for object types *SRVPGM, *PGM,

and *SQLPKG. If an object type is encountered that is unknown (it does not match *SRVPGM, *PGM, or

*SQLPKG), an error is logged and an exit from the program takes place.

The coding to handle the integration of new function (in this case the new object type that can adopt

owner authority) is shown at (2).

C***

C*

C*Program Name: PGM2

C*

C*Program Language: ILE RPG

C*

C*Description: This example program demonstrates how a program can

C* be coded to accept new functions introduced on the system.

C*

C*

C*

C*Header Files Included: QUSGEN - Generic Header of a User Space

D* (Copied Into Program)

C* QUSEC - Error Code Parameter

D* (Copied Into Program)

568 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C* QSYLOBJP - List Objects API

D* (Copied Into Program)

C*

C*APIs Used: QUSCRTUS - Create User Space

C* QSYLOBJP - List Objects That Adopt Owner Authority

C* QUSROBJD - Retrieve Object Description

C* QUSPTRUS - Retrieve Pointer to User Space

C***

H

C***

C*

D/COPY QSYSINC/QRPGLESRC,QUSEC

D*

DSPC_NAME S 20 INZ(’ADOPTS QTEMP ’)

DSPC_SIZE S 9B 0 INZ(1)

DSPC_INIT S 1 INZ(X’00’)

DLSTPTR S *

DSPCPTR S *

DARR S 1 BASED(LSTPTR) DIM(32767)

DRCVVAR S 8

DRCVVARSIZ S 9B 0 INZ(%SIZE(RCVVAR))

D***

D*

D* The following QUSGEN include is copied into this program so

D* that it can be declared as BASED on SPCPTR, as shown at (3)

D* in the incorrect program and at (4) in the correct program.

D*

D***

D*

D*** START HEADER FILE SPECIFICATIONS ****************************

D*

D*Header File Name: H/QUSGEN

D*

D*Descriptive Name: Format structures for User Space for ILE/C

D*

D*

D*5763-SS1 (C) Copyright IBM Corp. 1994, 1994

D*All rights reserved.

D*US Government Users Restricted Rights -

D*Use, duplication or disclosure restricted

D*by GSA ADP Schedule Contract with IBM Corp.

D*

D*Description: Contains the Generic Record format headers

D* for the user space.

D*

D*Header Files Included: none.

D*

D*Macros List: none.

D*

D*Structure List: Qus_Generic_Header_0100

D* Qus_Generic_Header_0300

D*

D*Function Prototype List: none.

D*

D*Change Activity:

D*

D*CFD List:

D*

D*FLAG REASON LEVEL DATE PGMR CHANGE DESCRIPTION

D*---- ------------ ----- ------ --------- ----------------------

D*$A0= D2862000 3D10 940213 LUPA: New Include

D*End CFD List.

D*

D*Additional notes about the Change Activity

D*End Change Activity.

D*** END HEADER FILE SPECIFICATIONS ******************************

D***

APIs 569

D*Type Definition for the User Space Generic Header.

D***

DQUSH0100 DS BASED(SPCPTR) (4)

D* Qus Generic Header 0100

D QUSUA 1 64

D* User Area

D QUSSGH 65 68B 0

D* Size Generic Header

D QUSSRL 69 72

D* Structure Release Level

D QUSFN 73 80

D* Format Name

D QUSAU 81 90

D* API Used

D QUSDTC 91 103

D* Date Time Created

D QUSIS 104 104

D* Information Status

D QUSSUS 105 108B 0

D* Size User Space

D QUSOIP 109 112B 0

D* Offset Input Parameter

D QUSSIP 113 116B 0

D* Size Input Parameter

D QUSOHS 117 120B 0

D* Offset Header Section

D QUSSHS 121 124B 0

D* Size Header Section

D QUSOLD 125 128B 0

D* Offset List Data

D QUSSLD 129 132B 0

D* Size List Data

D QUSNBRLE 133 136B 0

D* Number List Entries

D QUSSEE 137 140B 0

D* Size Each Entry

D QUSSIDLE 141 144B 0

D* CCSID List Ent

D QUSCID 145 146

D* Country ID

D QUSLID 147 149

D* Language ID

D QUSSLI 150 150

D* Partial List Indicator

D QUSERVED00 151 192

D* Reserved

D***

D*

D* The following QSYLOBJP include is copied into this program so

D* that it can be declared as BASED on LSTPTR, as shown at (5)

D* in the incorrect coding and at (6) in the correct coding.

D*

D*

D***

D*** START HEADER FILE SPECIFICATIONS ****************************

D*

D*Header File Name: H/QSYLOBJP

D*

D*Descriptive Name: List Objects That Adopt Owner Authority.

D*

D*

D*Description: Include header file for the QSYLOBJP API.

D*

D*Header Files Included: H/QSYLOBJP

D* H/QSY

D*

D*Macros List: None.

570 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

D*

D*Structure List: OBJP0100

D* OBJP0200

D* Qsy_OBJP_Header

D*

D*Function Prototype List: QSYLOBJP

D*

D*Change Activity:

D*

D*CFD List:

D*

D*FLAG REASON LEVEL DATE PGMR CHANGE DESCRIPTION

D*---- ------------ ----- ------ --------- ----------------------

D*$A0= D2862000 3D10 931222 XZY0432: New Include

D*

D*End CFD List.

D*

D*Additional notes about the Change Activity

D*End Change Activity.

D*** END HEADER FILE SPECIFICATIONS ******************************

D***

D*Prototype for calling Security API QSYLOBJP

D***

D QSYLOBJP C ’QSYLOBJP’

D***

D*Header structure for QSYLOBJP

D***

DQSYOBJPH DS BASED(LSTPTR) (6)

D* Qsy OBJP Header

D QSYUN00 1 10

D* User name

D QSYCV00 11 30

D* Continuation Value

D***

D*Record structure for OBJP0100 format

D***

DQSY0100L02 DS BASED(LSTPTR) (6)

D* Qsy OBJP0100 List

D QSYNAME05 1 10

D QSYBRARY05 11 20

D* Qualified object name

D QSYOBJT12 21 30

D* Object type

D QSYOBJIU 31 31

D* Object in use

C*

C* Start of mainline

C*

C EXSR INIT

C EXSR PROCES

C EXSR DONE

C*

C* Start of subroutines

C*

C***

C PROCES BEGSR

C*

C* This subroutine processes each entry returned by QSYLOBJP

C*

C*

C* Do until the list is complete

C*

C MOVE QUSIS LST_STATUS 1

C*

C LST_STATUS DOUEQ ’C’

C*

C* If valid information was returned

APIs 571

C*

C QUSIS IFEQ ’C’

C QUSIS OREQ ’P’

C*

C* and list entries were found

C*

C QUSNBRLE IFGT 0

C*

C* set LSTPTR to the first byte of the user space

C*

C EVAL LSTPTR = SPCPTR

C*

C* increment LSTPTR to the first list entry

C*

C EVAL LSTPTR = %ADDR(ARR(QUSOLD + 1))

C*

C* and process all of the entries

C*

C DO QUSNBRLE

C QSYOBJT12 IFEQ ’*SQLPKG’

C*

C* Process *SQLPKG type (2)

C* |

C ELSE |

C QSYOBJT12 IFEQ ’*PGM’ |

C* |

C* Process *PGM type |

C* |

C QSYNAME05 DSPLY |

C ELSE |

C QSYOBJT12 IFEQ ’*SRVPGM’ |

C* |

C* Process *SRVPGM type |

C* |

C ELSE |

C* V

C*

C* Unknown type, log an error and exit from program (maybe..)

C*

C EXSR DONE

C END

C END

C END

C*

C* after each entry, increment LSTPTR to the next entry

C*

C EVAL LSTPTR = %ADDR(ARR(QUSSEE + 1))

C END

C END

C*

C* When all entries in this user space have been processed, check

C* if more entries exist than can fit in one user space

C*

C QUSIS IFEQ ’P’

C*

C* by resetting LSTPTR to the start of the user space

C*

C EVAL LSTPTR = SPCPTR

C*

C* and then incrementing LSTPTR to the input parameter header

C*

C EVAL LSTPTR = %ADDR(ARR(QUSOIP + 1))

C*

C* If the continuation handle in the input parameter header is

C* blank, then set the list status to complete.

C*

C QSYCV00 IFEQ *BLANKS

572 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

C MOVE ’C’ LST_STATUS

C ELSE

C*

C* Else, call QSYLOBJP reusing the user space to get more

C* list entries

C*

C MOVE QSYCV00 CONTIN_HDL

C EXSR GETLST

C MOVE QUSIS LST_STATUS

C END

C END

C ELSE

C*

C* And if an unexpected status, log an error (not shown) and exit

C*

C EXSR DONE

C END

C END

C ENDSR

C***

C GETLST BEGSR

C*

C* Call QSYLOBJP to generate a list

C* The continuation handle is set by the caller of this subroutine.

C*

C CALL QSYLOBJP

C PARM SPC_NAME

C PARM ’OBJP0100’ MBR_LIST 8

C PARM ’*CURRENT’ USR_PRF 10

C PARM ’*ALL’ OBJ_TYPE 10

C PARM CONTIN_HDL 20

C PARM QUSEC

C*

C* Check for errors on QSYLOBJP

C*

C QUSBAVL IFGT 0

C MOVEL ’QSYLOBJP’ APINAM 10

C EXSR APIERR

C END

C ENDSR

C***

C INIT BEGSR

C*

C* One time initialization code for this program

C*

C* Set error code structure to not use exceptions

C*

C EVAL QUSBPRV = %SIZE(QUSEC)

C*

C* Check to see if the user space was previously created in

C* QTEMP. If it was, simply reuse it.

C*

C CALL ’QUSROBJD’

C PARM RCVVAR

C PARM RCVVARSIZ

C PARM ’OBJD0100’ ROBJD_FMT 8

C PARM SPC_NAME

C PARM ’*USRSPC’ OBJ_TYPE 10

C PARM QUSEC

C*

C* Check for errors on QUSROBJD

C*

C QUSBAVL IFGT 0

C*

C* If CPF9801, then user space was not found

C*

C QUSEI IFEQ ’CPF9801’

APIs 573

C*

C* So create a user space for the list generated by QSYLOBJP

C*

C CALL ’QUSCRTUS’

C PARM SPC_NAME

C PARM ’QSYLOBJP ’ EXT_ATTR 10

C PARM SPC_SIZE

C PARM SPC_INIT

C PARM ’*ALL’ SPC_AUT 10

C PARM *BLANKS SPC_TEXT 50

C PARM ’*YES’ SPC_REPLAC 10

C PARM QUSEC

C PARM ’*USER’ SPC_DOMAIN 10

C*

C* Check for errors on QUSCRTUS

C*

C QUSBAVL IFGT 0

C MOVEL ’QUSCRTUS’ APINAM 10

C EXSR APIERR

C END

C*

C* Else, an error occurred accessing the user space

C*

C ELSE

C MOVEL ’QUSROBJD’ APINAM 10

C EXSR APIERR

C END

C END

C*

C* Set QSYLOBJP (using GETLST) to start a new list

C*

C MOVE *BLANKS CONTIN_HDL

C EXSR GETLST

C*

C* Get a resolved pointer to the user space for performance

C*

C CALL ’QUSPTRUS’

C PARM SPC_NAME

C PARM SPCPTR

C PARM QUSEC

C*

C* Check for errors on QUSPTRUS

C*

C QUSBAVL IFGT 0

C MOVEL ’QUSPTRUS’ APINAM 10

C EXSR APIERR

C END

C ENDSR

C***

C APIERR BEGSR

C*

C* Log any error encountered, and exit the program

C*

C APINAM DSPLY QUSEI

C EXSR DONE

C ENDSR

C***

C DONE BEGSR

C*

C* Exit the program

C*

C EVAL *INLR = ’1’

C RETURN

C ENDSR

574 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Code license and disclaimer information

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS

OR EXCLUSIONS MAY NOT APPLY TO YOU.

APIs 575

|
|
|
|
|

|
|

|

|
|

|

|
|
|

576 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 2006 577

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to change without

notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the

products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

578 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

|
|
|

|
|
|
|
|

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information

This Programming Application Programming Interfaces (API) Concepts documents intended

Programming Interfaces that allow the customer to write programs to obtain the services of i5/OS.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

AIX

AIX 5L

e(logo)server

eServer

i5/OS

IBM

Integrated Language Environment

iSeries

pSeries

xSeries

zSeries

SAA

System/36

System/370

System Application Architecture

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States,

other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Appendix. Notices 579

|
|

|

|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these publications, or reproduce, distribute or display these publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE

PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

580 IBM Systems - iSeries: Programming Application Programming Interfaces (API) Concepts

����

Printed in USA

	Contents
	Application programming interfaces
	What's new for V5R4
	Printable PDFs
	API concepts
	About application programming interfaces (APIs)
	API terminology
	Generic library names
	OPM and ILE API verbs and abbreviations
	Language selection considerations
	API environments
	APIs for the Original Program Model environment
	APIs for the Integrated Language Environment
	APIs for the ILE Common Execution Environment
	OPM and ILE API differences
	APIs for the UNIX-type environment

	API information format
	API description
	API format
	API field descriptions
	API error messages
	Extracting a field from the format
	Processing lists that contain data structures

	API parameters
	Passing parameters
	Input and output parameters
	Offset values and lengths
	Offset versus displacement considerations for structures
	Error code parameter

	Include files and the QSYSINC library
	Internal object types
	Data types
	Internal identifiers
	User spaces and receiver variables
	User spaces
	Receiver variables

	Continuation handle
	Using a continuation handle

	List APIs overview
	List Object API general data structure
	User spaces for list APIs
	Example in RPG: List Object API
	Example in ILE CL: List Object API
	Example in ILE C: List Object API
	Example in ILE RPG: List Object API
	Example in ILE COBOL: List Object API

	Domain concepts
	Exit programs
	User index considerations
	Performance considerations
	APIs and internal system objects
	Open list information format
	Path name format

	Using APIs
	Scenario: Original Program Model (OPM) API
	Example in OPM RPG: Retrieving the HOLD parameter (exception message)
	Example in ILE COBOL: Retrieving the HOLD parameter (exception message)
	Example in ILE C: Retrieving the HOLD parameter (exception message)
	Example in ILE RPG: Retrieving the HOLD parameter (exception message)
	Example in OPM RPG: Retrieving the HOLD parameter (error code structure)
	Example in ILE COBOL: Retrieving the HOLD parameter (error code structure)
	Example in ILE C: Retrieving the HOLD parameter (error code structure)
	Example in ILE RPG: Retrieving the HOLD parameter (error code structure)
	Example in OPM RPG: Accessing the HOLD attribute
	Example in ILE COBOL: Accessing the HOLD attribute
	Example in ILE C: Accessing the HOLD attribute
	Example in ILE RPG: Accessing the HOLD attribute
	Example in OPM RPG: Accessing a field value (initial library list)
	Example in ILE COBOL: Accessing a field value (initial library list)
	Example in ILE C: Accessing a field value (initial library list)
	Example in ILE RPG: Accessing a field value (initial library list)
	Example in OPM RPG: Using keys with List Spooled Files API
	Example in ILE COBOL: Using keys with List Spooled Files API
	Example in ILE C: Using keys with List Spooled Files API
	Example in ILE RPG: Using keys with List Spooled Files API

	Scenario: Integrated Language Environment (ILE) APIs
	Example in ILE C: Register exit point and add exit program
	Example in OPM COBOL: Register exit point and add exit program
	Example in ILE COBOL: Register exit point and add exit program
	Example in OPM RPG: Register exit point and add exit program
	Example in ILE RPG: Register exit point and add exit program
	Example in ILE C: Remove exit program and deregister exit point
	Example in OPM COBOL: Remove exit program and deregister exit point
	Example in ILE COBOL: Remove exit program and deregister exit point
	Example in OPM RPG: Remove exit program and deregister exit point
	Example in ILE RPG: Remove exit program and deregister exit point
	Example in ILE C: Retrieve exit point and exit program information
	Example in OPM COBOL: Retrieve exit point and exit program information
	Example in ILE COBOL: Retrieve exit point and exit program information
	Example in OPM RPG: Retrieve exit point and exit program information
	Example in ILE RPG: Retrieve exit point and exit program information

	Performing tasks using APIs
	Examples: Packaging your own software products
	Examples: Retrieving a file description to a user space
	Examples: Using data queues or user queues

	Examples: APIs
	Example: Changing an active job
	Example: Changing a job schedule entry
	Example: Creating a batch machine
	Example: Creating and manipulating a user index
	Example: Creating your own telephone directory
	Examples: Defining queries
	Example: Deleting old spooled files
	Example: Diagnostic reporting
	Example: Generating and sending an alert
	Example: List directories
	Example: Listing subdirectories
	Example: Saving to multiple devices
	Example: Saving and restoring system-level environment variables
	Examples: Scanning string patterns
	Example: Using COBOL program to call APIs
	Example: Using the control device (QTACTLDV) API
	Examples: Using a data queue
	Example: Using environment variables
	Examples: Using ILE Common Execution Environment data APIs
	Examples: Using the generic terminal APIs
	Example: Using profile handles
	Example: Using registration facility APIs
	Examples: Using semaphores and shared memory
	Example: Using SNA/Management services transport APIs
	Example: Using source debugger APIs
	Examples: Using the spawn process and wait for child process APIs
	Example: Using the user-defined communications programs for file transfer
	Example: Working with stream files
	Example: Creating a program temporary fix exit program
	Example: Using the operational assistant exit program for operational assistant backup

	Machine interface programming
	Machine interface instructions
	Example: Writing an MI program
	Compile an MI program
	Creating an MI version of CLCRTPG
	Enhanced version of the MICRTPG program
	Understand the MICRTPG2 program (by sections of code)
	Beginning the instruction stream
	Using static storage to your advantage
	MI code example: MICRTPG2 complete program
	Updated CL06 program

	Create the MICRTPG2 program
	Examples: Common MI programming techniques
	Program storage

	Common API programming errors
	Use the error code parameter
	Define data structures
	Examples: Define receiver variables
	Define list entry format lengths
	Use null pointers with OPM APIs
	Define byte alignment
	Using offsets in a user space
	Code for new function

	Code license and disclaimer information

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and conditions

